半水煤气脱硫技术知识分享
- 格式:ppt
- 大小:757.00 KB
- 文档页数:14
半水煤气脱硫存在的问题、原因分析及措施1.脱硫工段存在的主要问题1.1脱硫效率低1.2脱硫辅料消耗高(特别是碱耗高)1.3脱硫塔堵塔1.4副盐高(NaCNS、Na2S2O3、Na2SO4)1.5脱硫中悬浮硫含量高2.原因分析2.1脱硫效率低的原因:2.1.1脱硫液成分不合格,碱含量低、脱硫催化剂加入量不够、催化剂效率低。
2.1.2脱硫液中悬浮硫高、副盐高。
2.1.3脱硫设备偏小,或脱硫设备设计不合理,如:液气比不够,喷淋密度不够。
2.1.4脱硫塔堵塔,液体偏流,液体分布不均。
2.2堵塔的原因:2.2.1脱硫液中悬浮硫高(堵塔的主要原因之一)2.2.2脱硫液中副盐高(堵塔的主要原因)2.2.3操作不当,循环量偏小,液体偏流,填料层局部形成干区,慢慢由于硫泡沫、副盐或煤气中的杂质而结住,并逐渐扩大了板结面积。
2.3脱硫辅料消耗高,特别是碱耗高的原因:2.3.1脱硫液温度控制太低,再生时间短,或者自吸空气量小造成NaHCO3/Na2CO3比太高。
(正常情况下NaHCO3/Na2CO3比小于6)2.3.2副盐增长太快。
2.3.3煤气中焦油、苯、酚类含量高,造成飞泡冒槽。
2.3.4跑、冒、滴、漏。
2.4悬浮硫高的原因2.4.1再生温度高,硫颗粒不易聚结,难浮选。
2.4.2再生吸入空气量太小,得不到再生,或者空气量太大,再生槽内脱硫液翻滚,碰撞,硫泡沫破碎难浮选。
2.4.3泡沫层的厚度太薄或者太厚。
2.5副盐高的原因2.5.1.脱硫温度高,脱硫液温度达到45℃,副盐生成快,50℃以上副盐会急剧上升。
(这是副盐高的主要原因之一)2.5.2高温熔硫时,硫与碱反应迅速(这是副盐高的主要原因),这同时也是碱耗高的原因。
2.5.3溶液中悬浮硫高也是副反应发生的原因之一,而且反应速度会随硫颗粒的细小、颗粒数量的增加以及脱硫液温度的升高而加快。
2.5.4脱硫液中溶解氧过高,接触时间过长,副盐会增加(这个同时要满足温度过高,PH>9),这个发生的可能性不大,正常再生槽吹风强度是60m3/m2.h,我们目前为56m3/m2.h。
前言1.1 合成氨工业在国民经济中的地位合成氨工业是基础化学工业之一。
其产量居各种化工产品的首位。
氨本身是重要的氮素肥料,除石灰氮外,其它氮素肥料都是先合成氨,然后加工成各种铵盐或尿素。
将氨氧化制成硝酸,不仅可用来制造肥料(硝酸铵、硝酸磷肥等),亦是重要的化工原料,可制成各种炸药。
氨、尿素和硝酸又是氨基树脂、聚酰胺树脂、硝化纤维素等高分子化合物的原料。
以其为原料可制得塑料、合成纤维、油漆、感光材料等产品。
作为生产氨的原料一氧化碳、氢气合成气,可进行综合利用,以联产甲醇及羰基合成甲酸、醋酸、醋酐等一系列碳一化工产品。
以做到物尽其用,减少排放物对环境的污染,提高企业生产的经济效益。
已成为当今合成氨工业生产技术发展的方向。
国际上对合成氨的需求,随着人口的增长而对农作物增产的需求和环境绿化面积的扩大而不断增加。
据资料统计:1997年世界合成氨年产量达103.9Mt。
预计2000年产量将达111.8Mt。
其化肥用氨分别占氨产量的81.7%和82.6%。
我国1996年合成氨产量已达30.64Mt,专家预测2000年将达36Mt,2020年将增加至45Mt。
