BT169B-D-G-1可控硅
- 格式:pdf
- 大小:67.03 KB
- 文档页数:12
单向可控硅参数列表MCR100-8 1A400V单向可控硅参数列表MCR100-8 1A400V参数: 1A 400V可控硅引脚定义可控硅外形象中功率三极管,三个脚定义为阳极A,阴极K,栅极G ,使用时在阳极加正电压,必须在栅极加一个4 伏左右的触发电压才能导通.单向可控硅的型号参数表常用1A/400V 单向可控硅有:MCR100-6MCR100-8BT169TP5GCR3AM常用3A/600V 的单向可控硅的型号有:3CR3AM-12TLC336TLC336TTLC336DTLC336STLC336晶闸管的选用与代换及检测1.晶闸管的选用(1) 选择晶闸管的类型:晶闸管有多种类型,应根据应用电路的具体要求合理选用。
若用于交直流电压控制、可控整流、交流调压、逆变电源、开关电源保护电路等,可选用普通晶闸管。
若用于交流开关、交流调压、交流电动机线性调速、灯具线性调光及固态继电器、固态接触器等电路中,应选用双向晶闸管。
若用于交流电动机变频调速、斩波器、逆变电源及各种电子开关电路等,可选用门极关断晶闸管。
若用于锯齿波发生器、长时间延时器、过电压保护器及大功率晶体管触发电路等,可选用BTG 晶闸管。
若用于电磁灶、电子镇流器、超声波电路、超导磁能储存系统及开关电源等电路,可选用逆导晶闸管。
若用于光电耦合器、光探测器、光报警器、光计数器、光电逻辑电路及自动生产线的运行监控电路,可选用光控晶闸管。
2.选择晶闸管的主要参数:晶闸管的主要参数应根据应用电路的具体要求而定。
所选晶闸管应留有一定的功率裕量,其额定峰值电压和额定电流(通态平均电流)均应高于受控电路的最大工作电压和最大工作电流1. 5〜2倍。
晶闸管的正向压降、门极触发电流及触发电压等参数应符合应用电路(指门极的控制电路)的各项要求,不能偏高或偏低,否则会影响晶闸管的正常工作。
2.晶闸管的代换晶闸管损坏后,若无同型号的晶闸管更换,可以选用与其性能参数相近的其他型号晶闸管来代换。
bt131可控硅引脚资料篇一:可控硅型号参数BT篇二:双向可控硅产品命名双向可控硅为什么称为“TRIAC”三端:TRIode(取前三个字母)交流半导体开关:ACemiconductorwitch(取前两个字母)以上两组名词组合成“TRIAC”中文译意“三端双向可控硅开关”。
由此可见“TRIAC”是双向可控硅的统称。
双向:Bi-directional(取第一个字母)控制:Controlled(取第一个字母)整流器:Rectifier(取第一个字母)再由这三组英文名词的首个字母组合而成:“BCR”中文译意:双向可控硅。
以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM等等。
双向:Bi-directional(取第一个字母)三端:Triode(取第一个字母)由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philip公司,均以此来命名双向可控硅。
Philip公司的产品型号前缀为“BTA”字头的,通常是指三象限的双向可控硅。
而意法ST公司,则以“BT”字母为前缀来命名元件的型号并且在“BT”后加“A”或“B”来表示绝缘与非绝缘组合成:“BTA”、“BTB”系列的双向可控硅型号,如:三象限/绝缘型/双向可控硅:BTA06-600C、BTA12-600B、BTA16-600B、BTA41-600B等等;四象限/非绝缘/双向可控硅:BTB06-600C、BTB12-600B、BTB16-600B、BTB41-600B等等;ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。
如“BW”、“CW”、“SW”、“TW”;代表型号如:BTB12-600BW、BTA26-700CW、BTA08-600SW、、、、等等。
至于型号后缀字母的触发电流,各个厂家的代表如下:PHILIPS公司:D=5mA,E=10mA,C=15mA,F=25mA,G=50mA,R=200uA或5mA,型号没有后缀字母之触发电流,通常为25-35mA;PHILIPS公司的触发电流代表字母没有统一的定义,以产品的封装不同而不同。
BTA/BTB04BTA/BTB04双向可控硅●产品特点NPNPN 五层结构的硅双向器件;P 型对通扩散隔离;台面玻璃钝化工艺;背面多层金属电极●主要用途加热控制器;调光/调速控制器;彩灯控制器;自动麻将机;搅拌机;果汁机;面包机等家用电器●封装形式TO-220AB●主要参数(Tj=25℃)●极限参数符号项目数值单位I T (RMS)通态平均电流4A V DRM /V RRM断态/反向重复值电压≥600V I TSM通态浪涌电流40A符号参数和条件数值单位I T (RMS)通态方均根电流(完全正弦波)4A I TSM 通态不重复浪涌电流(Tj=25℃,tp=20ms)40A I 2t I 2t 值(tp=10ms)8A 2S I GM 控制极峰值耗散电流(tp=20μs)4A V GM 控制极峰值耗散电压(tp=20μs)16V P GM 控制极峰值耗散功率(tp=20μs)40W P G (A V)控制极平均耗散功率(tp=20μs)1W d I T /dt 通态电流临界上升率(I T =6A,,I G =0.2A,d I G /dt=0.2A/μs)Ⅰ-Ⅱ-Ⅲ10A/μsⅣ10Tstg Tj贮存温度操作结口温度-40--+150-40--+110℃T1:主端子1T2:主端子2G :触发极A:绝缘型封装的金属底板与T2极绝缘B:非绝缘型封装的金属底版与T2极连通BTA/BTB04●热阻●电特性(T j =25℃除非有其它的温度存在)●动态参数Tj=25℃除非有其它状态特征参数条件典型值单位Rth j-c 热阻结到底座完全周期BTA 3.3℃/W BTB 2.4℃/W Rth j-a热阻结到环境无——60℃/W特征参数条件典型值最大值单位I GT控制级触发电流BTA/BTB-V D =12VI T =0.1AT2+G+T2+G-T2-G-T2-G+————————T5555D 55510S 15202025A 20252550mA mA mA mA I H 维持电流V D =12V I GT =0.1A15152525mA V TM通态电压I T =8A——1.7V IDRM断态重复峰值电流V DRM =520V10μA I RRM反向重复峰值电流V RRM =520V15μA V GT控制极触发电压V D =12VI T =0.1A——1.65VI D关断电流V D =V DRM (MAX )Tj=125℃——0.5mA特征参数条件典型值最小值最大值单位d V /dt断态电压临界上升率V DM =67%V Dm (MAX )Tj=110℃指数的波形门极开路10————V/μs t gt极控制开关时间I Tm =12AV D =V DRM (MAX )I G =0.1A dl G /dt=5A/ms ——2——μsBTA/BTB04●应用电路。
声光控制实验报告书X X 学院课程设计说明书(论文)课程设计题目:声光控制开关电路学生姓名:学号:院系:专业班级:指导教师姓名及职称:起止时间:2011年3月——2011年6月一、课题名称:声光控制开关电路二、内容摘要:一种声光控制开关装置,它包括:声光控制电路、延时电路、可控硅开关电路等。
本实验采用新型分离元件,且电路设计简单,克服了现有的声光控制开关成本高、体积大等缺点,优点是一、省电,灯泡大部分时间不工作,因此节电效率很高,达80%左右;二是方便,工作时不用接触,全自动智能控制;另外,接线简单、安装方便,是一种家庭及公共场所理想的照明开关。
三、设计内容及要求:1.内容用声与光控制路灯,白天光线强,路灯不亮,只有光线暗时,通过声音触发路灯亮,并且灯点亮一定时间后,自动熄灭。
2.主要要求(1)电路稳定性和可靠性要高。
这是控制电路性能的最基本要求,否则自控能力弱,严重时会失去自动控制功能。
(2)功耗要小。
控制电路一直接于交流220伏电路上,若功耗特别是静态功耗大,则不利于节能,甚至还会大大缩短控制电路的寿命。
(3)灵敏度要能调节。
这是控制电路正常工作时,对声光控制信息信号的最低要求,控制信号的灵敏度应满足不同的环境要求。
(4)带负载能力要强。
被控灯的功率不尽相同,因此要求控制电路的一定范围的驱动能力。
(5)触发延时时间要能按要求调节。
延时时间至少在1分钟内可以调节。
四、比较和选定设计的系统方案,画出系统框图:如图1 所示,全波整流电路将交流220V电压变为约 200V的直流电压,为后面的控制电路供电,例如桥式整流电路;受控开关受触发延时电路输出信号的控制,从而控制加于灯上的交流电压,达到控制开关灯的目的。
