当前位置:文档之家› 三角形的四大模型

三角形的四大模型

三角形的四大模型
三角形的四大模型

三角形的四大模型

一、三角形的重要概念和性质

1、三角形的内角和定理:三角形的内角和等于180°

2、三角形的外角和定理:三角形的一个外角等于和它不相邻的两个内角的和

3、三角形角平分线(角分线)中线(分面积等)高(直角三角形两锐角互余)

二、八字模型:

证明结论:∠A+∠B=∠C+∠D

三、飞镖模型:

证明结论:1.∠BOC=∠A+∠B+∠C

四、角分线模型:

如图,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D,

试探索∠A与∠D之间的数量关系,并证明你的结论.

如图,△ABC两个外角(∠CAD、∠ACE)的平分线相交于点P.

探索∠P与∠B有怎样的数量关系,并证明你的结论.

题型一、三角形性质等应用

1.如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是()

A.120 B.150 C.240 D.360

2.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为cm2.

3.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,

且S△ABC=4cm2,则S阴影= cm2.

4.A、B、C是线段A1B,B1C,C1A的中点,S△ABC的面积是1,则S△A1B1C1的面积.

5.一个四边形截去一个角后,剩下的部分可能是什么图形?画出所有可能的图形,并分别说出内角和和外角和变化情况.

6.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接P A,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)

(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;

(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答)

(3)当动点P在第③部分时,全面探究∠P AC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.

题型二、八字模型应用

7.(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;(2)如图2,AB∥CD,AP、CP分别平分∠BAD、∠BCD,

①图2中共有个“8字形”;

②若∠ABC=80°,∠ADC=38°,求∠P的度数;

(提醒:解决此问题你可以利用图1的结论或用其他方法)

③猜想图2中∠P与∠B+∠D的数量关系,并说明理由.8.(1)求五角星的五个角之和;(2)求这六个角之和

题型三、飞镖模型应用

9.如图,已知AB∥DE,BF,EF分别平分∠ABC与∠CED交于点F,探索∠BFE与∠BCE 之间的数量关系,并证明你的结论.

10.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.

(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?

②若∠A=20°,∠D=60°,则∠AED等于多少度?

③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.

(2)拓展应用:

如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).

题型四、角分线模型应用

11.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.

12.如图,在△ABC中,∠A=42°,∠ABC和∠ACB的三等分线分别交于点D,E,则∠BDC的度数是()A.67° B.84° C.88° D.110°

第11题第12题第13题

13.如图,若∠DBC=∠D,BD平分∠ABC,∠ABC=50°,则∠BCD的大小为()A.50° B.100° C.130° D.150°

14.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC 的平分线与∠A1CD的平分线交于点A2,…,∠A n﹣1BC的平分线与∠A n﹣1CD的平分线交于点A n.设∠A=θ.则:(1)∠A1= ;(2)∠A2= ;(3)∠A n= .

题型五、其他应用

15.已知△ABC中,∠A=60°.

(1)如图①,∠ABC、∠ACB的角平分线交于点D,则∠BOC= °.

(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C= °.(3)如图③,∠ABC、∠ACB的n等分线分别对应于O1、O2…O n﹣1(内部有n﹣1个点),求∠BO n﹣1C(用n的代数式表示).

(4)如图③,已知∠ABC、∠ACB的n等分线对应于O1、O2…O n﹣1,若∠BO n﹣1C=90°,求n的值.

16.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.

(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)

(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,写出并说明其中的道理.∠BAC的度数40° 60° 90° 120°

∠BIC的度数

∠BDI的度数

相似三角形模型分析大全(非常全面-经典)

相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型)(平行) (不平行) (三)母子型 B

(四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型:

二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G A B E F 一线三等角的变形 一线三直角的变形

第二部分相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OE OA OC? = 2. 例2:已知:如图,△ABC中,点E在中线AD上, ABC DEB∠ = ∠. 求证:(1)DA DE DB? = 2;(2)DAC DCE∠ = ∠. C D E B

