矢量量化与语音信号处理
- 格式:ppt
- 大小:957.50 KB
- 文档页数:65
引言21世纪是信息的社会,各种科技领域的信息大爆炸。
数字信号的数据量通常很巨大,对存储器的存储容量,通信信道的带宽及计算机的处理速度带来压力,因此必须对其进行量化压缩来紧缩数据存储容量,较快地传输各种信号 ,并使发信机功率降低。
矢量量化(VQ)是一种极其重要的信号压缩方法,其在语音信号处理中占有十分重要的地位,广泛应用于语音编码,语音识别,语音合成等领域。
在许多重要的课题中,VQ都起着非常重要的作用。
采用矢量量化技术对信号波形或参数进行压缩处理,可以获得非常高的效益。
VQ不仅可以压缩表示语音参数所需的数码率,而且在减少运算量方面也是非常高效的,它还能直接用于构成语音识别和说话人识别系统。
语音数字通信的两个关键部分是语音质量和传输数码率。
但这两者是矛盾的:要获得较高的语音质量,就必须使用较高的传输码率;相反,为了实现高效地压缩传输数码率,就很难得到良好的语音质量。
但是矢量量化却是一种既能得到高效压缩的数码率,又能保证语音质量的方法。
量化可以分为两大类:一类是标量量化,一类是矢量量化VQ。
标量量化是把抽样后的信号值逐个进行量化,而矢量量化是先将k个抽样值组成k 维空间中的一个矢量,然后将此矢量进行量化,它可以极大的降低数码率,优于标量量化。
各种数据都可以用矢量表示,直接对矢量进行量化,可以方便的对数据进行压缩。
矢量量化属于不可逆压缩方法,具备比特率低,解码简单,失真较小的优点。
矢量量化的发展大致可以分为两各阶段:第一阶段约为1956至1977年。
1956年steinhaus第一次系统的阐述了最佳矢量量化的问题。
1957年,在loyd的“PCM中的最小平方化”一文中给出了如何划分量化区间和如何求量化值问题的结论。
约于此同时MAX也得出同样的结果。
虽然他们谈论的都是标量量化问题,但他们的算法对后面的矢量量化的发展有着深刻的影响。
1964年,NEWMAN研究了正六边形原理。
1977年,berger的‘率失真理论’一书出版。
第四章矢量量化1、矢量量化?(VQ)是1956年由steinhaus首次提出的,1970年代后期发展起来的数据压缩和编码技术。
它主要应用于:语音编码、语音合成、语音识别和说话人识别。
矢量量化在语音信号处理中占有重要地位。
2、标量量化和矢量量化?✓标量量化:是对标量进行量化,即一维的矢量量化。
将动态范围分成若干个小区间,每小区间有一个代表值。
当输入信号落入某区间时,量化成该代表值。
✓矢量量化:是对矢量进行量化。
将矢量空间分成若干个小区域,每小区域有一个代表矢量。
当输入矢量落入某区域时,量化成该代表矢量。
矢量量化是标量量化的发展。
矢量量化总是优于标量量化,维数越高,性能越优越。
矢量量化有效利用各分量间的互相关性。
1970年代末,Linde,Buzo,Gray和Markel等人首次解决了矢量量化码书生成的方法,并首先将矢量量化用于语音编码获得巨大成功。
如,在语音通信方面,将在原来编码速率为2.4kbit/s的线性预测声码器基础上,将每帧的10个反射系数加以10维的矢量量化,就可使编码速率降低到800bit/s,而声音质量基本未下降。
又如分段声码器,由于采用矢量量化,可以使数码率降低到150bit/s。
3、矢量量化的基本原理?标量量化是对信号的单个样本或参数的幅度进行量化;标量是指被量化的变量,为一维变量。
矢量量化的过程是将语音信号波形的K个样点的每一帧,或有K个参数的每一参数帧构成K维空间的一个矢量,然后对这个矢量进行量化。
标量量化可以说是K=1的矢量量化。
矢量量化的过程和标量量化过程相似。
在标量量化时,在一维的零至无穷大值之间设置若干个量化阶梯,当某输入信号的幅度值落在某相邻的两个量化阶梯之间时,就被量化成两阶梯的中心值。
而在矢量量化时,则将K维无限空间划分为M 个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。
矢量量化的定义将信号序列{}i y 的每K 个连续样点分成一组,形成K 维欧氏空间中的一个矢量,矢量量化就是把这个K 维输入矢量X 映射成另一个K 维量化矢量。
《语音信号处理》课程笔记第一章语音信号处理的基础知识1.1 语音信号处理的发展历程语音信号处理的研究起始于20世纪50年代,最初的研究主要集中在语音合成和语音识别上。
在早期,由于计算机技术和数字信号处理技术的限制,语音信号处理的研究进展缓慢。
随着技术的不断发展,尤其是快速傅里叶变换(FFT)的出现,使得语音信号的频域分析成为可能,从而推动了语音信号处理的发展。
到了20世纪80年代,随着全球通信技术的发展,语音信号处理在语音编码和传输等领域也得到了广泛应用。
近年来,随着人工智能技术的快速发展,语音信号处理在语音识别、语音合成、语音增强等领域取得了显著的成果。
1.2 语音信号处理的总体结构语音信号处理的总体结构可以分为以下几个部分:(1)语音信号的采集和预处理:包括语音信号的采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。
(2)特征参数提取:从预处理后的语音信号中提取出能够反映语音特性的参数,如基频、共振峰、倒谱等。
(3)模型训练和识别:利用提取出的特征参数,通过机器学习算法训练出相应的模型,并进行语音识别、说话人识别等任务。
(4)后处理:对识别结果进行进一步的处理,如语法分析、语义理解等,以提高识别的准确性。
1.3 语音的发声机理和听觉机理语音的发声机理主要包括声带的振动、声道的共鸣和辐射等过程。
声带振动产生的声波通过声道时,会受到声道形状的影响,从而产生不同的音调和音质。
听觉机理是指人类听觉系统对声波的感知和处理过程,包括外耳、中耳、内耳和听觉中枢等部分。
1.4 语音的感知和信号模型语音的感知是指人类听觉系统对语音信号的识别和理解过程。
语音信号模型是用来描述语音信号特点和变化规律的数学模型,包括时域模型、频域模型和倒谱模型等。
这些模型为语音信号处理提供了理论基础和工具。
第二章语音信号的时域分析和短时傅里叶分析2.1 语音信号的预处理语音信号的预处理主要包括采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。