例如可控硅,继电器触头等;降压滤波电路将输出的直流200V电压进行降压后滤波,从而为其后的电路提供平滑直流工作电压,如电阻降压,电容滤波;声光控制元件将声光控制信息变成电信号,为放大触发延时电路提供输入控制信号,例如,驻极体话筒和蜂鸣器等声控元件,光敏二极管和光敏电阻等光控元件;放大电路将较微弱的声光控制信号进行放大,以推动触发延时电路工作,例如各种放大电路;触发延时电路将放大电路输出的电压去推动触发延时电路工作,控制受控开关的闭合,达到控制灯亮时间长短的目的,实现声光控制功能。
双向可控硅为什么称为“TRIAC”?三端:TRIode(取前三个字母)交流半导体开关:AC-semiconductor switch(取前两个字母)以上两组名词组合成“TRIAC”,或“TRIACs”中文译意“三端双向可控硅开关”。
由此可见“TRIAC”是双向可控硅的统称。
另:双向:Bi-directional(取第一个字母)控制:Controlled (取第一个字母)整流器:Rectifier (取第一个字母)再由这三组英文名词的首个字母组合而成:“BCR”,中文译意:双向可控硅。
以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM 等等。
--------------双向:Bi-directional (取第一个字母)三端:Triode (取第一个字母)由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philips公司,均以此来命名双向可控硅.代表型号如:PHILIPS 的BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、、等。
这些都是四象限/非绝缘型/双向可控硅;Philips公司的产品型号前缀为“BTA”字头的,通常是指三象限的双向可控硅。
三象限的品种主要应用于电机电路、三相市电输入的电路、承受的瞬间浪涌电流高。
-------------------而意法ST公司,则以“BT”字母为前缀来命名元件的型号,并且在“BT”后加“A”或“B”来表示绝缘与非绝缘。
组成:“BTA”、“BTB”系列的双向可控硅型号,如:四象限、绝缘型、双向可控硅:BTA06-600C、BTA08-600C、BTA10-600B、BTA12-600B、BTA16-600B、BTA41-600、、、等等;四象限、非绝缘、双向可控硅:BTB06-600C、BTB08-600C、BTB10-600B、BTB12-600B、BTB16-600B、BTB41-600、、、等等;ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。
单向可控硅参数列表MCR100-8 1A400V 单向可控硅参数列表MCR100-8 1A400V参数: 1A 400V可控硅引脚定义可控硅外形象中功率三极管,三个脚定义为阳极A,阴极K,栅极G,使用时在阳极加正电压,必须在栅极加一个4伏左右的触发电压才能导通.单向可控硅的型号参数表常用1A/400V单向可控硅有:MCR100-6MCR100-8BT169TP5GCR3AM常用3A/600V的单向可控硅的型号有:3CR3AM-12TLC336TLC336TTLC336DTLC336STLC336晶闸管的选用与代换及检测1.晶闸管的选用(1)选择晶闸管的类型:晶闸管有多种类型,应根据应用电路的具体要求合理选用。
若用于交直流电压控制、可控整流、交流调压、逆变电源、开关电源保护电路等,可选用普通晶闸管。
若用于交流开关、交流调压、交流电动机线性调速、灯具线性调光及固态继电器、固态接触器等电路中,应选用双向晶闸管。
若用于交流电动机变频调速、斩波器、逆变电源及各种电子开关电路等,可选用门极关断晶闸管。
若用于锯齿波发生器、长时间延时器、过电压保护器及大功率晶体管触发电路等,可选用BTG晶闸管。
若用于电磁灶、电子镇流器、超声波电路、超导磁能储存系统及开关电源等电路,可选用逆导晶闸管。
若用于光电耦合器、光探测器、光报警器、光计数器、光电逻辑电路及自动生产线的运行监控电路,可选用光控晶闸管。
2.选择晶闸管的主要参数:晶闸管的主要参数应根据应用电路的具体要求而定。
所选晶闸管应留有一定的功率裕量,其额定峰值电压和额定电流(通态平均电流)均应高于受控电路的最大工作电压和最大工作电流1.5~2倍。
晶闸管的正向压降、门极触发电流及触发电压等参数应符合应用电路(指门极的控制电路)的各项要求,不能偏高或偏低,否则会影响晶闸管的正常工作。
2.晶闸管的代换晶闸管损坏后,若无同型号的晶闸管更换,可以选用与其性能参数相近的其他型号晶闸管来代换。
双向可控硅的⼯作原理双向可控硅的⼯作原理BT137 800E 8A 800V TO-220中间为阳极A,左边为阴极K,右边为控制极GBTA41 800B 41A 800V TO-3P左边为阳极A,中间为阴极K,右边为控制极GBTA24-1200B左边为阳极A,中间为阴极K,右边为控制极G可调电炉原理:从中间阳极A进,通过电阻,从电位器下进,中间出,(1、进⼊电容。
2、进另⼀电阻,⾄控制极G,控制阴极输出)。
1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由⼀个PNP管和⼀个NPN管所组成当阳极A加上正向电压时,BG1和BG2管均处于放⼤状态。
此时,如果从控制极G输⼊⼀个正向触发信号,BG2便有基流ib2流过,经BG2放⼤,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放⼤,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。
这个电流⼜流回到BG2的基极,表成正反馈,使ib2不断增⼤,如此正向馈循环的结果,两个管⼦的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作⽤,所以⼀旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作⽤,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种⼯作状态,所以它具有开关特性,这种特性需要⼀定的条件才能转化2,触发导通在控制极G上加⼊正向电压时(见图5)因J3正偏,P2区的空⽳时⼊N2区,N2区的电⼦进⼊P2区,形成触发电流IGT。
在可控硅的内部正反馈作⽤(见图2)的基础上,加上IGT的作⽤,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越⼤,特性左移越快。
⼀、可控硅的概念和结构?晶闸管⼜叫可控硅。
⾃从20世纪50年代问世以来已经发展成了⼀个⼤的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。
序号产品型号电流电压触发电流封装形式1 BTA02-600 2A 600V TO-922 BTA03-600 2A 600V TO-126/ML3 BTN03-600 2A 600V TO-126/ML4 BTA16600B 16A 600V 35~50mA TO-220AB/FP5 BTF06-800 6A 800V 5~10mA TO-220AB/FP6 MCR100-6 1A 600V 10~30uA TO-927 MCR100-8 1A 800V 10~30uA TO-928 2P4M 2A 400V 10~30uA TO-2029 2P6M 2A 600V 10~30uA TO-20210 JCT05 5A 600V 5~10mA TO-202AB11 BT151 8A 600V 5~10mA TO-220AB12 BT169 1A 600V 10~50uA TO-9213 CT10 10A 600V 8~15mA TO-220AB/FP14 CT12 12A 600V 8~15mA TO-220AB/FP15 CT16 16A 600V 8~15mA TO-220AB/FP16 CT20 20A 600V 10~20mA TO-220AB/FP17 MAC97A6 1A 400V 1~5mA TO-9218 MAC97A8 1A 600V 1~5mA TO-9219 MAC223A6 1A 400V 50mA TO-220AB20 MAC223A8 1A 600V 50mA TO-220AB21 MAC223A8X 1A 600V 50mA SOT186A22 BT131-400D 1A 400V 1~5mA TO-9223 BT131-400E 1A 400V 5~10mA TO-9224 BT131-600D 1A 600V 1~5mA TO-9225 BT131-600E 1A 