即今后20年间将增加到现在的1.5倍。
因而合成氨的持续健康发展还有相当长的路要走。
未来我国合成氨氮肥的实物产量将会超过石油和钢铁。
合成氨工业在国民经济中举足轻重。
农业生产,“有收无收在于水,收多收少在于肥”。
所以,合成氨工业是农业的基础。
它的发展将对国民经济的发展产生重大影响。
因此,我国现有众多的化肥生产装置应成为改造扩建增产的基础。
我国七十至九十年代先后重复引进30多套大化肥装置,耗费巨额资金,在提高了化肥生产技术水平的同时,也受到国外的制约。
今后应利用国内开发和消化吸收引进的工艺技术,自力更生,立足国内,走出一条具有中国特色的社会主义民族工业的发展道路。
过去引进建设一套大型化肥装置,耗资数十亿元。
当今走老厂改造扩建的道路,可使投资节省1/2—2/3。
节省的巨额资金,用作农田水利建设和农产品深加工,将在加速农村经济发展,提高农民生活水平,缩小城乡差距起着重要作用。
半水煤气脱硫系统硫堵浅析1. 概述:近年来无烟煤供应紧张,使用高硫煤的厂家较多,半水煤气中硫化氢也不断升高,硫化氢含量高(一般0.5—10g/Nm3 ),若采用干法脱硫,脱硫剂硫容低,使用寿命短,脱硫剂的使用空速均要求较低,一般在300 —700h-1,最大不超过1000h-1,半水煤气脱硫需用的设备多、投资大、占地面积多,更换脱硫剂的劳动强度和费用大,部分脱硫剂对地下水质污染严重,对于能再生的脱硫剂其成本居高不下,因此干法脱硫一般只适用于进口硫化氢w 120mg/Nm3 的脱硫,因此干法脱硫不是变换气脱硫的最佳方法。
而脱硫通过优良的脱硫塔内件和优质的、高硫容的脱硫液,既能减少系统循环量节约电耗,又能通过大气量、高硫化氢的气体,无堵塔、低阻力、长周期运行、降低成本的良好效果。
但是在半水煤气湿法脱除硫化氢中,由于种种原因仍有一些企业或重或轻地发生硫堵,尤为严重者停车处理,严重地影响企业生产的正常运行和经济效益的提高。
分析其硫堵的常见现象一般有脱硫塔堵、清洗塔堵和再生塔堵及其它因素引起的堵塞;探讨其发生的原因一般有设备存在问题、脱硫剂质量、生产操作管理因素和工艺技术等原因;为防止脱硫系统堵塞,现对影响因素及有关措施进行技术分析探讨,以达到引玉之目的。
2. 半水煤气脱硫的一般工艺流程:2.1 工艺流程:由煤气橱出来的半水煤气经洗气塔降低、除尘后,进入静电除尘器进一步去除煤焦油等杂质,再经风机提压后送入脱硫塔底部气体分布器分布后,气体自下而上和脱硫液逆流接触,经填料吸收硫化氢后从塔顶出来进入脱硫洗涤塔下部,气体自下而上和脱硫洗涤液逆流接触,除去气体中的少量夹带物后进入压缩机一段入口。
从贫液槽出来的脱硫液经贫液泵加压后,送入脱硫塔上部,从上而下和气体逆流接触,在塔底部缓冲后经富液泵加压后送入脱硫再生塔喷射器,在喷射过程中和喷射器带入的空气中的氧分别在喉管和扩散管中反应脱硫液大部份进行再生,并从喷射器底部出来,脱硫液依靠压力的变化,从塔底部自下而上继续和空气中的氧反应进行再生,2.2 脱硫工序的一般设备结构情况:2.2.1 一般脱硫塔的结构:3. 脱硫塔引起的堵塞原因:3.1 对脱硫的基础认识:3.2.1. 脱硫的主要反应过程如下:3.2.1.1. 吸收Na2CO3+H2S=NaHCO3+NaHS3.1 .1 .2.