高等数学毕业论文.doc
- 格式:doc
- 大小:21.51 KB
- 文档页数:9
泰勒公式及其应用摘 要 文章主要对泰勒公式在近似计算、求极限、证明不等式、外推、求曲线的渐近线方程和判断级数收敛性,对函数凹凸性及拐点判断、广义积分敛散性中的应用关于界的估计、和泰勒公式展开的唯一性问题做了简单系统的介绍和分析,从而体现泰勒公式式在微分学中占有很重要的地位.关键词 泰勒公式; 佩亚诺余项; 拉格朗日余项; 不等式; 根的唯一存在性; 极值; 近似计算.一.引言近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-称为泰勒公式.我们都知道,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可缺少的数学工具,集中体现了微积分“逼近法”的精髓。
在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面. 这篇主要在于探索泰勒公式及其应用的新方法,借助泰勒公式的广泛应用,将泰勒公式的知识应用到数学解题的各个方面和领域中去,得出泰勒公式在数学各方面的应用和解求方法的简便性.二.预备知识2.1泰勒公式的定义定义2.1]1[ 若函数()f x 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()00()()(),!n n n f x x x r x n +-+ (1)其中 0()()(())n n n r x r x o x x =-满足 上述公式称为()f x 在点0x x =处带有佩亚诺余项的的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 ()f x 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x r x n =+-+-++-+, (2)这里()n r x 为拉格朗日余项(1)10()()()(1)!n n n f r x x x n ξ++=-+,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x r x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.2311ln(1)(1)()231n nn x x x x x o x n +++=-+-+-++.)(1112n n x o x x x x+++++=- , +-++=+2!2)1(1)1(x m m mx x m 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .2.2泰勒公式的意义泰勒公式的意义是,用一个n 次多项式来逼近函数()f x .而多项式具有形式简单,易于计算等优点.泰勒公式由()f x 的n 次泰勒多项式()n P x 和余项0()(())n n R x o x x =-组成,我们来详细讨论它们.当n =1时,有 1000()()()()P x f x f x x x '=+-,是()y f x =的曲线在点00(,())x f x 处的切线(方程),称为曲线()y f x =在点00(,())x f x 的一次密切,显然,切线与曲线的差异是较大的,只是曲线的近似. 当n =2时,有2020000()()()()()()2!f x P x f x f x x x x x '''=+-+-, 是曲线()y f x =在点00(,())x f x 的“二次切线”,也称曲线()y f x =在点00(,())x f x 的二次密切.可以看出,二次切线与曲线的接近程度比切线要好.当次数越来越高时,接近程度越来越密切,近似程度也越来越高. 2.3泰勒公式余项的类型泰勒公式的余项分为两类,一类佩亚诺型余项0(())n o x x -,一类是拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+,它们的本质相同,但性质各异.佩亚诺型余项0(())n o x x -是定性的余项,仅表示余项是比0()n x x -(当0x x →时)高阶的无穷小.如33sin ()6x x x o x =-+,表示当0x →时,sin x 用36x x -近似,误差(余项)是比3x 高阶的无穷小.拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+是定量的余项(ξ也可以写成00()x x x θ+-).定量的余项一般用于函数值的计算与函数形态的研究.三.泰勒公式的应用3.1 .利用泰勒公式求极限简化极限运算,就可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限.例1. 求极限sin 2lim sin cos x x xe x xx x x →0-1--- .分析 : 此为00型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sin x , xe 分别用泰勒展开式代替,则可简化此比式.解: 由1sin 2xx e x x ---=233331()())2626x x x x x o x x x o x ++++-1--(-+=34333()()6126x x x o x o x ++=+, 3233sin cos ()(1())62x x x x x x o x x o x -=-+--+=33()3x o x + 于是1sin 2lim sin cos xx x e x x x x x →0----3333()162()3x o x x o x +==+,3. 2 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例1. 当0x ≥时,证明31sin 6x x x ≥-.证明 取31()sin 6f x x x x =-+,00x =,则'''''''''(0)0,(0)0,(0)0,()1cos ,(0)0.f f f f x x f ====-≥带入泰勒公式,其中n =3,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-.例2. 设()f x 在[0,1]二次可导,而且(0)(1)0f f ==,01lim ()1x f x ≤≤=-,试求存在(0,1)ξ∈,使()8f ξ''≥.证: 由于()f x 在[0,1]的最小值不等于在区间端点的值,故在[0,1]内存在1x ,使1()1f x =-,由费马定理知,1()0f x '=. 又21111()()()()()()2!f f x f x f x x x x x η'''=+-+- 21()1()2!f x x η''=-+-,(η介于x 与1x 之间) 由于(0)(1)0f f ==,不令0x =和1x =,有211()0(0)1(0)2f f x ξ''==-+-, 所以21112()2(1)(1)f x x ξξ-''=-<<,当1112x <≤时,2128x -≥,而当1112x <<时,212(1)8x --≥,可见1()f ξ''与2()f ξ''中必有一个大于或等于8.3.3 利用泰勒公式判断广义积分的敛散性当级数的通项表达式是由不同类型函数式构成的繁难形式时,就可以利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.在判定广义积()a f x dx +∞⎰敛散性时, 通常选取广义积分1(0)p a dx p x +∞>⎰进行比较, 在此通过研究无穷小量()()f x x →+∞的阶来有效地选1pa dx x +∞⎰中的p 值,从而简单地判定()af x dx +∞⎰的敛散性(注意到:如果()af x dx +∞⎰得收敛,则()af x dx +∞⎰得收敛). 例 1. 研究广义积分4(332)x x x dx +∞++--⎰的敛散性. 