400V 5~10mA TO-9226 BT132-400D 1A 400V 1~5mA TO-9227 BT132-400E 1A 400V 5~10mA TO-92序号产品型号电流电压触发电流封装形式28 BT132-600D 1A 600V 1~5mA TO-9229 BT132-600E 1A 400V 5~10mA TO-9230 BT134-400D 4A 400V 1~5mA TO-126ML31 BT134-400E 4A 600V 5~10mA TO-126ML32 BT134-600D 4A 600V 1~5mA TO-126ML33 BT134-600E 4A 600V 5~10mA TO-126ML34 BT134-600D 4A 600V 1~5mA SOT8235 BT134-600E 4A 600V 5~10mA SOT8236 BT134-800D 4A 800V 1~5mA SOT8237 BT134-800E 4A 800V 5~10mA SOT8238 BT136-400D 4A 400V 1~5mA TO-220AB39 BT136-400E 4A 400V 5~10mA TO-220AB40 BT136-600D 4A 600V 1~5mA TO-220AB41 BT136-600E 4A 600V 5~10mA TO-220AB42 BT136-800D 4A 800V 1~5mA TO-220AB43 BT136-800E 4A 800V 5~10mA TO-220AB44 BT137-400D 8A 400V 1~5mA TO-220AB45 BT137-400E 8A 400V 5~10mA TO-220AB46 BT137-600D 8A 600V 1~5mA TO-220AB47 BT137-600E 8A 600V 5~10mA TO-220AB48 BT137-800D 8A 800V 1~5mA TO-220AB49 BT137-800E 8A 800V 5~10mA TO-220AB50 BT137X-600 8A 600V 35mA TO-220FP51 BT137X-600D 8A 600V 5mA TO-220FP52 BT137X-600F 8A 600V 25mA TO-220FP53 BT137X-800 8A 800V 35mA TO-220FP54 BT137X-600E 8A 600V 10mA TO-220FP序号产品型号电流电压触发电流封装形式55 BT137X-800E 8A 600V 10mA TO-220FP56 BT137-600F 8A 600V 25mA TO-220AB57 BT137-600D 8A 600V 5mA TO-220AB58 BT137-600E 8A 600V 10mA TO-220AB59 BT137-800E 8A 600V 10mA TO-220AB60 BT137-600F 8A 600V 25mA TO-220AB61 BT138-400D 12A 400V 1~5mA TO-220AB62 BT138-400E 12A 400V 5~10mA TO-220AB63 BT138-600D 12A 600V 1~5mA TO-220AB64 BT138-600E 12A 600V 5~10mA TO-220AB65 BT138-600F 12A 600V 25mA TO-220AB66 BT138-800D 12A 800V 1~5mA TO-220AB67 BT138-800E 12A 800V 5~10mA TO-220AB68 BT138-800F 12A 800V 25mA TO-220AB69 BT138X-600 12A 600V 35mA TO-220FP70 BT138X-600F 12A 600V 25mA TO-220FP71 BT138X-800 12A 800V 35mA TO-220FP72 BT138X-800F 12A 800V 25mA TO-220FP73 BT139X-600 16A 600V 35mA TO-220FP74 BT139X-600F 16A 600V 25mA TO-220FP75 BT139X-800 16A 800V 35mA TO-220FP76 BT139-600 16A 600V 35mA TO-220AB77 BT139-600F 16A 600V 25mA TO-220AB78 BT139-800 16A 800V 35mA TO-220AB79 BT139-800F 16A 800V 25mA TO-220AB80 BT139-800G 16A 800V 50m TO-220AB81 BT139-600F 16A 600V 25mA TO-220AB序号产品型号电流电压触发电流封装形式82 BT139-600G 16A 600V 50m TO-220AB83 BT139-600D 16A 600V 1~5mA TO-220AB84 BT139-600E 16A 600V 5~10mA TO-220AB85 BT139-800D 16A 800V 1~5mA TO-220AB86 BT139-800E 16A 800V 5~10mA TO-220AB87 BT139-800F 16A 800V 25mA TO-220AB88 BT139-800G 16A 800V 50m TO-220AB89 BT151-500R 12A 500V 2~15mA TO-220AB90 BT151-650R 12A 650V 2~15mA TO-220AB91 BT151-800R 12A 800V 2~15mA TO-220AB92 BT152 20A 800V 32mA TO-220AB93 BTA140-600 25A 600V 35mA TO-220AB94 BTA140-800 25A 800V 35mA TO-220AB95 BTA140B-500 25A 500V 35mA SOT-40496 BTA140B-600 25A 600V 35mA SOT-40497 BTA140B-800 25A 800V 35mA SOT-40498 BT145-800R 25A 800V 35mA TO-220AB99 BT148W-600R 1A 600V 0.2mA SOT223 100 BT148-400R 4A 400V 0.2mA SOT82 101 BT148-500R 4A 500V 0.2mA SOT82 102 BT148-600R 4A 600V 0.2mA SOT82 103 BT150-500R 4A 500V 0.2mA TO-220AB 104 BT150S-600R 4A 600V 0.2mA TO-252/D-PAK 105 BTA151-650R 12A 650V 4mA SOT82 106 BT151-500R 12A 500V 15mA TO-220AB 107 BT151-650R 12A 650V 15mA TO-220AB 108 BT151-800R 9A 800V 15mA TO-220AB序号产品型号电流电压触发电流封装形式109 BT151X-500R 12A 500V 15mA TO-220FP 110 BT151X-650R 12A 650V 15mA TO-220FP 111 BT151X-800R 12A 800V 15mA TO-220FP 112 BT151S-500R 12A 500V 15mA TO-252/D-PAK 113 BT151S-650R 12A 650V 15mA TO-252/D-PAK 114 BT151S-800R 12A 800V 15mA TO-252/D-PAK 115 BT151B-500R 12A 500V 15mA TO-263/D2-PAK 116 BT151B-650R 12A 650V 15mA TO-263/D2-PAK 117 BT151B-800R 12A 800V 15mA TO-263/D2-PAK 118 BT151F-500R 9A 500V 15mA SOT-186 119 BT152-400R 20A 400V 32mA TO-220AB 120 BT152-600R 20A 600V 32mA TO-220AB 121 BT152-800R 20A 800V 32mA TO-220AB 122 BT152X-400R 20A 400V 32mA TO-220FP 123 BT152X-600R 20A 600V 32mA TO-220FP 124 BT152X-800R 20A 800V 32mA TO-220FP 125 BT152B-400R 20A 400V 32mA TO-263/D2-PAK 