例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB

三角形计算四大模型

D C B A G F E D C B A “铅笔头模型” 例(1)如图①,AB ∥CD,则∠A+∠C= 。 如图②,AB ∥CD,则∠A+∠E +∠C= 。 如图③,A B∥CD,则∠A +∠E +∠F +∠C= 。 如图④,AB ∥C D,则∠A+∠E+∠F+∠G+∠C = 。 (2)如图⑤,AB ∥CD,则∠A +∠E+∠F+…+∠C= 。 (3)利用上述结论解决问题:如图已知AB ∥CD,∠B AE 和∠DCE 的平分线相交于F ,∠E=140°,求∠AFC 的度数。 图① 图② 图③ 图 ④ “锯齿模型” 例3.如图,AB ∥CD ,猜想∠BED 与∠B 、∠D 的大小关系,并说明理由。 E D C B A 如图,已知AB ∥E F,BC ⊥CD于点C,若∠A BC =30°,∠D EF =45°,则∠C DE 等于( ) E D C B A F E D C B A n 个点 F E B

如图,直线AB 平行CD, ∠EFA=30,∠F GH =90,∠H MN=30,∠CN P=50,则∠GH M的大小是多少( ) 2.如图,已知AB∥CD ,∠EAF = 41∠E AB,∠ECF =4 1 ∠ECD ,试∠AEC 与∠AF C之间的关系式。 “8字型” 如图,俩直线AB ,CD 平行,则,∠1+∠2+∠3+∠4+∠5+∠6= “飞镖模型” 例1.如图 2,40,15,35,B C A B C D ∠=?∠=?∠=?∠=则_______ __; F E D C B A C A B D

变式训练: 1.如图,已知?=∠27A ,?=∠96CBE ,?=∠30C . 求:ADE ∠的大小. 2.如图,五角星AB CDE ,求E D C B A ∠+∠+∠+∠+∠的度数. 变式训练: 1.探索三角形的内角和外角角平分线(平分三角形外角的射线角外角角平分线,如图(2),AEC ∠是ABC ?的外角,C O平分ACE ∠,那么射线CO 就是外角平分线) (1)如图(1),在ABC ?中,两内角角平分线BO,C O相交于点O,若 50=∠A ,则=∠BOC ___________;此时A ∠与BOC ∠有怎样的关系? (2)如图(2),在ABC ?中,一内角平分线BO 与一外角平分线CO 相交于点O , 50=∠A ,则=∠BOC ___________;此时A ∠与BOC ∠有怎样的关系? (3)如图(3),在ABC ?中,两外角EBC ∠、FCB ∠的平分线,B O,CO 相交于点O,若 50=∠A ,则=∠BOC ___________;此时A ∠与BOC ∠有怎样的关系?

小高奥数几何-三角形五大模型及例题解析 (1)

三角形五大模型 【专题知识点概述】 本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。 重点模型重温 一、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b = ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、等分点结论(“鸟头定理”) 如图,三角形AED 占三角形ABC 面积的 23×14=16 三、任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3) D C B A b

梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b 2 ②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2 模型四:相似三角形性质 如何判断相似 (1)相似的基本概念: 两个三角形对应边城比例,对应角相等。 (2)判断相似的方法: ①两个三角形若有两个角对应相等则这两个三角形相似; ②两个三角形若有两条边对应成比例,且这两组对应边所夹的角相等则两个 三角形相似。 h h H c b a C B A a c b H C B A ① a b c h A B C H === ; ② S 1︰S 2=a 2︰A 2 模型五:燕尾定理

相似三角形基本模型及证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为 () A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一 象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

相似三角形典型模型及例题

:相似三角形判定的基本模型 (三)母子型 (四)一线三等角型: 1:相似三角形模型 (一)A字 型、 A字型(斜A字型) C (二)8字 型、 8字型 (平 行) (蝴蝶 型) 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是"一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: :相似三角形判定的变化模型

/ B E C 一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCDK AD// BC对角线AC BD交于点O, BE/ CD交CA延长线于E. 例3 :已知:如图,等腰△ ABC中, AB= AC ADL BC于D, CG/ AB BG分别交AD AC于E、F. 求证:BE2 EF EG . 1、如图,已知AD^^ ABC的角平分线,EF为AD的垂直平分线.求证:FD2 FB FC . DEB DAC . ABC . A