解 : 22(1)(1)1()2!x x x o x αααα-+=+++()332f x x x x =++--112233(1)(1)2x x x=++--22223191131911(1())(1())22828x o o x x x x x x=+⋅-⋅++-⋅-⋅+-3/23/2911()4o x x=-⋅+ ,因此,3/2()9lim14x f x x →+∞=,即()0f x →是1()x x →+∞的32阶,而3/241dx x +∞⎰收敛,故4()f x dx +∞⎰收敛,从而4(332)x x x dx +∞++--⎰.例2. 讨论级数111(ln )n n n n∞=+-∑的敛散性.注意到11lnln(1)n n n+=+,若将其泰勒展开为1n 的幂的形式,开二次方后恰与1n相呼应,会使判敛易进行. 解: 因为2341111111lnln(1)234n n n n n n nn+=+=-+-+<, 所以11ln1n n<+, 所以11ln 0n n u n n+=->,故该级数是正项级数. 又因为332332322111111111111ln()()23422n o n n n n n n n n n nn n +=-++>-+=-=-, 所以3322111111ln ()22n n u n n n nn n +=-<--=.因为31212n n∞=∑收敛,所以由正项级数比较判别法知原级数收敛.3.4 利用泰勒公式判断函数的凸凹性及拐点例 1. 设()f x 在[a,b]上连续在(a,b)上具有一阶和二阶导数,若在(a,b)内 ()0f x ´´>()f x 在[a,b]上是凹向的. 12x x 证明:设c <d 为[a,b]内任意两点,且[c,d]足够小.<为[c,d]中的任意两点,1202x x =+记x 由定理条件得泰勒公式: 2000000()()()()()()((-))2n x x f x f x f x x x f x o x x ´´´-=+-++!,22102012001002000()()()()()()()()()()()22x x x x f x f x f x f x x x f x x x f x f x ´´´´´´--+=2+-+-++!!221020())())o x x o x x +(-+(-212()n x x x x 因为余项为-的高阶无穷小,[,]又为足够小,202000()()())()2x x f x o x x f x ´´´´-所以泰勒公式中+(-的符号与相同。
本科毕业论文论文题目:幂零矩阵的性质与应用学生姓名:白雪学号:1004970231专业:数学与应用数学班级:数学1002班指导教师:徐颖玲完成日期:年月日幂零矩阵的性质与应用内容摘要在高等数学中,矩阵是研究和解决问题的重要工具,幂零矩阵又是一类特殊的矩阵,在矩阵理论中具有举足轻重的地位,实际应用方面也有重要的意义。
幂零矩阵具有很多好的性质,本文将深入挖掘这些性质,并且用不同的方法去分析论证这些性质。
同时本文还给出幂零矩阵自身特有的一些性质,讨论了矩阵是幂零矩阵的充分必要条件,并说明其在求矩阵的逆矩阵方面的优越性,并通过例子说明其在实际中的应用。
关键词:幂零矩阵线性变换逆矩阵若尔当标准型特征值迹.Properties and Applications of Nilpotent MatricesAbstractMatrix acts as a key role in studying and solving the questions in advanced mathematics. As special forms of matrix, nilpotent matrices play a key role not only in the theory of matrix but also in practical application. Nilpotent Matrices have many good properties. In the paper, we will find and prove with various methods these properties in profundity. The paper will give some unique properties of nilpotent matrices and discusses the necessary and sufficient condition of nilpotent matrices. Then the paper shows its superiority in solving inverse matrix, and explains its practical application by examples.Key words:Nilpotent matrix Linear transformation Inverse matrix Jordan canonical form Characteristic T race.目录一、预备知识 (1)(一)概念 (1)(二)引理 (2)二、幂零矩阵的性质 (3)(一)幂零矩阵的特性 (3)(二)矩阵是幂零矩阵的几个充分必要条件 (4)(三)幂零矩阵和若尔当块 (5)(四)幂零矩阵的其他性质 (7)三、幂零矩阵的应用 (10)(一)幂零矩阵在矩阵求逆中的应用 (10)1.可求幂零矩阵与单位矩阵和的矩阵的逆 (10)2.求主对角线上元素完全相同的三角矩阵的逆 (11)(二)幂零矩阵在其他方面的应用 (13)结论 (14)参考文献 (15)随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法已成为现代科技领域必不可少的工具。
数学归纳法及其应用数学归纳法是一种证明与正整数有关的命题的非常重要的数学方法,它不仅对我们中学数学的学习有着很大的帮助,而且在进一步学习及研究高等数学时,也是一种非常重要的方法.数学归纳法在证明与正整数有关的命题时有其独特之处.对数学归纳法逻辑基础即原理的准确理解,是掌握这种证明方法的关键.要熟练的掌握及应用数学归纳法,首先必须准确的理解其意义以及熟练地掌握解题步骤,而在三个步骤中,运用归纳假设尤为关键,运用归纳假设推出结论最为重要.数学归纳法可以用来证明与正整数有关的代数恒等式、不等式、整除性问题和几何问题等.n时表示一个命题,正整数是无穷的.一个与正整数N有关的命题,当1n时又表示一个命题,如此等等,无穷无尽.因此,一个与正整数N有关当2的命题本质上包含了无穷多个命题.假如我们对于这无穷多个命题,按部就班地一个一个去证,那么不管我们的证题速度有多快,也是今生今世都证不完的.在一个与正整数N有关的命题面前,作为万物之灵的人,发明了一种方法,叫做“数学归纳法”.人们运用此法,只需寥寥几步,像变戏法似的,便把无穷多个命题一个不剩的全证完了[1].数学归纳法是数学论证的一个基本工具,是一种非常重要的数学证明方法,它典型地用于确定一个表达式在所有正整数范围内是成立的,或者用于确定一个其他的形式在一个无穷序列是成立的.最简单和最常见的数学归纳法证明是证明当n属于所有正整数时一个表达式成立,这种方法是由下面两步组成,第一步是递推的基础: 证明当1n时表达式成立.第二步是递推的依据: 证明如果当n k时成立,那么当1n k时同样成立.(递推的依据中的“如果”被定义为归纳假设.不要把整个第二步称为归纳假设.) 这个方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的.如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中.1数学归纳法的概述1.1 常用数学证明方法数学是一门非常注重学习方法的学科,而数学的证明更是将这些方法体现的淋漓尽致,数学中研究问题的方法一般有以下分类:1.1.1 演绎推理——从一般到特殊的推理叫做演绎推理,它又称演绎法.1.1.2 归纳推理——由特殊事例得出一般结论的归纳推理方法,通常叫做归纳推理,它又称归纳法.根据推理过程中考察的对象是涉及事物的一部分还是全部,归纳法又可分为不完全归纳法和完全归纳法.不完全归纳法是根据事物的部分(而不是全部)特例得出一般结论的推理方法.不完全归纳法所得到的命题并不一定成立,所以这种方法并不能作为一种论证方法.