数字逻辑与数字系统》课后习题答案
- 格式:pdf
- 大小:4.69 MB
- 文档页数:15
页眉内容1.一位十六进制数可以用 C 位二进制数来表示。
2.十进制数25用8421BCD 码表示为 B 。
3. 以下表达式中符合逻辑运算法则的是 D 。
A . 1B . 2C . 4D . 16 A .10 101 B .0010 0101 C . D .10101 A .C ·C =C 2 B .1+1=10 C .0<1 D .A +1=14. 当逻辑函数有n 个变量时,共有 D 个变量取值组合? 5.A+BC= C 。
6.在何种输入情况下,“与非”运算的结果是逻辑0。
DA. nB. 2nC. n 2D. 2n A .A +B B.A +C C.(A +B )(A +C ) D.B +C A .全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是17. 以下电路中可以实现“线与”功能的有 C 。
8.以下电路中常用于总线应用的有 A 。
A .与非门B .三态输出门C .集电极开路门D . C M O S 与非门 A .T S L 门 B .O C 门 C . 漏极开路门D .C M O S 与非门9.若在编码器中有50个编码对象,则要求输出二进制代码位数为 B 位。
10.一个16选一的数据选择器,其地址输入(选择控制输入)端有 C 个。
A .5B .6C .10D .50 A .1 B .2 C .4 D .1611.四选一数据选择器的数据输出Y 与数据输入X i 和地址码A i 之间的逻辑表达式为Y = A 。
A .3X A A X A A X A A X A A 01201101001+++B .001X A AC .101X A AD .3X A A 0112.一个8选一数据选择器的数据输入端有 E 个。
A .1B .2C .3D .4E .813.在下列逻辑电路中,不是组合逻辑电路的有 D 。
A .译码器B .编码器C .全加器D .寄存器14.八路数据分配器,其地址输入端有 c 个。
第1章习题及解答1.1 将下列二进制数转换为等值的十进制数。
(1)(11011)2 (2)(10010111)2(3)(1101101)2 (4)(11111111)2(5)(0.1001)2(6)(0.0111)2(7)(11.001)2(8)(101011.11001)2题1.1 解:(1)(11011)2 =(27)10 (2)(10010111)2 =(151)10(3)(1101101)2 =(109)10 (4)(11111111)2 =(255)10(5)(0.1001)2 =(0.5625)10(6)(0.0111)2 =(0.4375)10(7)(11.001)2=(3.125)10(8)(101011.11001)2 =(43.78125)10 1.3 将下列二进制数转换为等值的十六进制数和八进制数。
(1)(1010111)2 (2)(110111011)2(3)(10110.011010)2 (4)(101100.110011)2题1.3 解:(1)(1010111)2 =(57)16 =(127)8(2)(110011010)2 =(19A)16 =(632)8(3)(10110.111010)2 =(16.E8)16 =(26.72)8(4)(101100.01100001)2 =(2C.61)16 =(54.302)81.5 将下列十进制数表示为8421BCD码。
(1)(43)10 (2)(95.12)10(3)(67.58)10 (4)(932.1)10题1.5 解:(1)(43)10 =(01000011)8421BCD(2)(95.12)10 =(10010101.00010010)8421BCD(3)(67.58)10 =(01100111.01011000)8421BCD(4)(932.1)10 =(100100110010.0001)8421BCD1.7 将下列有符号的十进制数表示成补码形式的有符号二进制数。
第一章1.什么是模拟信号?什么是数字信号?试举出实例。
模拟信号 -------指在时间上和数值上均作连续变化的信号。
例如,温度、压力、交流电压等信号。
数字信号------- 指信号的变化在时间上和数值上都是断续的,阶跃式的,或者说是离散的,这类信号有时又称为离散信号。
例如,在数字系统中的脉冲信号、开关状态等。
2.数字逻辑电路具有哪些主要特点?数字逻辑电路具有如下主要特点:●电路的基本工作信号是二值信号。
●电路中的半导体器件一般都工作在开、关状态。
●电路结构简单、功耗低、便于集成制造和系列化生产。
产品价格低廉、使用方便、通用性好。
●由数字逻辑电路构成的数字系统工作速度快、精度高、功能强、可靠性好。
3.数字逻辑电路按功能可分为哪两种类型?主要区别是什么?根据数字逻辑电路有无记忆功能,可分为组合逻辑电路和时序逻辑电路两类。
组合逻辑电路:电路在任意时刻产生的稳定输出值仅取决于该时刻电路输入值的组合,而与电路过去的输入值无关。
组合逻辑电路又可根据输出端个数的多少进一步分为单输出和多输出组合逻辑电路。
时序逻辑电路:电路在任意时刻产生的稳定输出值不仅与该时刻电路的输入值有关,而且与电路过去的输入值有关。
时序逻辑电路又可根据电路中有无统一的定时信号进一步分为同步时序逻辑电路和异步时序逻辑电路。
4.最简电路是否一定最佳?为什么?一个最简的方案并不等于一个最佳的方案。