析硫(硫氢化钠与偏钒酸钠反应生产焦钒酸钠,并析出单质硫)2NaHS + 4NaVO3 + H2O = NaV4O9 + 4NaOH + 2S J3.2.1.3. 氧化NaV4O9+ 2TQ + 2 NaOH+H2O=4 NaVO3+THQ(醌态栲胶)酚态栲胶)NaOH+NaHCO3=Na2CO3+H2O3.2.1.4. 再生2 THQ+1/2O2=2TQ+H2O3.1.1.5. 副反应2NaHS+2O2=NaS2O3 +H2O Na2CO3+CO2+H2O=2NaHCO3 Na2CO3+HCN=NaCHS2NaCN+5 O2=Na2SO4+CO2 f +S02 f + N2 f副反应消耗了Na2CO3,降低了溶液脱硫的能力,使溶液的活性下降,因此生产中应严格控制副反应。
成氨工艺有很大的危害, 常见的有: 对催化剂的危害; 对产品质量的危害; 对碳酸丙烯酯脱碳操作的危害; 对铜洗操作的危害;对金属腐蚀; 对人体的危害。
合成氨厂半水煤气中硫化物的种类较多。
其主要是硫化氢, 约占硫化物总量的90%。
另外还含有少量的有机硫化物, 主要是二硫化碳、羰基硫、硫醇等。
硫化氢分子式为H 2 S, 是无色气体, 有类似腐烂鸡蛋的恶臭味。
性剧毒, 易溶于水, 其水溶液呈酸性, 能与碱生成盐。
可用碱溶液来吸收它以除去气体中的硫化氢。
硫化氢有很强的还原能力, 易被氧化成硫磺和水, 这一性质被广泛的用于脱除硫化氢并副产硫磺的工艺上。
硫化氢还容易与金属、金属氧化物或金属的盐类生产金属硫化物。
由于在生产过程中的H2 S会对生产造成很大的危害, 同时硫化氢为有毒有害气体, 为了减少生产的损失、保护环境必须除掉H2 S 气体。
脱硫的方法很多, 可分为干法和湿法两大类, 其中湿式氧化法脱硫多用于半水煤气和变换气的一次脱硫, 而干法脱硫多用于变换气脱硫和碳化气的精脱硫。
干法脱硫具有流程短, 设备结构简单, 气体净化度高, 操作平稳的优点。
但此法经常采用固定层反应器, 需要定期更换脱硫剂, 不能连续。
由于受脱硫剂硫容量( 单位质量脱硫剂能脱除硫的最大含量) 的限制, 干法脱硫一般用于含硫量较低的情况。
湿式氧化法脱硫不仅具有吸收速度快,生产强度大等特点,而且具有脱硫过程连续,溶液易再生,副产硫磺等特点,因而被合成氨厂广泛采用;湿式氧化法脱硫的不足之处是不能有效脱除有机硫化物,没有干法脱硫净化度高。
脱硫技术在合成氨厂中常采用湿式氧化法脱硫, 目前中小型合成氨厂常用的湿式氧化脱硫法有: 氨水催化法、栲胶法、改良ADA法、PDS法、M SQ 法, KCA 法, 888法。
1.氨水催化法氨水催化法系采用8~ 25滴度的氨水, 其中加0. 2~ 0. 3 g /L对苯二酚作催化剂, 使溶解于液相的硫化氢氧化为元素硫; 本法有氨损失较大的缺点, 此外, 溶液的硫容量较低, 仅为0. 1~ 0. 15g /L。
15万吨/年合成氨原料气净化脱硫工段设计1总论1.1概述氮肥尿素1.2文献综述1.2.1合成氨原料气净化的现状合成氨原料气(半水煤气)的净化就是清除原料气中对合成氨无用或有害的物质的过程..原料气的净化大致可以分为“热法净化”和“冷法净化”两种类型..原料气的净化有脱硫..脱碳..铜洗和甲烷化除杂质等..在此进行的气体净化主要是半水煤气的脱硫的净化。
煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。