但是,不完全归纳法是研究数学的一把钥匙,是发现数学规律的一种重要手段.在问题探索中,为了寻求一般规律,往往先考察一些特例,通过对这些特例的不完全归纳形成猜想,然后再试图去证明或否定这种猜想.因而学会用不完全归纳法对问题进行探索,对提高数学能力十分重要.完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的.通常在事物包括的特殊情况数不多时,采用完全归纳法[2].1.2 数学归纳法的定义数学归纳法概念:数学归纳法是数学上证明与正整数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题.1.3 数学归纳法的逻辑基础意大利有一个数学家,名叫皮亚诺(G.Peano,1858-1932),他总结了自然数的有关性质,并在关于自然数的理论中提出了关于自然数的五条公理,后人称之为“皮亚诺公理”.皮亚诺公理的内容如下:任何一个满足下列条件的非空集合N的元素叫做自然数.在这个集合中,某些元素之间存在着一种基本关系——“随从”关系(或者叫做“直接后继”关系)并且满足以下五条公理:Ⅰ.0N(即“0是自然数”).Ⅱ.对于N的每一个元素a,在N中都有一个确定的随从'a(我们用符号'a 表示a的随从,以下类同).Ⅲ. 0不是N中任何一个元素的随从.a b可以推出a b(这就是说,N中的每个元素只能是某一个元Ⅳ.由''素的随从,或者根本不是随从).Ⅴ.设M是自然数的集合,若它具有下列性质:(1)自然数0属于M;(2)如果自然数a属于M,那么它的随从'a也属于M;则集合M包含一切自然数[1].自然数就是满足上述皮亚诺公理的集合N中的元素.关于自然数的所有性质都是这些公理的直接推论.由皮亚诺公理可知,0是自然数关于“后继”的起n n,…,则始元素,如果记'01,'12,'23,…,'1{0,1,2,,,}N n皮亚诺公理与最小数原理是等价的,我们可以用皮亚诺公理来证明最小数原理.定理1 (最小数原理) 自然数集N 的任意非空子集A 都有最小数. 证 设M 是不大于A 中任何数的所有自然数的集合,即{|,}Mn nN nm mA 且对任意由于A 非空,至少有一自然数a A ,而1()a a 不在M 中,所以M N .从而必存在自然数0m M ,且01m M .因为若不然,就有(1)0M (0不大于任一自然数); (2)若m M ,则1m M .根据归纳原理,集合M 包含一切自然数.此与M 是不大于A 中任何数的所有自然数的集合矛盾.这个自然数0m 就是集合A 的最小数,因为对任何aA ,都有0m a ;而且0m A .事实上,若0m A ,则有01m a ,对任意a A ,于是01m M ,这又与0m 的选取相矛盾.下面我们用最小数原理来证明数学归纳法原理.定理2 (数学归纳法原理)一个与自然数有相关的命题()T n ,如果(1)00()(0)T n n 为真;(2)假设0()()T n nn 为真,则可以推出(1)T n 也为真.那么,对所有大于等于0n 的正整数n ,命题()T n 为真.证 用反证法.若命题()T n 不是对所有的自然数n 为真,则0{|,()}Mm mN mn T m 且不真非空.根据定理1,M 中有最小数0m .由(1),00m n ,从而001m n 且0(1)T m 为真.由(2),取01nm 即知0()T m 为真.此与0()T m 不真相矛盾.从而证明了定理2[4].因而从理论上讲,皮亚诺公理中的第五条公理正是数学归纳法的依据,因此,第五条公理也称做数学归纳法原理。
浅谈函数极限求解方法学生:智年指导老师:守江三峡大学理学院摘要:极限是数学分析的基础,数学分析的基本概念的表述,都可以用极限来描述.如函数在某点处导数的定义,定积分的定义,偏导数的定义,二重积分的定义,三重积分的定义,无穷级数的定义都是用极限来定义的.极限是研究数学分析的基本工具.极限是贯穿数学分析的一条主线.学好极限要从以下两个方面着手: 1)是考察所给函数是否存在极限;2)若函数存在极限,则考虑如何计算此极限.本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述. 对于简单的极限的计算,利用定义求值或利用极限的四则运算法则求值都是可行的,但是对于一个比较复杂的极限的计算,例如的值时则不能直接采用一般的定义或者定理,即使采用洛必达法则也是比较繁琐的,然而用泰勒展示则计算简单多了,这就说明为一般地解决极限求值问题时,就必须利用有效有针对性的计算方法,对各个具体问题还要善于发现和利用其特点以简化手续.传统的极限的计算方法不下十几种,但具体到计算不同特征的极限时,究竟采用哪种方法,很多人总感到无从下手.只有将这些方法进行归纳总结,从而才可以针对不同特征的式子选择适当的计算方法,进而简化计算Abstract:Limit is the basis of mathematical analysis , the basic concepts of mathematical analysis of expression , can be used to describe the limit as a function definition derivative at some point , the definition of the definite integral , the definition of partial derivative , the definition of double integrals , triple integral definition , infinite series of definitions are used to define the limits of the limit is the basic tool to study the limits of mathematical analysis is a main theme throughout the mathematical analysis to learn the limits from the following two aspects is to investigate the function if there is a limit .If there is a limit function , then consider how to calculate this limit this article is the second question that under the conditions of the existence of the limit , how to find the limits are reviewed for a simple calculation of the limit of the use . define the limits of the evaluation or the use of four evaluation algorithms are feasible, but for a more complicated limit calculations, such asFind in coslimx when exxx values are not directly using the general definition or theorem, even with the Hospital's Rule is more complicated , however, Taylor shows the calculation is much simpler , which is generally described when the limit is evaluated to solve the problem , we must use effective targeted method of calculation for each specific issues but also good at finding and using its features to simplify procedures. The