126 BT152B-600R 20A 600V 32mA TO-263/D2-PAK 127 BT152B-800R 20A 800V 32mA TO-263/D2-PAK 128 BTA204-600D 4A 600V 5mA TO-220AB 129 BTA204-600E 4A 600V 10mA TO-220AB 130 BTA204-600F 4A 600V 25mA TO-220AB 131 BTA204-800E 4A 800V 10mA TO-220AB 132 BTA204-600B 4A 600V 50mA TO-220AB 133 BTA204-600C 4A 600V 35mA TO-220AB 134 BTA204S-600B 4A 600V 50mA TO-252/D-PAK 135 BTA204S-600C 4A 600V 35mA TO-252/D-PAK序号产品型号电流电压触发电流封装形式136 BTA204S-600D 4A 600V 5mA TO-252/D-PAK 137 BTA204S-600E 4A 600V 10mA TO-252/D-PAK 138 BTA204S-600F 4A 600V 25mA TO-252/D-PAK 139 BTA204W-600D 1A 600V 5mA SOT223 140 BTA204W-600E 1A 600V 10mA SOT223 141 BTA204W-600F 1A 600V 25mA SOT223 142 BTA204W-600B 1A 600V 50mA SOT223 143 BTA204W-600C 1A 600V 35mA SOT223 144 BTA204X-600D 4A 600V 5mA TO-220FP 145 BTA204X-600E 4A 600V 10mA TO-220FP 146 BTA204X-600F 4A 600V 25mA TO-220FP 147 BTA208X-600D 8A 600V 5mA TO-220FP 148 BTA208X-600E 8A 600V 10mA TO-220FP 149 BTA208X-600F 8A 600V 25mA TO-220FP 150 BTA208X-800E 8A 800V 10mA TO-220FP 151 BTA208-600D 8A 600V 5mA TO-220AB 152 BTA208-600E 8A 600V 10mA TO-220AB 153 BTA208-600F 8A 600V 25mA TO-220AB 154 BTA208-600B 8A 600V 50mA TO-220AB 155 BTA208-800B 8A 800V 50mA TO-220AB 156 BTA208S-600B 8A 600V 50mA TO-252/D-PAK 157 BTA208S-800B 8A 800V 50mA TO-252/D-PAK 158 BTA208S-600D 8A 600V 5mA TO-252/D-PAK 159 BTA208S-600E 8A 600V 10mA TO-252/D-PAK 160 BTA208S-600F 8A 600V 25mA TO-252/D-PAK 161 BTA208B-500B 8A 500V 50mA SOT-404 162 BTA208B-600B 8A 600V 50mA SOT-404序号产品型号电流电压触发电流封装形式163 BTA208B-800B 8A 800V 50mA SOT-404 164 BTA212X-600B 12A 600V 50mA TO-220FP 165 BTA212X-800B 12A 800V 50mA TO-220FP 166 BTA212X-600D 12A 600V 5mA TO-220FP 167 BTA212X-600E 12A 600V 10mA TO-220FP 168 BTA212X-600F 12A 600V 25mA TO-220FP 169 BTA212X-800E 12A 800V 10mA TO-220FP 170 BTA212X-600B 12A 600V 50mA TO-220FP 171 BTA212X-800B 12A 800V 50mA TO-220FP 172 BTA216X-600B 16A 600V 50mA TO-220FP 173 BTA216X-800B 16A 800V 50mA TO-220FP 174 BTA216X-600D 16A 600V 5mA TO-220FP 175 BTA216X-600E 16A 600V 10mA TO-220FP 176 BTA216X-600F 16A 600V 25mA TO-220FP 177 BTA216-600B 16A 600V 50mA TO-220AB 178 BTA216-800B 16A 800V 50mA TO-220AB 179 BTA216-600D 16A 600V 5mA TO-220AB 180 BTA216-600E 16A 600V 10mA TO-220AB 181 BTA216-600F 16A 600V 25mA TO-220AB 182 BTA225-600B 25A 600V 50mA TO-220AB 183 BTA225-800B 25A 800V 50mA TO-220AB 184 BTA225B-600B 25A 600V 50mA TO-263/D2-PAK 185 BTA225B-800B 25A 800V 50mA TO-263/D2-PAK 186 BT258U-600R 8A 600V 0.2mA SOT533/(I-PAK) 187 BT300-600R 8A 600V 15mA TO-220AB 188 BT300S-600R 8A 600V 15mA TO-252/D-PAK 189 BTA04-400B 4A 400V 35~50mA TO-220序号产品型号电流电压触发电流封装形式190 BTA04-400BW 4A 400V 50mA TO-220 191 BTA04-400C 4A 400V 25mA TO-220 192 BTA04-400CW 4A 400V 35mA TO-220 193 BTA04-400SW 4A 400V 10mA TO-220 194 BTA04-400TW 4A 400V 5mA TO-220 195 BTA04-400E 4A 400V 5~10mA TO-220 196 BTA04-400D 4A 400V 1~5mA TO-220 197 BTA04-400SAP 4A 400V 5~10mA TO-220 198 BTA04-600B 4A 600V 35~50mA TO-220 199 BTA04-600BW 4A 600V 50mA TO-220AB 200 BTA04-600C 4A 600V 25mA TO-220AB 201 BTA04-600CW 4A 600V 35mA TO-220AB 202 BTA04-600SW 4A 600V 10mA TO-220AB 203 BTA04-600TW 4A 600V 5mA TO-220AB 204 BTA04-600E 4A 600V 5~10mA TO-220AB 205 BTA04-600D 4A 600V 1~5mA TO-220AB 206 BTA04-600SAP 4A 600V 5~10mA TO-220AB 207 BTA04-700B 4A 700V 35~50mA TO-220AB 208 BTA04-700BW 4A 700V 50mA TO-220AB 209 BTA04-700C 4A 700V 25mA TO-220AB 210 BTA04-700CW 4A 700V 35mA TO-220AB 211 BTA04-700SW 4A 700V 10mA TO-220AB 212 BTA04-700TW 4A 700V 5mA TO-220AB 213 BTA04-700E 4A 700V 5~10mA TO-220AB 214 BTA04-700D 4A 700V 1~5mA TO-220AB 215 BTA04-700SAP 4A 700V 5~10mA TO-220AB 216 BTA04-800B 4A 800V 35~50mA TO-220AB序号产品型号电流电压触发电流封装形式217 BTA04-800BW 4A 800V 50mA TO-220AB 218 BTA04-800C 4A 800V 25mA TO-220AB 219 BTA04-800CW 4A 800V 35mA TO-220AB 220 BTA04-800SW 4A 