在我国..热煤气脱硫现在仍处于试验研究阶段..还有待于进一步完善..而冷煤气脱硫是比较成熟的技术..其脱硫方法也很多。
冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法..干法脱硫以氧化铁法和活性炭法应用较广..而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。
煤气干法脱硫技术应用较早..最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术..之后..随着煤气脱硫活性炭的研究成功及其生产成本的相对降低..活性炭脱硫技术也开始被广泛应用。
干法脱硫既可以脱除无机硫..又可以脱除有机硫..而且能脱至极精细的程度..但脱硫剂再生较困难..需周期性生产..设备庞大..不宜用于含硫较高的煤气..一般与湿法脱硫相配合..作为第二级脱硫使用。
湿法脱硫可以处理含硫量高的煤气..脱硫剂是便于输送的液体物料..可以再生..且可以回收有价值的元素硫..从而构成一个连续脱硫循环系统。
现在工艺上应用较多的湿法脱硫有氨水催化法、蒽醌二磺酸法(A.D.A法)及有机胺法。
其中蒽醌二磺酸法的脱除效率高..应用更为广泛。
改良ADA法相比以前合成氨生产中采用毒性很大的三氧化二砷脱硫..它彻底的消除了砷的危害。
基于此..在合成氨脱硫工艺的设计中我采用改良ADA法工艺。
1.2.2改良ADA的简述ADA 法是英国西北煤公司与克莱顿胺公司共同开发的, 于1959 年在英国建立了第一套处理焦炉气的中间试验装置, 1961 年初用于工业生产。
半水煤气脱硫岗位操作要点一、任务用贫液吸收来自造气工段半水煤气中的硫化氢,使半水煤气得到净化。
吸收硫化氢的富液在催化剂的作用下,经氧化再生后循环使用,根据全厂的生产情况,调节罗茨机气量,以均衡生产负荷。
三、工艺流程流程简述:来自静电除焦器除去煤焦油等杂质的半水煤气,由罗茨机加压后送入脱硫塔,进入脱硫塔和塔顶喷淋下来的脱硫液逆向接触,半水煤气中的硫化氢被脱硫液吸收,脱硫后的半水煤气经清洗塔进一步降温至30~50℃以下,去压缩机一段进口总气水分离器。
吸收了硫化氢的富液,由富液泵打入喷射再生器,喷嘴向下喷射与喷射器吸入的空气进行氧化还原反应而得到再生,液体再进入再生槽继续氧化再生,再生后的贫液经液位调节器流入贫液槽再由贫液泵打入脱硫塔循环使用。
富液在再生槽中氧化再生所析出的泡沫,由槽顶溢流入硫泡槽贮罐,再进入熔硫釜,回收液体后由地池泵直接打到贫液槽回收使用,制得的硫磺作为成品售出。
脱硫过程中消耗的栲胶液,由定期制备的栲胶液补充。
四、主要设备一览表表2-6 湿法脱硫设备一览表序号设备名称详细规格数量/台1 脱硫清洗塔Φ4000×30000脱硫段:海尔环上层Φ50mm,H=4000下层Φ76mm,H=4000(100m)清洗塔:海尔环上层Φ50mm,H=500mm下层Φ50mm,H=4000mm(44.0m) 12 罗茨鼓风机2Q=346m3/min,△P=5000mmH2O柱 43 富液泵Q=280m3/min,H=63m 34 贫液泵Q=288m3/min,H=41.3m 35 清洗塔水封Φ600mm×6500mm,V=1.84m3 16 再生槽Φ6300mm/5000mm×6500mm 17 贫液槽Φ5000mm×5000mm 18 液位调节器Φ1200mm×2200mm 19 喷射器Φ250mm/Φ100mm×780mm16五、操作要点(一)保证脱硫液质量①根据脱硫液成分及时制备栲胶液,保证脱硫液成分符合工艺指标。