traditional method of calculating the limit of no less than a dozen, but when calculating the limits specific to different characteristics , whether using either method, a lot of people always feel unable to start . These methods will only besummarized, so that we can choose the appropriate method of calculation formulas for different characteristics , and thus simplify the calculation关键词:极限;极限的定义;极限的性质;罗必达法则;泰勒公式;单调有限法则;积分中值定理;拉格朗日中值定理Keywords :Limit; ultimate limits of nature; Luo's Rule; Taylor formula; monotonous limited law; integral mean value theorem; Lagrange mean value theorem与一切科学方法一样,极限法也是社会实践的产物。
新疆财经大学本科毕业论文题目 : 微分和积分在不等式中的应用学号: 2005101412 学生姓名:阿卜杜瓦哈普·阿卜杜热西提院部:应用数学学院专业:应用数学年级:数学06-2班指导教师姓名职称:阿孜古丽·伊克木(讲师)完成日期:年月日摘要微积分和不等式都是数学中极为重要的内容,本文在回顾了几种常用的证明不等式的初等方法后,利用微分中值定理、泰勒公式、函数的单调性、极(最)值的判定法、定积分的性质等一些微积分知识探讨不等式的证明方法,最后指出了微积分在不等式证明中的具体应用.微积分是数学中的重要组成部分,是研究函数的性质,证明不等式,探求函数的极值、最值,求曲线的斜率和解决一些物理问题的有力工具.微积分的应用为解决数学问题提供了新的思路,新的方法和新的途径,可以说微积分是打开数学知识大门的一把钥匙.微积分在实际生活中的应用非常广泛,在不等式证明中也发挥着巨大的作用。
不等式的证明方法很多,灵活地运用微积分的性质及相关定理是解决许多不等式证明问题的关键.本篇论文归纳和总结了一些证明不等式的方法与技巧,利用微积分证明不等式的基本思想和基本方法,提出了运用这些方法和技巧能够使不等式的求解过程更为简单的思路..关键词:微积分;不等式;微分中值定理;泰勒公式;函数的单调性;极(最)值的判定法;目录前言 (1)第一章微积分 (2)§1微积分的发展 (2)§2微积分的概念 (3)第二章不等式 (7)§1不等式的定义和性质 (7)§2常用的证明不等式的方法 (8)第三章微积分在不等式中的应用 (12)§1利用微分证明不等式 (12)§2利用积分证明不等式 (19)结论 (23)参考文献 (24)致谢 (25)前言在高等数学中常常要证明一些不等式.而不等式的证明方法很多,在以往多采用代数或几何方法,现在可借助于微积分的知识,这是普遍应用的一种方法。
毕业论文(设计)论文(设计)题目:变量代换在高等数学中的应用姓名王中山学号 ***********院系数学与信息科学学院专业数学与应用数学年级 12级应数一班指导教师翟鹏翔2016年04月20日新乡学院本科毕业论文(设计)目录1摘要变量代换法是研究和解决数学问题的方法之一,属于数学方法的一种,变量代换就是把困难的问题先进行变量代换,使它转化成容易的问题。
变量代换在高等数学里是一项十分重要的实用方法,它不仅仅是一种解题技巧,也是一种非常重要的数学思维方法,这种方法几乎贯穿了高等数学的全部内容,它具有灵活性和多样性的特点。
本文通过对变量代换法在高等数学里面函数、极限、微分、积分以及级数运算中的应用进行了总结,对变量代换法的应用进行深入探讨与研究,分析了它的特点和技巧,以便科学地、准确地来解决在学习过程中遇到的一些数学问题,同时也能够让学生在学习高等数学的过程中充分地把握并能够熟练、灵活运用好变量代换这种方法,提高学生的解题能力以及应变能力。
关键词:变量代换法;函数;极限;微分;积分;级数AbstractVariable substitution method is one way to study and solve math problems, a mathematical transformation method belongs, that is going to solve the problem is not easy to be the first variable substitution to make the conversion. It's in the process of learning mathematics is a very important practical methods, not only is an important problem-solving skills, mathematical thinking is an important approach that has permeated the entire contents of the higher mathematics, with flexible Features and diversity. Based on the method of calculation of variable substitution in various sections of higher mathematics are summarized in the application of variable substitution method in the application of certain aspects of higher mathematics in-depth discussion, analysis of the characteristics and skills, in order to science, accurately apply this method to solve math problems, while allowing students to fully grasp in learning mathematics and proficient, flexible use of this method is good to improve students' problem-solving abilitiesKey words:Variable substitution method;function;limitation;differential;integral;series引言目前在高等数学中所提到变量替代法,实质就是将所得到的某些高数当中的式子看作是一个完整的有机整体,然后再使用一个其它的变量来进行代换,从而使将遇到的复杂问题变成简单的问题,换言之,就是用其去变量代换一串比较复杂的式子从而使将代数式的运算变得简单一些,其实这也就是我们在初高中学习的过程中经常使用曾经使用的一种方法----换元法。
分类号O29编号2013010105毕业论文题目n次单位根的性质及其应用原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。
学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。
除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。
本声明的法律责任由本人承担。