2、已知:AD 是Rt △ ABC 中/A 的平分线,/ C=90 , EF 是AD 的垂直平分线交 AD 于M, EF 、 BC 的延长线 交于一点 M 求证:⑴△ AME^A NMD; (2)ND 2 =NC- NB 5已知:如图,在 Rt △ ABC 中,/ C=90°, B(=2, AC=4, P 是斜边 AB 上的一个动点,PD 丄AB 交边 AC 于 点D (点D 与点A C 都不重合),E 是射线DC 上一点,且/ EP[=Z A.设A 、P 两点的距离为 x , △ BEP 的 面积为y . (1)求证:AE=2PE (2) 求y 关于x 的函数解析式,并写出它的定义域; (3)当厶BEP-与^ABC 相似时,求△ BEP 的面积. 3、已知:如图,在△ ABC 中,/ ACB=90 , 求 证:EB- DF=AE DB CDL AB 于D, E 是AC 上一点,CF 丄BE 于F 。 4.在 ABC 中,AB=AC 高 AD 与 BE 交于 H, EF BC ,垂足为F ,延长AD 到G,使DG=EF M 是AH 的中点。 证:GBM 90 G

几何图形 五大模型

直线形面积计算的五大模型 一、等积变换模型 (1) 等底等高的两个三角形面积相等; (2) 两个三角形的底相等,面积比等于他们高的比;(或者两个三角形的高相等,面积比 等于他们底的比) AB 为公共边,所以 21::ABC ABD s s h h ??= 1h 为公共的高,所以 1 2 ::BD DC s s = (3) 两个三角形面积的比等于这两个三角形底与各自对应高的乘积的比。 底和高均不同,所以 ()21 ::)(ABD CDE BD DC h s s h ??=?? 比如:两个三角形的底的比是5:3,与各自底对应的高的比是7:6, 那么他们的面积的比是(5×7):(3×6) 二、鸟头定理(共角定理) 两个三角形中有一个角相等或者互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角(相等角或互补角)两条夹边的乘积之比。 BAC DAC ∠∠和互补,::DAC BAC DA AC BA AC s s ??=??所以 E :E :D A B A C D A A B A A C s s ?? ∠=??A 为公共角,所以 推理过程:连接BE ,运用等积变换模型证明。

三、蝴蝶定理模型 1.任意四边形中的比例关系(蝴蝶定理) 1 2 4 3 ::s s s s =或者1 3 4 2 s s s s ?=? 1 4 2 3 1 2 4 3 +AO:OC s s s s s s s s == =::():(+) 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以是不规则四边形的面积关系与四边形内三角形相联系;另一方面也可以得到与面积对应的对角线被分割的两段之间的比例关系。 2.梯形中比例关系(梯形蝴蝶定理) 22 13 :a b s s =: 22 1324 ::a b s s s s =:::ab :ab 整个梯形对应的面积份数为: 2 (a+b) 四、相似模型 相似三角形性质: (金字塔模型) (沙漏模型) 下面的比例关系适用如上两种模型: 1、 AD AE DE AF AB AC BC AG === 2、 22 ::ADE ABC s s AF AG ??= 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变,他们都是相似的),与相似三角形相关的常用的性质以及定理如下: (1) 相似三角形的一切对应线段的长度成比例,并且这个比例等于他们的相似比; (2) 相似三角形的面积比等于他们的相似比的平方。

相似三角形常用模型及应用

相似三角形模型及应用 相似证明中的基本模型 A 字形 图①A 字型,结论: AD AE DE AB AC BC ==,图②反A 字型,结论:AE AD DE AC AB BC == 图③双A 字型,结论: DF BG EF GC =,图④内含正方形A 字形,结论AH a a AH BC -=(a 为正方形边长) I H G F E D C B A G F E D C B A E D C B A E D C B A 图① 图② 图③ 图④ 8字型 图①8字型,结论: AO BO AB OD CO CD ==,图②反8字型,结论:AO BO AB CO DO CD ==、四点共圆 图③双8字型,结论:AE DF BE CF =,图④A 8字型,结论:111 AB CD EF += 图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ?=?△△△△ E F D C B A F E D C B A O D C B A O D C B A G F E D C B A 图① 图② 图③ 图④ 图⑤ 一线三等角型 结论:出现两个相似三角形