置:主页> 大气治理技术> ?正文水煤气,水煤气,半水煤气系统脱硫综合分析2011-11-21 15:55湖南环保网-湖南第一环保门户网站,绿色,低碳点击: 302 次天然气,焦炉气,煤气,石油裂解气等气体中都含有一定数量的硫化氢和有机硫化物(主要有羰基硫,二硫化碳,硫醇,硫醚等),原料气中的硫化物能导致甲醇,合成氨生产中催化剂中毒,增加液态溶剂的黏度,腐蚀,堵塞设备和管道,影响产品质量。
燃烧物和工业装置排放的气体进入大气,造成环境污染,危害人体健康。
笔者主要针对合成氨,甲醇工业原料气中的硫化氢脱除工艺进行简单介绍。
1 小型氮肥企业脱硫工艺状况1.1 工艺条件的选择气体中硫化物的脱除方法主要有吸收,吸附,膜渗透,化学转化,凝缩等,根据原料气的种类,处理量大小和硫化物的种类,含量,可选用不同的脱除方法和工艺条件。
一般在1套系统中采用2种以上脱硫方法。
国内大型氮肥企业采取的脱硫工艺一般为低温甲醇洗,小型氮肥企业一般采取碱性溶液加催化剂吸收以及吸附或膜渗透等方法。
碱性溶液加催化剂吸收方法工艺路线基本相同,区别在于不同企业根据自身情况而选用不同的脱硫催化剂。
1.2 水煤气,半水煤气脱硫湿法脱硫一般的工艺路线水煤气,半水煤气由气柜经洗气塔,静电除焦器,罗茨风机和降温塔后,进入脱硫塔,在脱硫塔填料层中与脱硫液逆流接触,气体中的无机硫和部分有机硫被溶液吸收后,进入分离器和清洗冷却器,冷却分离后的气体经静电除焦器进入气体压缩机。
脱硫泵从贫液槽抽取"贫液"进入塔内,吸收后的"富液"进入富液槽经泵加压后送入再生槽,经喷射器吸收空气氧化再生后,单质硫以泡沫的形式从再生槽中浮选出来,"富液"转化为"贫液""贫液"经液位调节器进入贫液槽,循环使用。
1.3 变换气脱硫变换气脱硫工序的工艺和设备基本与半水煤气脱硫相同,各企业根据自身的情况选择不同的操作压力.一般的工艺路线为:来自变换或其他工段的气体进入脱硫塔,在脱硫塔填料层中与脱硫液逆流接触,气体中的H2S被溶液吸收后,进入分离器,分离后的气体进入后续工段.脱硫泵从贫液槽抽取"贫液"进入塔内,吸收后的"富液"进入再生槽,在催化剂的作用下经喷射器吸收空气氧化再生后,单质硫以泡沫的形式从再生槽中浮选出来,"富液"转化为"贫液""贫液"经液位调节器进入贫液槽,循环使用,由于干法脱硫剂存在饱和硫容,故干法脱硫虽然在水煤气,半水煤气系统无泵的动力消耗,但企业一般并不采用。
第三章硫化物的脱除半水煤气中,因煤的种类不同而含有数量不等的硫化物。
这些硫化物对含合成氨生产有着严重危害,必须首先予以除去,以保证后工段工作顺利进行。
在合成氨生产中,要求经过脱硫后的半水煤气中H2S含量在0.07g.m3(标)以下,碳化气中H2S含量在0.01g/m3(标)以下。
对于联醇生产厂则在求碳化气硫化物含量在0.1mg/m3(标)以下。
脱硫方法很多,可分为干法和湿法两大类,其中湿式氧化法脱硫多用于半水煤气和变换气的一次脱硫,而干法脱硫多用于变换气脱硫和碳化气的精脱硫。