论文作者签名:年月日论文指导教师签名:年月日目录摘要 (1)Abstract .................................................................... 1 1 n 次单位根的定义 .......................................................... 2 2 n 次单位根的性质 .......................................................... 2 3 n 次单位根的应用 .......................................................... 4 3.1 n 次单位根在中学数学竞赛中的应用 ..................................... 4 3.2 巧用n 次单位根分解1 n x .............................................. 5 3.3 n 次单位根在几何中的应用 ............................................. 7 3.4 n 次单位根在多项式整除中的应用 ....................................... 9 3.5 n 次单位根在三角函数中的应用 ......................................... 9 4 总结 ..................................................................... 10 参考文献 ................................................................... 11 致谢 .. (12)n次单位根的性质及其应用崔文强(天水师范学院数学与统计学院甘肃天水 741001)摘要:n次单位根是复变函数论中的重要内容,本文主要论述了n次单位根的性质,n次单位根性质证明.通过例题分析讲解n次单位根在因式分解、尺规作图、三角函数、多项式整除中的应用,说明n次单位根可拓宽解题思路,是一种方便快捷的解题方法,为初中的数学教学提供指导.关键词:单位根; 因式分解; 性质; 几何画图中图分类号: O29The Property and Application of nth Unit RootCUI Wen-qiang( School of Mathematics and Statistics, Tianshui Normal University,Tianshui Gansu,741001,China )Abstract:The nth unit root is the important content of complex variable function. The paper mainly discusses the porperty of nth unit root by analysing and explaining examples. The nth unit root is widely applied to factorization, geometrical construction, triqonmetic function,and ploymerization divide exactly,which tells that nth unit root can broaden the solutions of solve math questions .Thus,the nth unit root is a convenient and rapid way of solving the questions and provides some referential instructions for math teaching in Junior Middle school.Key words: unit root; factorization; property; geometrical11次单位根的定义定义一 在复数域上1n 的n 个值22cos sin n k k i n nππε=+;k=0,1,2,…,n-1就是多项式1n x -的n 个根,称它们为n 次单位根.定义二 在复数域上1n的n 个值2=k inn e ξ∏,k=0,1,2,…,n-1就是多项式1n x -的n 个根,称它们为n 次单位根.2 n 次单位根的性质(1)=1k ξ证明 由定义一 得2222(cos)(sin )k k k n nππξ=+ =1(2)令122==cossin i n n ππξξ+,则22cos sin k k k k i n nππξξ==+,k=1,2,…,n-1 证明 由欧拉公式()cos sin ix e x i x =+,知22()i ikknn eeππ=2k ineπ= 22cos sin k k i n nππ=+k k ξξ== 即k k ξξ==22cossin k k i n nππ+,k=1,2,…,n-1 (3)m k ξ= mk ξ证明 由定义二 知mk ξ=2()k imneπ=2m ()k ineπ=mk ξ(4)对于每个单位根21k k k 1++=0n k ξξξξ-++∶…证明 因为1n x -=()211+n x x x -+++(x-1)…,令k x ξ=,则原式可变为,1n k ξ-=21(1)(1)0n k k k k ξξξξ--++++=… 当0k ξ≠时,10n k ξ-≠,所以211++++=0n k k k ξξξ-…(5)对于每个单位根k ξ:2(1)1m m n m k k k n ξξξ-+++=…(当n 整除m 时)2(1)10m m n m k k k ξξξ-+++=…(当n 不整除m 时)证明 由于k ξ为n 次单位根则1n k ξ=当n 整除m 时,令m=nq,则m k ξ=nq k ξ=()qn k ξ=1同理2m k ξ=()1n m k ξ-=1 故2(1)1m m n m k k k ξξξ-+++…=1+1+…+1=n当n 不整除m 时,m k ξ≠1,由k k 1=ξξ 知:2(1)1m m n m k k k ξξξ-+++…=()nm k m k1-1-ξξ=nm k mk 1-1-ξξ=0 (6)两个n 次单位根的乘积与商仍是n 次单位根证明 令k ξ、l ξ是n 此单位根,则()·nn k l k ξξξ=·n l ξ=1()n l k ξξ=n l n kξξ =1命题得证. (7)·=k l k l ξξξ+证明 由定义二, 得22··k l iinnk l eeξξ∏∏==22k l ii n n e∏∏+=2()ik l ne∏+=k l ξ+即 k ξ·l ξ=k l ξ+ (8)k ξ=n k ξ-(0<k <n )证明 因为 k ξ=2k 2k cos+isin n n ππk ξ=2k 2cos sin n nk i ππ- 则 n-k ξ=()()2n-k 2n-k cos sin n ni ππ+ =2n -2k 2n -2k cossin n ni ππππ+ =2k 2k cos 2-sin 2-nn i ππππ⎛⎫⎛⎫+ ⎪⎪⎝⎭⎝⎭=2k 2k cossin -n ni ππ⎛⎫+ ⎪⎝⎭=2k 2k cossin n ni ππ⎛⎫- ⎪⎝⎭=k ξ3 n 次单位根的应用3.1 n 次单位根在中学数学竞赛中的应用例1 (2001年全国高中数学联赛)若21000(1)x x ++的展开式为2000012000a a x a x +++…, 求0361998++++a a a a …的值.解 令1s =0361998++++a a a a … 2141999=+++s a a a … 3252000=++s a a a …在21000(1)x x ++=2000012000a a x a x +++…中,令x=1,ξ(ξ是三次单位根,ξ≠0)则1000123++=3s s s ⑴ 21000(1)ξξ++=2000012000a a x a x +++… 即123++=0s s s ξξ ⑵ 在⑵中2s ξ、3s ξ按实﹑虚部分别展开,并由复数相等可得 ()1231-+=02s s s ⑶ 2333··022s s -= ⑷ 则由⑴、⑶、⑷得1s =10003÷3故 0a +3a +6a +…+1998a =9993例2(1978年我国八省市中学数学竞赛)设=cos sin55i ππξ+,求以379ξξξξ、、、为根的方程.