800V 10mA TO-220AB 221 BTA04-800TW 4A 800V 5mA TO-220AB 222 BTA04-800E 4A 800V 5~10mA TO-220AB 223 BTA04-800D 4A 800V 1~5mA TO-220AB 224 BTA04-800SAP 4A 800V 5~10mA TO-220AB 225 BTB04-400B 4A 400V 35~50mA TO-220AB 226 BTB04-400BW 4A 400V 50mA TO-220AB 227 BTB04-400C 4A 400V 25mA TO-220AB 228 BTB04-400CW 4A 400V 35mA TO-220AB 229 BTB04-400SW 4A 400V 10mA TO-220AB 230 BTB04-400TW 4A 400V 5mA TO-220AB 231 BTB04-400E 4A 400V 5~10mA TO-220AB 232 BTB04-400D 4A 400V 1~5mA TO-220AB 233 BTB04-400SAP 4A 400V 5~10mA TO-220AB 234 BTB04-600B 4A 600V 35~50mA TO-220AB 235 BTB04-600BW 4A 600V 50mA TO-220AB 236 BTB04-600C 4A 600V 25mA TO-220AB 237 BTB04-600CW 4A 600V 35mA TO-220AB 238 BTB04-600SW 4A 600V 10mA TO-220AB 239 BTB04-600TW 4A 600V 5mA TO-220AB 240 BTB04-600E 4A 600V 5~10mA TO-220AB 241 BTB04-600D 4A 600V 1~5mA TO-220AB 242 BTB04-600SAP 4A 600V 5~10mA TO-220AB 243 BTB04-700B 4A 700V 35~50mA TO-220AB序号产品型号电流电压触发电流封装形式244 BTB04-700BW 4A 700V 50mA TO-220AB 245 BTB04-700C 4A 700V 25mA TO-220AB 246 BTB04-700CW 4A 700V 35mA TO-220AB 247 BTB04-700SW 4A 700V 10mA TO-220AB 248 BTB04-700TW 4A 700V 5mA TO-220AB 249 BTB04-700E 4A 700V 5~10mA TO-220AB 250 BTB04-700D 4A 700V 1~5mA TO-220AB 251 BTB04-700SAP 4A 700V 5~10mA TO-220AB 252 BTB04-800B 4A 800V 35~50mA TO-220AB 253 BTB04-800BW 4A 800V 50mA TO-220AB 254 BTB04-800C 4A 800V 25mA TO-220AB 255 BTB04-800CW 4A 800V 35mA TO-220AB 256 BTB04-800SW 4A 800V 10mA TO-220AB 257 BTB04-800TW 4A 800V 5mA TO-220AB 258 BTB04-800E 4A 800V 5~10mA TO-220AB 259 BTB04-800D 4A 800V 1~5mA TO-220AB 260 BTB04-800SAP 4A 800V 5~10mA TO-220 261 BTA06-400B 6A 400V 35~50mA TO-220AB 262 BTA06-400BW 6A 400V 50mA TO-220AB 263 BTA06-400C 6A 400V 25mA TO-220AB 264 BTA06-400CW 6A 400V 35mA TO-220AB 265 BTA06-400TW 6A 400V 5mA TO-220AB 266 BTA06-400E 6A 400V 5~10mA TO-220AB 267 BTA06-400D 6A 400V 1~5mA TO-220AB 268 BTA06-400SAP 6A 400V 5~10mA TO-220 269 BTA06-600B 6A 600V 35~50mA TO-220AB 270 BTA06-600BW 6A 600V 50mA TO-220AB序号产品型号电流电压触发电流封装形式271 BTA06-600C 6A 600V 25mA TO-220AB 272 BTA06-600CW 6A 600V 35mA TO-220A 273 BTA06-600SW 6A 600V 10mA TO-220AB 274 BTA06-600TW 6A 600V 5mA TO-220AB 275 BTA06-600E 6A 600V 5~10mA TO-220AB 276 BTA06-600D 6A 600V 1~5mA TO-220AB 277 BTA06-600SAP 6A 600V 5~10mA TO-220AB 278 BTA06-700B 6A 700V 35~50mA TO-220AB 279 BTA06-700BW 6A 700V 50mA TO-220AB 280 BTA06-700C 6A 700V 25mA TO-220AB 281 BTA06-700CW 6A 700V 35mA TO-220AB 282 BTA06-700SW 6A 700V 10mA TO-220AB 283 BTA06-700TW 6A 700V 5mA TO-220AB 284 BTA06-700E 6A 700V 5~10mA TO-220AB 285 BTA06-700D 6A 700V 1~5mA TO-220AB 286 BTA06-700SAP 6A 700V 5~10mA TO-220AB 287 BTA06-800B 6A 800V 35~50mA TO-220AB 288 BTA06-800BW 6A 800V 50mA TO-220AB 289 BTA06-800C 6A 800V 25mA TO-220AB 290 BTA06-800CW 6A 800V 35mA TO-220AB 291 BTA06-800SW 6A 800V 10mA TO-220AB 292 BTA06-800TW 6A 800V 5mA TO-220AB 293 BTA06-800E 6A 800V 5~10mA TO-220AB 294 BTA06-800D 6A 800V 1~5mA TO-220AB 295 BTA06-800SAP 6A 800V 5~10mA TO-220AB 296 BTB06-400B 6A 400V 35~50mA TO-220A 297 BTB06-400BW 6A 400V 50mA TO-220AB序号产品型号电流电压触发电流封装形式298 BTB06-400C 6A 400V 25mA TO-220AB 299 BTB06-400CW 6A 400V 35mA TO-220AB 300 BTB06-400SW 6A 400V 10mA TO-220AB 301 BTB06-400TW 6A 400V 5mA TO-220AB 302 BTB06-400E 6A 400V 5~10mA TO-220AB 303 BTB06-400D 6A 400V 1~5mA TO-220AB 304 BTB06-400SAP 6A 400V 5~10mA TO-220AB 305 BTB06-600B 6A 600V 35~50mA TO-220A 306 BTB06-600BW 6A 600V 50mA TO-220AB 307 BTB06-600C 6A 600V 25mA TO-220AB 308 BTB06-600CW 6A 600V 35mA TO-220AB 309 BTB06-600SW 6A 600V 10mA TO-220AB 310 BTB06-600TW 6A 600V 5mA TO-220AB 311 BTB06-600E 6A 600V 5~10mA TO-220 312 BTB06-600D 6A 600V 1~5mA TO-220AB 313 BTB06-600SAP 6A 600V 5~10mA TO-220AB 314 BTB06-700B 6A 700V 35~50mA TO-220AB 315 BTB06-700BW 6A 700V 50mA TO-220AB 316 BTB06-700C 6A 700V 25mA TO-220AB 317 BTB06-700CW 