一、湿式氧化法脱硫1、半水煤气中的硫化物主要有哪几种?它们的主要性质是什么?半水煤气中的硫化物的种类因煤的种类不同而含有数量不等的硫化物。
这些硫化物主要是硫化氢,约占硫化物总量的90%。
另外还含有少量的有机硫化物,主要是二硫化碳、羰基硫、硫醇等。
硫化物的主要性质分述如下。
(1)硫化氢,分子式H2S,是无色气体,有类似腐烂鸡蛋的恶臭味。
性剧毒。
易溶于水,其水溶液呈酸性,能与碱生成盐。
可用碱溶液来吸收它以除去气体中的硫化氢。
硫化氢有很强的还原能力,易被氧化成硫磺和水,这一性质被广泛地用于脱除硫化氢并副产硫磺的工艺上。
硫化氢还容易与金属、金属氧化物或金属的盐类生成金属硫化物。
(2)二硫化碳,分子式CS2,无色液体,难溶于中,与碱的水溶液发生反应:3CS2+6KOH K2CO3+3K2CS3+3H2O二硫化碳还可被氢还原,视反应条件可生成硫化氢、硫醇或其他有机硫化物,在高温下与水蒸汽作用几乎可完全转化为硫化氢。
(3)羰基硫,分子式COS,是无色无嗅的气体,微溶于水。
干燥的COS较稳定,在高温下有可能分解为二硫化碳和二氧化碳,9000C可分解出硫。
在高温下可与水蒸汽作用转化成硫化氢。
与碱的水溶液一起能缓缓地进行下面的反应:COS+2NaOH Na2CSO2+H2O生成的硫化碳酸盐不稳定,可分解成碳酸钠和硫化钠Na2CSO2+2NaOH Na2S+H2O+Na2CO3(4)硫醇,分子式RSH(R为烷基),低分子硫醇具有令人厌恶的气味,浓度仅为1×10-3g/L,就可被人感觉出来。
脱硫工艺技术及操作知识要点一、硫化氢和氰化氢的形成和性质二、煤气中硫化氢和氰化氢的危害三、脱硫方法及工艺原理四、主要设备构造及原理五、脱硫系统的生产操作1、常规操作2、特殊操作3、脱硫异常情况处理六、脱硫单元的关键工艺点及技术管理要点七、安全技术要求八、设备系统保养脱硫工艺技术及操作知识要点一、硫化氢和氰化氢的形成和性质硫化氢(H2S)在常温下是一种带刺鼻臭鸡蛋味的无色气体,闭空气重,其密度为1.539Kj/kg,比热容为1.0165Kj/kg。
硫化氢在燃烧时能生成二氧化硫和水,当有催化剂存在时二氧化硫进一步氧化成三氧化硫。
硫化氢的毒性很大,在空气中含有0.1%就能使人致命。
氰化氢(HCN)在较低温度下为液体,在18℃时的密度为0.6969Kg/m3沸点为25.65℃,有剧毒。
氰化氢在燃烧时能生成氮氧化物。
焦炉煤气中硫化物的含量主要取决于配合煤中的含硫量。
煤在高温炼焦时,配合煤中的硫约有30%-—40%转入煤气中。
煤气中硫化氢的含量一般波动在4—10g/m3.焦炉煤气中的硫化物按其化合状态可分为两类:一类是硫的无机化合物,主要是硫化氢;另一类是硫的有机化合物,如二氧化碳、噻吩及硫氧化碳等。
含硫的有机化合物在较高温度下进行变换反应时,几乎全部转换为硫化氢,所以煤气中硫化氢所含的硫约占煤气中硫总量的90%以上。
煤气中氰化氢的含量取决于煤气中氮的含量和炭化温度,炭化室顶部空间温度越高,煤气中氰化氢含量越高,一般为0.5-1.5g/m3。
煤气在初冷却器内冷却时,有少部分氰化氢溶解于氨水中,而大部分氰化氢随煤气进入以后工序中。
二、煤气中硫化氢和氰化氢的危害焦炉煤气所含的硫化氢和氰化氢都是有害物质,它们腐蚀化产回收设备及煤气贮量输送设施,同时还会污染厂区环境。
用此种煤气炼钢,会降低钢的质量;用作城市煤气,硫化氢及燃烧生成的二氧化硫、氰化氢及燃烧生成的氮氧化物均有毒,会严重影响环境卫生。