解 由于=cos sin55i ππξ+,所以22=cossin 1010i ππξ+则2310ξξξξ、、、…、 为1的10个10次单位根,所以21010()()()1x x x x ξξξ---=-… ⑴ 又246810ξξξξξ、、、、是1的5个5次方根,则246105()()()()1x x x x x ξξξξ----=- ⑵ 由⑴÷⑵, 得35795()()()()()1x x x x x x ξξξξξ-----=-又55=-11x x ξξ-=+,所以53791()()()()=1x x x x x x ξξξξ+----+432=1x x x x -+-+, 即所求方程为,43210x x x x -+-+=3.2 巧用n 次单位根分解1-n x例 对151x -因式分解.解 如果在复数范围内151x -我们可以十五个分解为一次因式的乘积: 即()()()()15214-1=x-1x x x x ξξξ---…,其中22cos sin 1515i ππξ=+;而2141,,,,ξξξ…是方程1510x -=即151x =的所有复数根.如果将151x -的十五个一次因式分成几个不同组,使它们的乘积为有理系数的多项式. 1510x -=的所有的复数根即就是所有15次单位根,由于他们的15次方都等于1.但在这些根当中有些根的更低次幂就已经等于1了.事实上,因为1、3、5都是15的因数,他们都满足1z =1或3z =1或51z =的复数根z 也都满足151,z =它们都是151z -的根,这也就是1次单位根,3次单位根,5次单位根它们都是15次的单位根.对于每一个15次单位根ξ,存在一个最小的正整数d ,使d z =1,我们先来证明d 是15的因子.我们用d 去除15得到商了q 和余数r,即r=15-dq ,15151====1()1r dq d q qz z z z -.由于d 是使=1d z 的最小正整数,又=1rz 且r <d ,这就要求r 不能是正整数,只能为零.这便说明了能使=1d z 的正整数它就一定会是15的因子,他们是1,3,5或15.我们就说d 为z 的乘法周期,称z 为d 次单位原根.这也就是说:z 是d 次单位根,并且z 不是更低次数的单位根.下面我们按照周期的不同1,3,5,15将15-1=0x 的根k ξ分成4组,便可将15-1x 的一次因式k x ξ-分成4组,我们在分别计算出每一组的一次因式的乘积1()f x ,3()f x ,5()f x ,15()f x 并且证明这些乘积都是有理系数多项式,从而将15x -1分解成这四个有理系数因式的乘积.周期为1的单位根只能是1,它单独组成第一组,以它为根的一次因式为1()f x =x -1.周期为3的单位根都是3x -1的根且他们不是x-1的根,它们就是311x x --的全部根,以这些根为根的一次因式的乘积3231()11x f x x x x -==++-周期为5的单位根都是3x -1的根而不是x -1的根,它们就是511x x --的全部根,以这些根为根的一次因式的乘积5()f x =511x x --=4321x x x x ++++周期为15的单位根都是15-1x 的根而不是1()f x ,3()f x ,5()f x 的根,它们就是151351()()()x f x f x f x -的全部根,以这些根为根的一次因式的乘积15()f x =151351()()()x f x f x f x - =3129632432(1)(1)(1)(1)(1)x x x x x x x x x x x x -++++-++++++ =1296343211x x x x x x x x ++++++++ =8754321x x x x x x x -+-++-+这样就得到151x -=1()f x 3()f x 5()f x 15()f x=2432875432(1)(1)(1)(1)x x x x x x x x x x x x x x -++++++-+-++-+15x -1就可以分解为4个有理系数因式1()f x ,3()f x ,5()f x ,15()f x 的积.严格意义上来说,如果想完成上面一题必须证明所得到的4个因式在有理数的范围内都不能再分解.上面的分解思路和方法我们也可应用于对其他正整数n 进行分解n x 1-.假如时n=21,我们考虑21的所有因数1,3,7,21按照这四个因子可以得到21x 1-的四个因式它们分别为:1()f x =x-13()f x =3x -1x-1=2x +x+1 7()f x =7x -1x-1=6x +5x +4x +3x +2x +x+1 21()f x =21137x -1()()()f x f x f x 则 2113721x 1()()()()f x f x f x f x -=3.3 n 次单位根在几何中的应用例 用尺规作图做出圆的内接正五边形,使已知点A 是正五边形的一个顶点.解 我们以给出圆的半径为单位长,以圆心为原点.OA 的方向为x 轴的正方向建立一个平面直角坐标系.如果我们能够在圆周上做出一个点让它成为正五边形的下一个顶点1A ,并且让1AOA ∠=3605︒=72︒,利用圆规在圆周上面依次截取1AA =12A A =23A A =34A A ,我们就可以得到正五边形1234,,,,A A A A A .如果我们将直角坐标系中的每个点(,)x y 用复数x+yi 表示的话.则表示五个顶点1234AA A A A 的复数就是1的5个5次单位根他们分别为1,ξ,2ξ,3ξ,4ξ而cos72sin 72i ξ=︒+︒,又由于ξ与4ξ=1ξ-是共轭的关系,则它们的和为41c o s 72y ξξ=+=︒;又由于2ξ与3ξ=2ξ-共轭,则它们的和为2y =2cos144︒.如果我们只利用圆规与直尺画出1y ,则可得到11cos 722y ︒=.在OA 上截取cos 72OD =︒,再过D 作OA 的垂线交圆于1A 和4A ,则我们就可以做出正五边形.因为42312+=+++y y ξξξξ是211x x --=4321x x x x ++++的4个根ξ,2ξ,3ξ,4ξ的和,等于-1.又()()42312=++y y ξξξξ3467=+++ξξξξ423=+ξξξξ++=-1于是1y 与2y 就是方程21x x +-=0的两个根152-±,而1=2cos72y ︒是它们中的一个正根152-+=211()2+-12然后我们以1,12直角三角形的两条直角边作直角三角形则其斜边长为211()2+,再减去12可得cos 72︒.具体的作图方法我们可以设计如下:先做相互垂直的半径OA 和OB ,然后作OB 的中点M ,连接MA ,则MA =22OA OM +=211()2+. 以M 为圆心MO 为半径作圆弧交MA 于点C,则CA=1y .作CA 的中点N ,并在OA 上截取OD =AN ,在过点D 作线段OA 的垂线交圆周于点1A 则1AA 的长度就为为正五边形的边长.3.4 n 次单位根在多项式整除中的应用例1求证100101101()x a x a +--被22x ax a ++整除,其中0a ≠.证明 由于22+ax+x a =2a 21x x a a ⎡⎤⎛⎫++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦100()x a +-101x -101a =101a 1011()1x x a a ⎡⎤⎛⎫+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=x f a ⎛⎫ ⎪⎝⎭设ξ为任一不等于1的3次单位根,则()f ξ=()1011011011()1a ξξ⎡⎤+--⎣⎦ =()1011012101()1a ξξ⎡⎤---⎢⎥⎣⎦ =0故100()x a +-101x -101a 被22+ax+x a 整除例2 求证:()()31322=+1+1n m f x x x ++--被21x x ++整除,其中m,n 为非负整数.