6A 700V 35mA TO-220AB 318 BTB06-700SW 6A 700V 10mA TO-220AB 319 BTB06-700TW 6A 700V 5mA TO-220AB 320 BTB06-700E 6A 700V 5~10mA TO-220AB 321 BTB06-700D 6A 700V 1~5mA TO-220AB 322 BTB06-700SAP 6A 700V 5~10mA TO-220AB 323 BTB06-800B 6A 800V 35~50mA TO-220AB 324 BTB06-800BW 6A 800V 50mA TO-220AB序号产品型号电流电压触发电流封装形式325 BTB06-800C 6A 800V 25mA TO-220AB 326 BTB06-800CW 6A 800V 35mA TO-220AB 327 BTB06-800SW 6A 800V 10mA TO-220AB 328 BTB06-800TW 6A 800V 5mA TO-220AB 329 BTB06-800E 6A 800V 5~10mA TO-220AB 330 BTB06-800D 6A 800V 1~5mA TO-220AB 331 BTB06-800SAP 6A 800V 5~10mA TO-220AB 332 BTA08-400B 8A 400V 35~50mA TO-220AB 333 BTA08-400BW 8A 400V 50mA TO-220AB 334 BTA08-400C 8A 400V 25mA TO-220AB 335 BTA08-400CW 8A 400V 35mA TO-220AB 336 BTA08-400SW 8A 400V 10mA TO-220AB 337 BTA08-400TW 8A 400V 5mA TO-220AB 338 BTA08-400E 8A 400V 5~10mA TO-220AB 339 BTA08-400D 8A 400V 1~5mA TO-220AB 340 BTA08-400SAP 8A 400V 5~10mA TO-220AB 341 BTA08-600B 8A 600V 35~50mA TO-220AB 342 BTA08-600BW 8A 600V 50mA TO-220AB 343 BTA08-600C 8A 600V 25mA TO-220AB 344 BTA08-600CW 8A 600V 35mA TO-220AB 345 BTA08-600SW 8A 600V 10mA TO-220AB 346 BTA08-600TW 8A 600V 5mA TO-220AB 347 BTA08-600E 8A 600V 5~10mA TO-220AB 348 BTA08-600D 8A 600V 1~5mA TO-220AB 349 BTA08-600SAP 8A 600V 5~10mA TO-220AB 350 BTA08-700B 8A 700V 35~50mA TO-220AB 351 BTA08-700BW 8A 700V 50mA TO-220AB序号产品型号电流电压触发电流封装形式352 BTA08-700C 8A 700V 25mA TO-220AB 353 BTA08-700CW 8A 700V 35mA TO-220AB 354BTA08-700SW8A700V10mA TO-220AB 355BTA08-700TW8A700V5mA TO-220AB 356BTA08-700E8A700V5~10mA TO-220AB 357BTA08-700D8A700V1~5mA TO-220AB 358BTA08-700SAP8A700V5~10mA TO-220AB 359BTA08-800B8A800V35~50mA TO-220AB 360BTA08-800BW8A800V50mA TO-220AB 361BTA08-800C8A800V25mA TO-220AB 362BTA08-800CW8A800V35mA TO-220AB 363BTA08-800SW8A800V10mA TO-220AB 364BTA08-800TW8A800V5mA TO-220AB 365BTA08-800E8A800V5~10mA TO-220AB 366BTA08-800D8A800V1~5mA TO-220AB 367BTA08-800SAP8A800V5~10mA TO-220A 368BTA08-1000B8A1000V35~50mA TO-220AB 369BTA08-1000BW8A1000V50mA TO-220AB 370BTA08-1000C8A1000V25mA TO-220AB 371BTA08-1000CW8A1000V35mA TO-220AB 372BTA08-1000SW8A1000V10mA TO-220AB 373BTA08-1000TW8A1000V5mA TO-220AB 374BTA08-1000E8A1000V5~10mA TO-220AB 375BTA08-1000D8A1000V1~5mA TO-220AB 376BTA08-1000SAP8A1000V5~10mA TO-220AB 377BTB08-400B8A400V35~50mA TO-220AB 378BTB08-400BW8A400V50mA TO-220AB序号产品型号电流电压触发电流封装形式379BTB08-400C8A400V25mA TO-220AB 380BTB08-400CW8A400V35mA TO-220AB 381BTB08-400SW8A400V10mA TO-220AB 382BTB08-400TW8A400V5mA TO-220AB 383BTB08-400E8A400V5~10mA TO-220A 384BTB08-400D8A400V1~5mA TO-220AB 385BTB08-400SAP8A400V5~10mA TO-220AB 386BTB08-600B8A600V35~50mA TO-220A 387BTB08-600BW8A600V50mA TO-220AB 388BTB08-600C8A600V25mA TO-220AB 389BTB08-600CW8A600V35mA TO-220AB 390BTB08-600SW8A600V10mA TO-220AB 391BTB08-600TW8A600V5mA TO-220AB 392BTB08-600E8A600V5~10mA TO-220AB 393BTB08-600D8A600V1~5mA TO-220AB 394BTB08-600SAP8A600V5~10mA TO-220AB 395BTA10-400B10A400V35~50mA TO-220AB 396BTA12-400B12A400V35~50mA TO-220AB 397BTA16-400B16A400V35~50mA TO-220AB 398BTA20-400B20A400V35~50mA TO-220AB 399BTA24-600B25A600V35~50mA TO-220AB 400BTA25-600B25A600V35~50mA TO-220AB 401BTA25-600BW25A600V50mA TO-220AB 402BTA26-600B25A600V35~50mA TO-220AB 403BTA40-600B40A600V35~50mA BTW67 404BTA40-600BW40A600V50mA BTW67 405BTA41-600B40A600V35~50mA BTW67序号产品型号电流电压触发电流封装形式406BTA41-600BW40A600V50mA BTW67 407HBT131A1A600V3~7mA TO-92 408HBT131CA1A600V3~5mA TO-92 409HBT131GA1A800V3~5mA TO-92 410HBT134CI4A600V5~10mA TO-251 411HBT134DI4A600V5~10mA TO-251 412HBT134GI4A800V5~10mA TO-251 413HBT134HI4A600V5~10mA TO-251 414HBT134NE4A600V10~25mA SOT-82 415HBT134I4A600V10~25mA TO-251 416HBT134CNE4A600V5~10mA SOT-82 417HBT134DNE4A600V5~10mA SOT-82 418HBT134GNE4A800V5~10mA SOT-82 419HBT134HNE4A800V5~10mA SOT-82 420HBT136AE4A600V10mA TO-220AB 421HBT204I4A600V10mA TO-251 422HBT204E4A600V15mA TO-220AB 423HBT136AE4A600V10~25mA TO-220AB 424HBT136AHE4A600V5~10mA TO-220AB 425HBT136BE6A600V10~25mA TO-220AB 426HBT137E8A600V10~25mA TO-220AB 427HBT137DE8A600V25mA TO-220AB 428HBT138E8A600V10~25mA TO-220AB 429HBT15220A800V32mA TO-220AB 430HBT1690.8A400V200uA TO-92 431HBT169M0.8A400V200uA SOT-89。
