圆片级封装的凸点制作
- 格式:ppt
- 大小:1.10 MB
- 文档页数:20
集成电路电子芯片封装工艺摘要:集成电路电子芯片封装,不同的处理设备就有不同的处理芯片,芯片是电子设备的核心,其设计、制造、封装、测试等过程对芯片有很大影响。
本文从芯片的封装工艺,以及这些封装技术的特点入手,对集成电路电子芯片的发展形势和封装工艺作相关探讨。
关键词:集成电路芯片封装CSP工艺集成电路是电子产品的主要构件,对电子产品质量和性能有很大影响,集成电路的产业包括集成电路设计、晶圆制造、晶圆测试、封装制造及成品测试,产品应用、开发及信息服务等。
集成电路封装主要体现在计算机领域。
集成电路的封装是指安装半导体集成电路芯片时用的外壳,不仅可以固定、安放、密封、保护芯片,还可以链接外部电路沟通芯片。
芯片封装技术的发展,从DIP、QFP和PFP、PGA、BGA、CSP到MCM等,越来越先进,适用频率也越来越高,耐温性能更是越来越好。
引脚数量越来越多,引脚间距也越来越小,质量也是越来越轻,可靠性更是越来越高。
1.芯片封装技术概况自从1948年晶体管的发明以及1958年半导体集成电路的出现,半导体封装在结构上经历了TO-DlP-LCC-QFP-BGA的发展历程。
到了20世纪90年代,随着半导体工业的飞速发展,芯片的功能越来越强,需要的外引脚数也不断增加,封装体积也不断增大,在这种背景下,日本富士通公司提出了一种超薄型封装形式,其封装外壳的尺寸不超过裸芯片尺寸的1.2倍,它主要由IC裸芯片和布线垫片所组成,取名叫芯片级封装(CSP:Chip Scale Package)。
随着民用便携式电子装备以及军用整机系统在小型化和轻量化方面的要求越来越高,像CSP这样的小型封装的需求显得十分迫切。
芯片级封装(Chip Scale Package)或者叫芯片尺寸封装(Chip Size Package)实现了封装面积接近于芯片面积的程度。
它的概念是基于1992年日本富士通公司所提出的,即封装的尺寸不超过裸芯片尺寸的1.2倍的封装。
1.封装的定义,作用,层次P2:电子封装指的是从电路设计的完成开始,根据电路图,将裸芯片、陶瓷、金属、有机物等物质制造成芯片、元件、板卡、电路板、最终组装成电子产品的整个过程。
P2:在半导体元器件制造过程中,有前道工序和后道工序之分。
二者以硅圆片切分成晶片为界,在此之前为前道工序,在此之后为后道工序。
所谓前道工序是从整块硅圆片入手,经过多次重复的制膜、氧化、扩散,包括照相制版和光刻等工序,制成三极管、集成电路等半导体元件及电路等,开发材料的电子功能,以实现所要求的元器件特征。
所谓后道工序时从由硅圆片切分好的一个一个的小圆片入手,进行装片、固定、键合连接、塑料灌封、引出接线端子、检查、打标等工序,制作成器件、部件的封装体,以确保元器件的可靠性并便于与外电路连接。
(电子封装主要是在后道工序中完成)P4:电子封装的主要作用如下:A.提供给晶片电流通路;B.引入或引出晶片上的信号;C.导出晶片工作时产生的热量;D.保护和支撑晶片,防止恶劣环境对它的影响;P4封装与组装可分为零级封装(晶片级的连接)、一级封装(单晶片或多个晶片组件或元件)、二级封装(印制电路板级的封装)和三级封装(整机的组装)。
通常把零级和一级封装成为电子封装(技术),而把二级和三级封装称为电子组装(技术)。
由于导线和导电带与晶片间键合焊接技术的大量应用,一级和二级封装技术之间的界限已经模糊了。
2.基本的工艺步骤,各自的特点、基本的工艺流程P38:制造半导体集成电路器件必须经过百余道工序。
本文只简述部分主要的工艺。
主要工艺包括:氧化、化学气相沉积、光刻、制版、扩散、离子注入等。
(PS:介于书本列举工艺太多、文字太长,此doc就不一一陈述了,考试时请翻开书本第38~56面查询。
)3.WB、TAB、FC的分类,凸点的制作,C4、ACA工艺P57:WB(Wire Bonding):引线键合是将半导体芯片焊区与电子封装外壳的I/O引线或基板上技术布线焊区用金属细丝连接起来的工艺技术。
IC封装的材料和方法集成电路(IC)在电子学金字塔中的位置既是金字塔的尖顶又是金字塔的基座。
说它同时处在这两种位置都有很充分的根据。
从电子元器件(如晶体管)的密度这个角度上来说,IC代表了电子学的尖端。
但是IC又是一个起始点,是一种基本结构单元,是组成我们生活中大多数电子系统的基础。
同样,IC不仅仅是单块芯片或者基本电子结构,IC的种类千差万别(模拟电路、数字电路、射频电路、传感器等),因而对于封装的需求和要求也各不相同。
本文对IC封装技术做了全面的回顾,以粗线条的方式介绍了制造这些不可缺少的封装结构时用到的各种材料和工艺。
虽然IC的物理结构、应用领域、I/O数量差异很大,但是IC封装的作用和功能却差别不大,封装的目的也相当的一致。
作为“芯片的保护者”,封装起到了好几个作用,归纳起来主要有两个根本的功能:1)保护芯片,使其免受物理损伤;2)重新分布I/O,获得更易于在装配中处理的引脚节距。
封装还有其他一些次要的作用,比如提供一种更易于标准化的结构,为芯片提供散热通路,使芯片避免产生α粒子造成的软错误,以及提供一种更方便于测试和老化试验的结构。
封装还能用于多个IC的互连。
可以使用引线键合技术等标准的互连技术来直接进行互连。
或者也可用封装提供的互连通路,如混合封装技术、多芯片组件(MCM)、系统级封装(SiP)以及更广泛的系统体积小型化和互连(VSMI)概念所包含的其他方法中使用的互连通路,来间接地进行互连。
随着微电子机械系统(MEMS)器件和片上实验室(lab-on-chip)器件的不断发展,封装起到了更多的作用:如限制芯片与外界的接触、满足压差的要求以及满足化学和大气环境的要求。
人们还日益关注并积极投身于光电子封装的研究,以满足这一重要领域不断发展的要求。
最近几年人们对IC封装的重要性和不断增加的功能的看法发生了很大的转变,IC封装已经成为了和IC本身一样重要的一个领域。
这是因为在很多情况下,IC的性能受到IC封装的制约,因此,人们越来越注重发展IC封装技术以迎接新的挑战。