因此,焦炉煤气中的硫化氢和氰化氢必须予以清除。
半水煤气湿法脱硫和干法脱硫的脱硫状况一、湿法脱硫的现状:净化作业区湿法脱硫是两套脱硫装置,原设计是年产20万吨焦炉气生产合成氨所配套的湿法脱硫,设计脱硫数据是250mg/ m3脱除到10mg/ m3,由于焦炉气供量不足,另上一套年产10万吨半水煤气生产合成氨的配套装置。
下面对1-6月份湿法脱硫岗位主要指标统计:1、湿法脱硫岗位进出口半水煤气H2S和有机硫统计:从目前的生产状况来看,湿法脱硫整体运行较好。
目前主要存在的主要问题是;一、原设计富液槽过小,导致溶液留时间过短,再生不好,悬浮硫有所增加。
二、硫回收硫泡沫过滤不好,高温残液增加,使系统复盐有所上升,但未影响湿法脱硫的正常运行。
从湿法脱硫进出口的硫化氢的分析来看,脱出无机硫的效率在99.8%,脱出有机硫的效率为67.1%,因此从总体来说,湿法脱硫的脱硫效率是走在行业前列的,并未影响到干法脱硫。
二、半水煤气干法脱硫的现状(1)、原设计焦炉气干法系统流程图:从原设计流程来看,氧化锌主要起精脱硫把关,保护转化、低变触媒的作用。
按原设计满负荷生产氧化锌最少可用1-2年。
由于焦炉气气量不足,公司决定上半水煤气系统,原设计流程有所改动,改动如下:目前焦炉气干法系统流程图:目前半水煤气系统流程图:三、在使用第二槽过程中,我们对氧化锌进行分析数据跟踪,统计如下:1#氧化锌槽进口H2S和有机硫统计:1#氧化锌更换时间为2014年1月26日,1月28日投入系统运行,6月15日,因出口总硫达到7.08mg/NM3时,为保证精脱氧化锌的安全运行,将1#氧化锌槽切出。
在运行过程中发生2次氧含量超标导致氧化锌温度超标,(最高温度为590℃),共脱出半水煤气量为:49519829NM3,其中1#氧化锌进口总硫平均为9.2mg/m3(其中有机硫为8.29mg/m3),1#氧化锌装填触媒为30吨,根据厂家提供氧化锌硫容(无机硫为20%--25%,有机硫为2%--3%),1#氧化锌槽可吸无机硫为:30×0.2=6(T),有机硫为:30×0.02=0.6(T);根据目前实际使用情况,1#氧化锌槽吸无机硫为:50.73kg,吸有机硫为:380.25kg;四、1#、2#氧化锌在使用过程中出现的问题;1、1#、2#氧化锌自2013年8月24日投运,2014年1月6日出口总硫超标,最高达到,于1月13日停车,计划对1#、2#氧化锌脱硫剂进行更换。
脱硫岗位操作规程一、基本原理氨水液相催化法是用含有少量对苯二酚的稀氨水溶液脱除半水煤气中的硫化氢。
反应方式如下:NH 4OH+H 2S NH 4HS+H 2O+Q半水煤气中含有二氧化碳,也被氨水吸收,其反应如下:NH 4OH+CO 2 NH 4HCO 32NH 4OH+ CO 2 (NH 4)2CO 3+H 2O虽然稀氨水同时吸收硫化氢和二氧化碳,但在气液两相接触面积很大、接触时间很短的条件下,氨水吸收硫化氢的速度比吸收二氧化碳的速度大80倍左右。
故在脱硫过程中增大气液接触面积、缩短接触时间,既有效地脱除硫化氢,又能减少气体中二氧化碳的损失。