任务二:声光控制灯安装与调试【工作任务单】1、掌握声光控制灯的原理。
2、掌握声光控制灯的制作与调试方法。
3、了解数字集成电路的使用方法。
【相关知识一】声光控制灯原理当代社会提倡节能,在这里就介绍一个声光双控延迟节能照明灯。
它可以直接取代普通照明开关而不必更改原有照明线路。
白天或光线较强的场合下,即使有较大的声响也控制灯泡不亮,晚上或光线较暗时遇到声响(如说话声、脚步声等)后灯自动点亮,然后经30s(时间可以设定)自动熄灭。
该装置适用于楼梯、走廊等只需短时照明的地方。
1.电路组成顾名思义,声光双控延时开关就是用声音与光来控制开关的“开启”,若干时间后延时开关“自动关闭”。
因此,整个电路的功能就是将声音信号处理后,变为电子开关的开动作。
明确了电路的信号流程方向后,即可依据主要元器件将电路划分为若干个单元,由此可画出如图5-24所示的方框图。
它主要由整流电路、低压电源、R1和BM组成的话筒拾音及放大电路、光敏控制电路、音频驱动电路、延迟电路、可控硅开关电路等几部分组成。
下面逐一给予介绍。
图5-24 声光控制灯的原理框图2.声光控制灯的原理声光控制灯的整机原理如图5-25所示。
(1)整流电路采用的是一个桥式整流电路,在输入端串接25W灯泡,220V的交流电经过桥式整流就为198V的直流电。
VD1、VD2、VD3、VD4构成桥式整流电路,要求耐压达到220V 的峰值1.414×220V (311V),这里采用的是1N4007,其电路如图2-25所示。
(2)低压电源采用电阻侵夺电路加滤波电容,由R1、R2、BM的R DS及C2等元件组成。
198V 直流电压经过R1、R2、BM的R DS分压及C2滤波后得约12V直流电压。
(3)可控硅开关直接接在整流电路的输出端,作为负载,阳、阴极是并联在电路的输出端。
G 受控制电路的控制,当G 端得到一个高电平时,可控硅导通,灯亮;当高电平消失,可控硅断开,灯熄灭。
可控硅BT136参数及管脚封装图可控硅 BT136 参数及管脚封装图BT136-特点编辑本段特点:击穿电压高、输出电流大。
主要用途:家用电器控制电路、变频电路、调光、调温、调速电路封装形式: TO-220断态重复峰值电压VDRM:600V反向重复峰值电压VRRM:600VBT136应用电路可控硅的应用电路就不在详述了,所有的可控硅应用都一样,关键看用在什么地方。
我们提供一下BT136的封装尺寸图BT136- 500 600 800 4A 500V/600V/800VBT136- 500B 600B 4A 500V/600VBT136- 500D 600D 4A 500V/600VBT136- 500E 600E 800E 4A 500V/600V/800VBT136- 500F 600F 800F 4A 500V/600V/800VBT136- 500G 600G 800G 4A 500V/600V/800VBT136-600D 4A 600VBT136-600E 4A 600VBT136-800E 4A 800VBT136X-600D 4A 600VBT136X-600E 4A 600VBT136X-600F 4A 600VBT136X-600 4A 600VBT136X-800E 4A 800VBT136X-800 4A 800V可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件,一般由两晶闸管反向连接而成.它的功用不仅是整流,还可以用作无触点开关以快速接通或切断电路,实现将直流电变成交流电的逆变,将一种频率的交流电变成另一种频率的交流电等等。
可控硅和其它半导体器件一样,其有体积小、效率高、稳定性好、工作可靠等优点。
它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、军事科研以至商业、民用电器等方面争相采用的元件。
本文由wx462贡献doc文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
声光控制开关电路设计报告论文设计背景与意义:声光控开关具有很多实际意义:一是省电,灯泡大部分时间不工作,因此节电效率很高,达 80%左右;二是方便,首先,不用接触,全自动智能控制;另外,接线简单、安装方便,是公共场所照明开关的理想选择,被人们誉为“长明灯的克星”。
再者,随着科学技术的发展,公共场所照明控制手段也将逐步更新,除现在已有的声光控开关外,还有微波感应开关和热释远红外感应开关。
目前,微波感应开关的抗干扰性能尚不理想,红外感应开关在性能上较为理想,但安装复杂,比较娇气,价格也偏高,比较适合在一些管理完善的场所如宾馆、大饭店楼道及居家庭走廊应用,在普通住宅楼、办公楼道等场所的照明控制考虑到价格、管理及安装方便等因素,根据我国国情,可以预计在相当一段时期内,声光控延时开关将是首选的主流产品。
所以,对于这一课题的研究是必要的。
世界的发展离不开能源,声光控开关能较好的为解决世界能源危机提供一点帮助。
有利于我国实现可持续发展,构建节约社会型,造福于子孙后代,造福于全人类。
内容摘要:一种声光控制开关装置,它包括:声光控制电路、延时电路、可控硅开关电路等。
本实用新型采用分离元件,且电路很简单,因而克服了现有的声光控制开关成本高、体积大等缺点,是一种家庭及公共场所理想的照明开关。
关键字:自动控制信号放大光电开关声控电路光控电路一、设计任务和要求 1.任务用声与光控制路灯,白天光线强,路灯不亮,只有光线暗时,通过声音触发路灯亮,并且灯点亮一定时间后,自动熄灭。
2.主要要求 1)电路稳定性和可靠性要高。
这是控制电路性能的最基本要求,否则自控能力弱,严重时会失去自动控制功能。
2)功耗要小。
控制电路一直接于交流 220 伏电路上,若功耗特别是静态功耗大,则不利于节能,甚至还会大大缩短控制电路的寿命。
3)灵敏度要能调节。
UTC BT138TRIACUTC UNISONIC TECHNOLOGIES CO., LTD.1QW-R401-002,ATRIACS LOGIC LEVELDESCRIPTIONPassivated triacs in a plastic envelope, intended for use in applications requiring high bidirectional transient and blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating voltages and static switching .SYMBOLG1:MT1 2:MT2 3:GATEABSOLUTE MAXIMUM RATINGS ( Tj=25°C)PARAMETER SYMBOL RATINGUNITRepetitive Peak Off State VoltageBT138-600 BT138-800 V DRM600800V RMS On-state Current (Full sine wave; Tmb ≤99°C)I T(RMS) 12 ANon-repetitive Peak. On-State Current (Full sine wave; Tj =25°C prior to surge) t=20ms t=16.7ms I TSM95105AI 2t For Fusing (t=10ms) I 2t 45 A 2s Repetitive Rate of Rise of On-state Current after Triggering (I TM =20A;I G =0.2A; dI G /dt=0.2A/µs) T2+G+T2+G-T2-G-T2-G+dI T /dt50 50 50 10 A/µsPeak Gate Voltage V GM 5 V Peak Gate Current I GM 2 A Peak Gate Power P GM 5 W Average Gate Power P G(AV) 0.5 W