证明 设ξ为任一不等于1的3次单位根,则()()3132211n m f ξξξ++=+--+2311m ξξ+=++21ξξ=++=0故()f x 被2+1x x =整除3.5 n 次单位根在三角函数中的应用例 求证221sin sin sin 2121212nn n n n n πππ+=+++…证明 设2n+1次单位根为 21,1,2,,;21ik e k n n θπθ±⎛⎫== ⎪+⎝⎭… 又()()2=12cos ik ik x e x e x x k θθθ---+-,()()()()22122212cos 1=x-112cos 12cos 212cos n x n x x x x n θθθθ+---------…()()()221222+x+1=12cos 12cos 12cos n n x x x x x n θθθ-++------……令x=1,得()()()2n+1=21cos 1cos21cos n n θθθ---…22222=2sin sin sin 212121n n n n n πππ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦⎣⎦… 由于右边的角21k n π+都是锐角,所以开方得命题成立. 4 总结本文结合具体的例题讨论了单位根的一些性质及其在初等数学中的一些应用.当然,单位根作为数学中的重要的思想在中学数学中的涉及范围远不止这几个方面.如缺少在新领域中的应用,在今后的研究中应继续拓宽引用领域。
凸函数性质研究摘要凸函数是分析学中一类重要的函数,最早是由Jensen提出。
它在纯粹数学与应用数学等诸多领域中应用十分广泛,现已成为对策论、数学规划、分形学、最优控制和数理经济学等学科的理论基础和有力工具。
为了理论上的突破,加强其在实践中的应用,凸函数的性质还在不断研究和完善中。
本文将散见于各文献中凸函数的概念进行了系统的归纳和总结,并给出了凸函数常见的判定定理,进而研究了凸函数的常用性质,列举了与凸函数相关的著名不等式;由于凸函数的定义是由不等式给出的,其广泛应用主要体现在不等式的证明中。
基于此,本文主要通过对凸函数的概念和性质进行系统的总结和研究,探索出凸函数在一般不等式,Jensen不等式,Holder不等式,Cauchy不等式,Young不等式,及Hadamard不等式证明中的应用,并简要阐述了凸函数在其它领域的贡献。
关键词:凸函数;不等式;导数;单调性Study on the properties of convex functionAbstractConvex function which was first proposed by Jensen is a kind of important functions in analytics. It is widely used in pure and applied mathematics ,etc. Convex function becomes the theoretical basis and the powerful tool of the game theory、mathematical programming theory、analysis、mathematical science、economics and other disciplines. In order to have a theoretical breakthrough which could strengthen the application in practice,the properties of convex function are being researched. In this article, the writer’s main work is summarizing the various concepts of convex functions which developed in different mathematical books. Furthermore, the writer also gives some definitions of common theorems and also enumerates the famous inequalities related to convex function. Because the definition of convex function is given by inequalities,its application mainly reflects in the proof of inequality. The writer mainly summarizes concepts and properties of the convex function and explores its application in the general inequality such as Jensen inequality, Holder inequality, Cauchy inequality, Young inequality and Hadamardinequality. Atlast, it discusses the contribution of convex function in other fields briefly.目录摘要 (1)第一章绪论 (2)1.1 凸函数的产生和发展 (2)1.2 凸函数研究的目的和意义 (2)第二章凸函数的定义及判定 (2)2.1 凸函数的定义及关系 (2)2.2 凸函数的判定定理 (2)第三章凸函数的性质 (2)3.1 凸函数的一般性质 (2)3.2 凸函数的运算性质 (2)3.3 凸函数的微分性质 (2)3.4 凸函数的积分性质 (2)3.5 凸函数的其他性质 (2)第四章凸函数的应用 (2)4.1 利用凸函数证明经典不等式 (2)4.2 凸函数的经典不等式在证明不等式中的应用[5] (2)4.3 利用凸函数的定义证明一般不等式[8] (2)4.4 凸函数在积分不等式中的应用 (2)4.5 凸函数在其它领域的应用简述 (2)4.5.1 凸函数在生产函数中的应用 (2)4.5.2 凸函数在消费者效用最大化问题中的应用 (2)第五章结论 (2)参考文献 (2)致 (2)第一章绪论1.1 凸函数的产生和发展函数是数学中最重要的基本概念,也是数学分析的重点研究对象,而凸函数则是其中独特的一类。
高等数学毕业论文我们的时代需要具有终身学习能力和身心健康的一代新人,这就更加要求我们的高等数学教学要以培养学生的学习能力,尤其是终身学习能力和终身数学意识为重,而自主学习能力的提高是实现此目标的重要前提。
下面是我为大家整理的,供大家参考。
范文一:高职院校高等数学教学改革研究0前言高职院校的《高等数学》课程是理工类专业学生的必修课程之一,作为工具学科对这些专业的学生来说,高等数学学习直接影响到其后续专业课程的学习.但数学学科的特点及学生对数学课程的学习态度导致了很大一部分学生缺乏学习数学的兴趣.本文将针对高等数学教学的现状,重点剖析在数学教学中引入数学史的意义,旨在改善当下数学教学面临的问题. 1HPM的含义将数学史融入到数学教育是由HPM最早提出的,该研究组作为一个独立的研究机构早在1972年于英国埃克赛特举办的第二届国际数学教育大会上成立,是InternationalStudyGroupontheRelationsbetweenHistoryandPedagogyo fMathematics的缩写,旨在通过将数学史融入数学教育来提高数学教育水平[1].HPM所关注的主要内容是:数学史与历史发生原理、数学与其他学科的关系、数学文化对于学生的作用、数学史与学生的认知发展、数学史与学生学习的困难、数学历史资料对于数学教学中的应用等.世界各国数学家在不同时期都相继认可了在数学教学中引入数学史对学生学习数学的作用.在19世纪末的美国,便有人将数学史作为教学工具引用到数学教学中.而且美国著名数学史家,也是历史上的第一位数学史教授卡约黎在他的著作《数学史》中曾强调了数学史对于数学教育的重大作用:"如果学习微积分的学生能够知道一些牛顿、莱布尼兹、拉格朗日等在创造这门学科中所起的作用,那么学生一定会对他们倾慕不已".2高职院校高等数学教学的现状2.1学生现状伴随我国产业结构调整,对技术型人才的需求越来越广泛,从一定程度上促进了高职教育的快速发展.