在再生过程中,对苯二酚在碱性溶液中被空气氧化为苯醌:OH O 「 ‖ + O 2 +H 2O 「 ‖ OH O对苯二酚 苯醌脱硫过程生成的硫氢化铵,在苯醌的作用下氧化为单质硫:O OH ‖ 「NH 4HS+ +H 2 NH 4OH+S+‖ 「O OH再生过程的总反应可用下式表示:NH 4HS+ O 2 NH 4OH+S+ Q 生成的单质硫,呈泡沫状态浮于液面。
二、工艺条件的选择(1)氨水浓度 增加氨水浓度,可提高脱硫效率。
但随着氨水浓度的增大,氨损耗增大,且吸收二氧化碳的能力也增加,易产生碳酸氢铵和氨基甲酸铵结晶,堵塞管道和设备。
在正常情况下,氨水浓度控制在10~20滴度。
(2)氨水含硫量 氨水中硫化氢含量多,气相中硫化氢的平衡浓度大,脱硫后气体中残余的硫化氢多,脱硫效率低,故要提高再生效果,需降低氨水中1 21 2对苯二酚的硫含量。
(3)液气化液气比大,溶液喷淋量大,可以提高脱硫效率。
但液气比过大,却增加了动力消耗和氨耗。
一般控制在8~20L/m3(标)。
(4)气液接触时间半水煤气与氨水的接触时间既要满足氨水对硫化氢的吸收,不能太长;又要保证脱硫效率,不能太短,一般控制在2~5s为合适。
(5)温度吸收硫化氢的反就是放热反应,温度低有利于吸收反应的进行,并可减少氨的损耗;但温度过低,对再生过程不利。
半水煤气湿法脱硫安全问题浅析【摘要】在半水煤气湿法脱硫生产操作过程中,始终存在着易燃、易爆、易中毒等危险危害因素,同时,因生产工艺连续性强,设备及管道部件泄露,还有内部介质的冲刷、渗透和外部环境的腐蚀等因素影响,火灾、爆炸和重大设备事故经常发生。
本文针对半水煤气湿法脱硫工艺流程、原料及副产品、设备管道布置设计等方面进行安全分析,提出了有效的安全预防和改进措施。
【关键词】半水煤气;湿法脱硫;安全生产;泄露;爆炸性;可燃性;毒性;腐蚀性本工序的主要危险物之一半水煤气,其中半水煤气含有的一氧化碳为易燃气体,毒性为II(高度危害);氢气为易燃气体;硫化氢为易燃气体,毒性为II(高度危害)。
硫磺为本工序的副产品,其为易燃固体,与卤素、金属粉末等接触可发生剧烈反应,在储运过程中易产生静电荷,可导致硫尘起火。
1.半水煤气脱硫流程概述来自气柜的半水煤气经过一级静电除焦送入鼓风机。
由鼓风机加压后,升压49KPa后送入冷却塔与循环冷却水逆流接触,使半水煤气温度由60~85℃降到35~40℃,该冷却塔可随气温的变化而调节水量,以保证出塔的气体温度适宜。
冷却塔出口半水煤气进入预脱硫塔,使半水煤气中的硫化氢含量由5.0g/Nm3脱到2.0g/Nm3。
从预脱硫塔塔顶来的气体进入脱硫塔脱硫,使半水煤气中的硫化氢含量由2.0g/Nm3脱到80mg/Nm3,以达到后续工序要求。
由脱硫塔塔顶来的半水煤气进入清洗塔塔底,与循环水逆流接触,降低气体温度,同时除去煤气中夹带的少许焦油以及单质硫后,进入二级静电除焦塔。
进入二级静电除焦塔的半水煤气自下而上的通过沉淀管,管中电晕极产生电晕放电现象,当含尘的半水煤气通过电晕极沉淀极之间形成的不均匀电场时,煤气电离灰尘微粒游离便移向沉淀极,使半水煤气的灰尘吸附在电晕极和沉淀极上,灰尘用水冲除,除去半水煤气中夹带的焦油和硫磺泡沫,半水煤气由顶部出口管引出,送入半水煤气压缩机。
从预脱硫塔和脱硫塔塔底来的富栲胶溶液流入富液槽,由再生泵加压至0.5~0.56Mpa(G)后,送入氧化再生槽的喷射器入口,在氧化再生槽中进行氧化再生,生成的贫栲胶液溢流至贫液槽,由脱硫泵入脱硫塔,与气体逆流接触,由上而下,循环使用。