最佳方案应满足全面的性能指标和实际应用要求。
所以,在求出一个实现预定功能的最简电路之后,往往要根据实际情况进行相应调整。
5.把下列不同进制数写成按权展开形式。
(1) (4517.239)10(3) (325.744)8(2) (10110.0101)2(4) (785.4AF)16解答(1)(4517.239)10 = 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3(2)(10110.0101)2= 1×24+1×22+1×21+1×2-2+1×2-4(3)(325.744)8= 3×82+2×81+5×80+7×8-1+4×8-2+4×8-3 (4) (785.4AF)16= 7×162+8×161+5×160+4×16-1+10×16-2+15×16-36.将下列二进制数转换成十进制数、八进制数和十六进制数。
数字逻辑课后答案第⼆章第⼆章组合逻辑1. 分析图中所⽰的逻辑电路,写出表达式并进⾏化简2. 分析下图所⽰逻辑电路,其中S3、S2、S1、S0为控制输⼊端,列出真值表,说明 F 与 A 、B 的关系。
F1=F2=F=F 1F 2=BF = AB + B = ABA F = AB BABC CABC = AB + AC + BC + BC = AB + BC + BC1SB BS A ++32S B A ABS +1S B BS A ++3. 分析下图所⽰逻辑电路,列出真值表,说明其逻辑功能。
解: F1==真值表如下:当B ≠C 时, F1=A 当B=C=1时, F1=A 当B=C=0时, F1=0裁判判决电路,A 为主裁判,在A 同意的前提下,只要有⼀位副裁判(B ,C )同意,成绩就有效。
F2=真值表如下:CB BC A C AB C B A +++ABCC B A ABC C B A C B A +⊕=++)(A B C F 0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 100000111AC BC AB C A C B B A ++=++当A 、B 、C 三个变量中有两个及两个以上同时为“1”时,F2 = 1 。
4.图所⽰为数据总线上的⼀种判零电路,写出F 的逻辑表达式,说明该电路的逻辑功能。
解:F=只有当变量A0~A15全为0时,F = 1;否则,F = 0。
因此,电路的功能是判断变量是否全部为逻辑“0”。
5. 分析下图所⽰逻辑电路,列出真值表,说明其逻辑功能解:因此,这是⼀个四选⼀的选择器。
6. 下图所⽰为两种⼗进制数代码转换器,输⼊为余三码,输出为什么代码?解:A B C F 0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1000011111514131211109876543210A A A A A A A A A A A A A A A A +++301201101001X A A X A A X A A X A A F +++=这是⼀个余三码⾄8421 BCD 码转换的电路7. 下图是⼀个受 M 控制的4位⼆进制码和格雷码的相互转换电路。
第1章习题及解答1.1 将下列二进制数转换为等值的十进制数。
(1)(11011)2 (2)(10010111)2(3)(1101101)2 (4)(11111111)2(5)(0.1001)2(6)(0.0111)2(7)(11.001)2(8)(101011.11001)2题1.1 解:(1)(11011)2 =(27)10 (2)(10010111)2 =(151)10(3)(1101101)2 =(109)10 (4)(11111111)2 =(255)10(5)(0.1001)2 =(0.5625)10(6)(0.0111)2 =(0.4375)10(7)(11.001)2=(3.125)10(8)(101011.11001)2 =(43.78125)10 1.3 将下列二进制数转换为等值的十六进制数和八进制数。
(1)(1010111)2 (2)(110111011)2(3)(10110.011010)2 (4)(101100.110011)2题1.3 解:(1)(1010111)2 =(57)16 =(127)8(2)(110011010)2 =(19A)16 =(632)8(3)(10110.111010)2 =(16.E8)16 =(26.72)8(4)(101100.01100001)2 =(2C.61)16 =(54.302)81.5 将下列十进制数表示为8421BCD码。
(1)(43)10 (2)(95.12)10(3)(67.58)10 (4)(932.1)10题1.5 解:(1)(43)10 =(01000011)8421BCD(2)(95.12)10 =(10010101.00010010)8421BCD(3)(67.58)10 =(01100111.01011000)8421BCD(4)(932.1)10 =(100100110010.0001)8421BCD1.7 将下列有符号的十进制数表示成补码形式的有符号二进制数。
第一章1。
什么是模拟信号?什么是数字信号?试举出实例。
模拟信号—----指在时间上和数值上均作连续变化的信号。
例如,温度、压力、交流电压等信号.数字信号--—--指信号的变化在时间上和数值上都是断续的,阶跃式的,或者说是离散的,这类信号有时又称为离散信号。