Operating Junction Temperature Tj 125 °C Storage Temperature Tstg -40~150 °C *Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 15A/µs.UTC BT138TRIACUTC UNISONIC TECHNOLOGIES CO., LTD.2QW-R401-002,ATHERMAL RESISTANCESPARAMETER SYMBOL MIN TYP MAX UNITThermal Resistance, Junction to Mounting BaseFull cycle Half cycleR θj-mb1.52.0°C /WThermal Resistance, Junciton to Ambient In free airR θj-a60 - °C /WSTATIC CHARACTERISTICS (Tj=25°C,unless otherwise specified)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITGate Trigger CurrentT2+G+ T2+G- T2-G- T2-G+ I GT V D =12V, I T =0.1A5 8 10 12 35 35 35 70 mA Latching CurrentT2+G+ T2+G- T2-G- T2-G+ I L V D =12V, I GT =0.1A7 20 8 10 40 60 40 60mA Holding Current I H V D =12V, I GT =0.1A 6 30 mA On-State Voltage V TI T =15A 1.4 1.65 V Gate Trigger VoltageV GT V D =12V, I T =0.1AV D =400V, I T =0.1A, Tj=125°C 0.250.7 0.41.5VOff-state Leakage Current I DV D =V DRM(max) , Tj=125°C0.1 0.5 mADYNAMIC CHARACTERISTICS (Tj=25°C,unless otherwise specified)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITCritical Rate Of Rise Of Off-StateVoltage dV D /dt V DM =67% V DRM(max), Tj=125°C Exponential waveform, Gate open circuit100 250 V/µsCritical Rate Of Change Of Commutating Voltage dV com /dt V DM =400V,Tj=95°C, I T(RMS)=12A dl com /dt =5.4A/ms, Gate open circuit20 V/µsGate Controlled Turn-on TimetgtI TM =16A, V D =V DRM(max), I G =0.1A dI G /dt=5A/µs2 µsUTC BT138TRIACUTC UNISONIC TECHNOLOGIES CO., LTD.3QW-R401-002,ATYPICAL CHARACTERISTICS5Figure 1.Maximum on -state Dissipation.Ptot vs RMS On-state Current,I T(RMS),W here α=conduction Angle.Figure 4.Maximum Permissible RMS Current I T(RMS)vs mounting baseTemperature T m b Number of Cycles at 50HzTj/℃UTC BT138TRIACUTC UNISONIC TECHNOLOGIES CO., LTD.4QW-R401-002,AFigure 10.Typical and MaximumOn-state Characteristic120Figure 7.Normalised Gate Trigger Current I GT (Tj)/I GT (25℃),vs Junction Temperature TjI GT (Tj )0Tj/℃Tj/℃UTC BT138 TRIACUTC UNISONIC TECHNOLOGIES CO., LTD. 5QW-R401-002,A。
单/双向可控硅的检测方法用万用表即可判断双向可控硅的好坏,但具体参数测不出来。
用万用表测量的方法如下。
T2极的确定:用万用表R*1档或R*100档,分别测量各管脚的反向电阻,其中若测得两管脚的正反向电阻都很小(约100欧姆左右),即为T1和G极,而剩下的一脚为T2极。
T1和G极的区分:将这两极其中任意一极假设为T1极而另一极假设为G极,万用表设置为R*1档,用两表笔(不分正负极)分别接触已确定的T2极和假设的T1极,并将接触T1的表笔同时接触假设的G极,在保证不断开假设的T1极的情况下,断开假设的G极,万用表仍显示导通状态。
将表笔对换,用同样的方法进行测量,如果万用表仍然显示同样的结果,那么所假设的T1极和G极是正确的。
如果在保证不断开假设的T1极的情况下,断开假设的G极,万用表显示断开状态,说明假设的T1和G极相反了,从新假设再进行测量,结果一定正确。
如果测量不出上述结果,说明该双向可控硅是坏的。
这种方法虽然不能测出具体参数,但判断是否可用还是可行的。
1.硅分单向可控硅、双向可控硅。
单向可控硅有阳极A、阴极K、控制极G三个引出脚。
双向可控硅有第一阳极A1(T1),第二阳极A2 (T2)、控制极G三个引出脚。
只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。
此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。
单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。
只有把阳极A电压拆除或阳极A、阴极K间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。
单向可控硅一旦截止,即使阳极A和阴极K 间又重新加上正向电压,仍需在控制极G和阴极K间有重新加上正向触发电压方可导通。
单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。
双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。
常见的小功率管有:2SC9011~2SC9018这一系列8个;2SA1015和2SC1815配对管;2N5551 和2N5401 配对管;2SC8550和2SC8050配对管;2SA9014和2SC9015配对管;2SC945,2SA92,2SA94。
中功率13001~13007,TIP41和TIP42;一般情况下三极管标示型号只标为C9014,或S9014等!2SC9011~9018系列:9011/9016/9017/9018为高频管,其他为低频管,用于常见电路;2SC945(可用于高频),2SC92,2SA94:C92/94电话中较常见;2SC8050,2SC8550:小功率放大电路中配对管,小电子产品、高频电路和电话中常见;2SC1815,2SA1015:小功率放大电路中配对管;2N5551,2N5401:高耐压管,用于放大电路前级,电话电路等;MJE13001~13007系列,节能灯中常见。
下列元件不是三极管:TL431,7879L05(79L05)等,MCR100-6,BT169等等!TL431是精密稳压源;78(79)L05(06/07/08/09/12/15/24)为三端稳压电路,稳定电压为后两位数,78系列为正压,79系列为负压;MCR100-6,BT169等是可控硅,即晶闸管。
BC557B还有。
2N3904,2N3906ksk ksk BC817 BC8078550和80502sc3356,2sc90182N2222 2N29078050,8850,9012,9013,9015,9018,2907,222a 1623/1123 9014/9013 2n2222 8050B772,D882中功率管中的便宜货.TIP122,127达林顿功率管中的便宜货.怎么不见 2N5551和2N5401呢最早的当然就是3DG6了,然后是3AX31B,还用它做过推挽放大器,升压电源,然后是3DA87C,高频中功率管。