H E D C B A E D C B A E D C B A C 60°F E D C B A F E D C B A 图① 图② 图③ 图④ 角分线定理与射影定理 图①内角分线型,结论: AB BD AC DC =,图②外角分线型,结论:AB BD AC CD = 图③斜射影定理型,结论:2AB BD BC =?, 图④射影定理型,结论:1、2AC AD AB =?,2、2CD AD BD =?,3、2BC BD BA =? D C B D B A C A E D C B A D C B A 梅涅劳斯型常用辅助线 G F E D C B A G F E D C B A G F E D C B A D E F C B A 考点一 相似三角形 【例1】 如图,D 、E 是ABC ?的边AC 、AB 上的点,且AD AC ?=AE AB ?,求证:ADE B ∠=∠. E D C B A 中考满分必做题

三角形四大模型

三角形的四大模型 一、三角形的重要概念和性质 1、三角形的内角和定理:三角形的内角和等于180° 2、三角形的外角和定理:三角形的一个外角等于和它不相邻的两个内角的和 3、三角形角平分线(角分线)中线(分面积等)高(直角三角形两锐角互余) 二、八字模型: 证明结论:∠A+∠B=∠C+∠D 三、飞镖模型: 证明结论:1.∠BOC=∠A+∠B+∠C 四、角分线模型: 如图,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D, 之间的数量关系,并证明你的结论. 试探索∠A与∠D

n 如图,△ABC 两个外角(∠CAD 、∠ACE )的平分线相交于点P .探索∠P 与∠B 有怎样的数量关系,并证明你的结论. 题型一、三角形性质等应用 1.如图,小亮从A 点出发前进10m ,向右转15°,再前进10m ,又向右转15°,这样一直走下去,他第一次回到出发点A 时,一共走了米数是( )A .120 B .150 C .240 D .360 2.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC 方向平移得到△DEF . 如果AB=8cm ,BE=4cm ,DH=3cm ,则图中阴影部分面积为 cm 2 . 3.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且S △ABC =4cm 2,则S 阴影= cm 2. 4. A 、B 、C 是线段A 1B ,B 1C ,C 1A 的中点,S △ABC 的面积是1,则S △A 1B 1C 1的面积 . 5.一个四边形截去一个角后,剩下的部分可能是什么图形?画出所有可能的图形,并分别 说出内角和和外角和变化情况. 6.如图,直线AC ∥BD ,连接AB ,直线AC ,BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P 落在某个部分时,连接PA ,PB ,构成∠PAC ,∠APB ,∠PBD 三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角) (1)当动点P 落在第①部分时,求证:∠APB=∠PAC+∠PBD ; (2)当动点P 落在第②部分时,∠APB=∠PAC+∠PBD 是否成立?(直接回答)(3)当动点P 在第③部分时,全面探究∠PAC ,∠APB ,∠PBD 之间的关系,并写出

几何五大模型汇总

小学平面几何五大模型 一、 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E分别是, AB AC上的点如图⑴(或D在BA的延长线上,E在AC上),则:():() S S AB AC AD AE =?? △△ 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ? ? = AE AD AC AB ? ? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图 12 :: S S a b = ③夹在一组平行线之间的等积变形,如右图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S = △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. b a S2 S1 D C B A

三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型 (二) 沙漏模型 G F E A B C D A B C D E F G ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:. 相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; A B C D O b a S 3 S 2 S 1S 4 S 4 S 3 S 2 S 1O D C B A