随之带来的便是高职院校的扩大招生,进而导致生源情况参差不齐.而且绝大部分高职院校的学生数学基础大都相对薄弱,在这种情况下进行高等数学的教学可想而知难度有多大.2.2学习动机高职院校的学生都是以学习某门技术为学习目的的,作为专业基础课程的高等数学几乎不被重视,学生更愿意在专业课程方面多花时间和精力,对于抽象性与逻辑性非常强的高等数学基本都是敬而远之.而且学生在刚入学时便学习高等数学,尽管任课教师会强调数学课程的重要,对其专业课程的学习起到怎样的作用,但学生更愿意相信如果数学有用,到需要时再学也是来得及的,没必要浪费时间.2.3教学现状尽管高职院校对于高等数学课程的要求是"以应用为目的,以必须够用为度",突出"淡化理论,注重应用,联系实际,深化概念,重视创新和提高素质".但现行的教学中绝大部分学校仍然按照传统的教学方式,采取以教师为主的填鸭式的教学方法,这本身就无法调动学生的学习积极性.另外高等数学课程本身逻辑性强,前后内容承上启下,例如微分部分内容的掌握程度决定了后续的积分、多元函数、级数等内容的学习情况.所以一旦在初学时产生厌学、怕学情绪,那将使学生完全放弃学习,从而影响其后续专业课程的学习.3HPM视角下的高等数学教学改革的意义3.1促进教师掌握完整的数学体系,提高教学质量基于HPM视角下高等数学的教学改革要求任课教师须掌握课程所涉及到的数学史内容,且注意内容的准确性和完整性.从教师角度而言,这势必增加一定的工作量,但是也促进了教师对数学史的再学习,一旦教师对数学史内容准确掌握,不但提高了教师本身的数学素养,更利于增加教师对高等数学不同知识点的内涵和背景的全面了解,以便教师能够在课堂上适时引入相应数学史的内容,提高教学质量.3.2利于激发学生的学习兴趣,改善学习态度数学教学中引入相应数学史内容,对于学生来说,这种形式的教学非常新颖,而且作为知识的扩充,不要求学生对数学史的内容完全记住,也减轻了学生的学习压力.在学生感兴趣的情况下导入教学内容,激发学生的学习兴趣,学生由被动的接受转变为主动学习,久而久之,既丰富了学生的数学知识量,又较好地完成了教学目的,更增加了学生学习的自信心和主动性.作为学生,能把自己认为较抽象的数学学好,归纳出自己的学习方法,必然会使内心受到极大鼓舞,从而彻底转变学习态度.4具体改革措施4.1课堂上营造人文氛围高等数学作为公共基础课,在课堂上教师不仅要讲授数学知识,也要有的放矢地融入人文思想.关键在于选择恰当的切入点,这点须根据具体的教学内容和相应的教学情境来决定.在课堂上教师若能对于某一数学概念提供给学生准确完整的历史材料,包括这一概念的起因、论据及最终产生的过程,这无疑将拉近学生与数学之间的距离,增强真实感,更体现出数学教学中的人文精神.教师在教学的过程中,不断渗透数学的思想、数学的文化、数学的方法,久而久之使学生愿意去学习,愿意与老师交流,主动去思考问题,那么课堂教学将会更好地的开展.4.2教师应扩充数学史知识现在高职院校的数学教师一部分是师范院校数学专业的毕业生,这部分教师在大学期间是学过数学史这门课程的,也有一部分教师是其他学校的数学专业毕业生,这部分教师可能对数学史的内容没有作为一门课程学习过.但无论是哪种情况,都没有完整系统的学习或研究过数学史.因此,任课教师非常有必要对数学史的内容加以学习、研究,这样才能在恰当的时机准确地将数学史的相关内容引入数学教学中,将其还原在当今数学教学真实的数学情境中.使得学生能够真正感受到最本真、最原始的数学发展历程,体会知识本身在发展形成过程中所面对的困难,并能总结教训,吸收经验,利于学生真正了解数学的本质.如伊夫斯的《数学史通论》、李文林的《数学史概论》、《数学发展大事记》等书都很完整地梳理了数学发展的过程.4.3依据教学内容设计教学这是基于HPM视角下的高等数学教学最为关键的一步,也是难度较大的一步.这需要任课教师在课前做好大量的准备工作,针对不同的教学内容,合理准确地融入其历史发展过程,增加关于相应数学家和数学史的介绍,让学生知道每个数学概念、性质、定理、公式的产生过程,了解数学家在发现、总结出结论的艰辛,从而激发学生学习兴趣.例如在介绍数列极限的定义时,众所周知极限的-N()定义抽象,学生在初学高等数学时很难理解.这时教师可以介绍庄子的"一尺之棰,日取其半,万世不竭"的极限思想,还可加入刘徽的"割圆术",可使学生直观地感受到极限的内在含义,这样不仅可以突破教学难点,还可增加学生的数学知识,提高学生的数学素养].4.4作业中融入数学史在布置作业时,教师除了布置本节课的习题外也要布置关于数学史方面的作业,例如在讲微分中值定理时,课堂上教师已对拉格朗日、柯西等数学家进行介绍,可以布置学生在课后通过查阅材料、网络,了解他们还有哪些成就,或者了解费马和罗尔相关介绍.5结语基于HPM视角下的高等数学教学不仅改善了学生对数学的学习态度,更为学生的后续专业课程的学习夯实了基础,无论教师还是学生都在改革中有所收获.但教师在教学过程中一定要注意,融入数学史教学是为了以此吸引学生的注意力,突破学习难点,切不可以讲授数学史为主,本末倒置地将高等数学的内容删减.范文二:数学史教育高等数学论文一、在高等数学的教学中融入数学史的必要性(一)在教学过程中插入数学史教育在教学过程中,涉及一些数学相关知识的人物、历史时,可以利用课堂上的3~5分钟向学生介绍一下,提高学生学习高等数学的兴趣,将高等数学中繁杂的数学符号、计算公式和有趣的数学历史相融合,鼓励学生积极、主动参与到高等数学学习中。
著名数学家陈省身说:"了解历史的变化是了解这门科学的一个步骤。
将数学发展的历史真实地展现给学生,是数学这一学科应该毫不犹豫地担起的职责。
"高职院校高等数学教师提高自身数学素养,将数学史内容融入到高等数学教学教学中,势在必行。
高职院校学生相对于本科学生基础弱,底子薄,在高等数学的学习中会遇到许多问题,自然影响学生的学习效果。
在课堂教学过程中融入数学史的内容,从数学家们发现、发明解决问题的思路出发,引导学生思考解决问题,可以帮助学生更好地理解高等数学中的公理、公式,解决数学学习中出现的各种困难,树立学习信心,改变高等数学枯燥乏味、一味证明的课堂教学模式。
(二)将数学史蕴涵的思想、方法融入到高等数学教学中弗赖登塔尔在《作为教学任务的数学》中指出,数学概念、公理及数学语言符号等,包括数学问题解决,不应机械地灌输给学生,或仅是由结果出发,推导出其他数学知识的方式,这种颠倒的教学法掩盖了创造性思维过程,即学生的数学学习不应该重复人类的学习过程,而应该进行"再创造"。
数学史烙印着数学家处理数学问题的痕迹,其中蕴藏着数学家处理相关问题的思想和方法,比如归纳推理、概况分析、类比猜想等逻辑思维方法及跳跃性的直觉思维方法,这些恰是数学教学中学生所必须具备的。
在高等数学教学中,作为数学教师,数学中的这些思想、方法应该利用数学史选择典型的数学史题材,分析数学家发明、发现过程中的心智活动,透析数学家的脑海里的灵感,以对学生的数学学习起到启迪思维的作用。
著名教育家斯金纳(Skinner)说:"如果我们将所学过的东西忘得一干二净,最后剩下的东西就是教育的本质了。
"最能传承一门学科本质的就是这门学科的历史,高等数学也不例外。
多数高职院校的学生在学习完高等数学课程之后,由于多种原因,除少部分与专业相关的内容外,其余知识都会慢慢淡忘,留在学生大脑中应当是高等数学独有的思维方式,解决问题的方式、方法,这正是高等数学教育的目的和价值所在。
数学史在这些方面的推动作用是毋庸置疑的。
数学思想的提炼和方法的运用是数学教学的关键,数学思想方法在教学中的重要意义,受到很多数学教育家的重视。
高等数学课程内容始终围绕着"基础知识"与"思想方法"两个基点。
在教学中,教师必须深挖教材中的思想方法,化"无形"为"有形"。
通过数学史的教育,将鲜活的数学思想方法渗透在数学知识的学习过程中。
(三)数学史的融入符号学生的认知发展规律影响学生学习的心理学因素包括认知因素和非认知因素。
直接参与数学学习认知活动的因素称为认知因素,包括原有的数学认知结构、现有的思维发展水平和数学能力等;不直接参与数学学习认知活动的因素称为非认知因素,包括兴趣、动机、情感和意志等。
数学史可以帮助学生加深对数学概念、方法和思想的理解,数学史也影响学习中的记忆和迁移。