例如,在数字系统中的脉冲信号、开关状态等。
2. 数字逻辑电路具有哪些主要特点?数字逻辑电路具有如下主要特点:●电路的基本工作信号是二值信号。
●电路中的半导体器件一般都工作在开、关状态.●电路结构简单、功耗低、便于集成制造和系列化生产。
产品价格低廉、使用方便、通用性好。
●由数字逻辑电路构成的数字系统工作速度快、精度高、功能强、可靠性好。
3。
数字逻辑电路按功能可分为哪两种类型?主要区别是什么?根据数字逻辑电路有无记忆功能,可分为组合逻辑电路和时序逻辑电路两类。
组合逻辑电路:电路在任意时刻产生的稳定输出值仅取决于该时刻电路输入值的组合,而与电路过去的输入值无关。
组合逻辑电路又可根据输出端个数的多少进一步分为单输出和多输出组合逻辑电路。
时序逻辑电路:电路在任意时刻产生的稳定输出值不仅与该时刻电路的输入值有关,而且与电路过去的输入值有关。
时序逻辑电路又可根据电路中有无统一的定时信号进一步分为同步时序逻辑电路和异步时序逻辑电路。
4. 最简电路是否一定最佳?为什么?一个最简的方案并不等于一个最佳的方案。
最佳方案应满足全面的性能指标和实际应用调整。
5。
把下列不同进制数写成按权展开形式。
(1) (4517.239)10(3) (325.744)8(2)(10110.0101)2(4) (785.4AF)16解答(1)(4517。
239)10 = 4×103+5×102+1×101+7×100+2×10—1+3×10—2+9×10—3(2)(10110.0101)2= 1×24+1×22+1×21+1×2-2+1×2-4(3)(325.744)8 = 3×82+2×81+5×80+7×8-1+4×8-2+4×8—3(4) (785。
第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制49 110001 6153 110101 65127 1111111 177635 1001111011 11737.493 111.1111 7.7479.43 10011001.0110111 231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010 10 12111101 61 751011100 92 1340.10011 0.59375 0.46101111 47 5701101 13 153.将下列十进制数转换成8421BCD码1997=0001 1001 1001 011165.312=0110 0101.0011 0001 00103.1416=0011.0001 0100 0001 01100.9475=0.1001 0100 0111 01014.列出真值表,写出X的真值表达式A B C X0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 1 X=A BC+A B C+AB C+ABC 5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1) (A⊕B)⊕C=A⊕(B⊕C)A B C (A⊕B)⊕C A⊕(B⊕C)0 0 0 0 00 0 1 1 10 1 0 1 10 1 1 0 01 0 0 1 11 0 1 0 01 1 0 0 01 1 1 1 1所以由真值表得证。
(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C0 0 0 1 10 0 1 0 00 1 0 0 00 1 1 1 11 0 0 0 01 0 1 1 11 1 0 1 11 1 1 0 07.证明下列等式(1)A+A B=A+B证明:左边= A+A B=A(B+B)+A B=AB+A B+A B=AB+A B+AB+A B=A+B=右边(2)ABC+A B C+AB C=AB+AC证明:左边= ABC+A B C+AB C= ABC+A B C+AB C+ABC=AC(B+B )+AB(C+C ) =AB+AC =右边(3) E D C CD A C B A A )(++++=A+CD+E 证明:左边=E D C CD A C B A A )(++++ =A+CD+A B C +CD E =A+CD+CD E =A+CD+E =右边(4) C B A C B A B A ++=C B C A B A ++ 证明:左边=C B A C B A B A ++=C B A C AB C B A B A +++)( =C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式9.将下列函数展开为最小项表达式 (1) F(A,B,C) =Σ(1,4,5,6,7)(2) F(A,B,C,D) = Σ(4,5,6,7,9,12,14) 10.用卡诺图化简下列各式(1)C AB C B BC A AC F +++=化简得F=C(2)C B A D A B A D C AB CD B A F++++=F=D A B A +(3) F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)化简得F=D BC D C A BC A C B D C ++++ (4) F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)化简得F=AC AD B A ++11.利用与非门实现下列函数,并画出逻辑图。