相似三角形”A“字模型含详细答案经典

教师辅导教案 授课日期:年月日授课课时:课时

1 ?平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2 ?如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似?可简单说成:两角对应相 等,两个三角形相似. 3 ?如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4. 如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成 比例,两个三角形相似. 5. 如 果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 6 ?直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明) 7 ?如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的 腰和底对应成比例,那么这两个等腰三角形也相似. 三、相似证明中的基本模型 A字形 图①A字型,DE//BC ;结论: AD AE AB AC DE BC , 【例1】李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮 他 调整过来吗证明步骤正确的顺序是( ) 已知:如图,在△ ABC中,点D, E, 求证:△ ADE s^ DBF. 证明:①又??? DF// AC, ②??? DE/ BC, ③???/ A=Z BDF, ④???/ ADE=Z B, F分另【J在边AB, AC, BC上,且DE / BC, DF/ AC, ? △ADE s^ DBF. A.③②④① B.②④①③ C.③①④② D.②③④① 【解答】证明:②I DE / BC, ④ADE=Z B, ①又??? DF/ AC, ③A=Z BDF, ? △ ADE s^ DBF.故选:B. 国① 【练1】如图,在△ ABC中,/ ACB=90 , BC=16cm, AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒,当t= 4.8 秒时,△ CPQ 与厶ABC相 似. 【解答】解:CP和CB是对应边时,△ CPC SA CBA 所以, 16-2t t 16_12, 即 解得t=4.8; CP和CA是对应边时,△ CPC S^ CAB, 厂1口厂1门

最新相似三角形典型模型及例题资料

:相似三角形判定的基本模型 (一)A字型、反A字型(斜A字型) (二)8字型、反8字型 (四)一线三等角型: 1:相似三角形模型 A (平 行) (蝴蝶 型) 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

精品文档 (五)一线三直角型 : 三直角相似可以看着是 "一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: :相似三角形判定的变化模型 ■ t / a c ----- 1———— a b c ¥ 旋转型:由A字型旋转得到8字型拓展 B C

A K / I / /x/ * B C ———£------ d 一线三直角的变形 2:相似三角形典型例题 (1) 母子型相似三角形 例1 :如图,梯形ABCD中,AD // BC,对角线AC、BD交于点O, BE// CD交CA延长线于E. 2 求证:OC = OA OE . 例2:已知:如图,A ABC中,点E在中线AD上,.DEB二.ABC . 求证:(1) DB2= DE DA; (2) . DCE 二/DAC . 例3 :已知:如图,等腰A ABC中,AB= AC, AD丄BC于D, CG// AB, BG分别交AD、AC于E、F . 求证:BE2 = EF EG . 2 1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线?求证:FD FB FC .

七年级三角形四大模型

2016年01月07日liwei的初中数学组卷 一.选择题(共5小题) 1.(2015春?扬中市校级期末)如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O 点逆时针旋转α°(0°<α<180° ) (1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则 ∠AOC=; (2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值; (3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案). 2.(2014?赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.

(1)探究猜想: ①若∠A=30°,∠D=40°,则∠AED等于多少度? ②若∠A=20°,∠D=60°,则∠AED等于多少度? ③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用: 如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明). 3.(2013秋?微山县期中)如图,若∠DBC=∠D,BD平分∠ABC,∠ABC=50°,则∠BCD的大小为() A.50°B.100° C.130°D.150°

4.(2013春?连云区校级月考)如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是() A.120 B.150 C.240 D.360 5.如图,在△ABC中,∠A=42°,∠ABC和∠ACB的三等分线分别交于点D,E,则∠BDC的度数是() A.67°B.84°C.88°D.110° 二.填空题(共3小题) 6.(2007?遵义)如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为cm2.

五大模型(三角型等积变形、共角模型

杨秀情一一六年级秋季一一配套练习 【练练1】 如图,长方形ABCD的面积是56平方厘米,点E、F、G分别是长方形ABCD边上的中点, H为AD边上的任意一点,求阴影部分的面积. 【练练2】 图中的E、F、G分别是正方形ABCD三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是_______ _ 【练练3】 (2008年”希望杯”二试六年级) 如图,E、F、G、H分别是四边形ABCD各边的中点,FG与FH交于点O, S i、S2、S3及S4分 别表示四个小四边形的面积?试比较s S3与S2 S4的大小.

【练练4】 如图,三角形ABC中,DC 2BD , CE 3AE,三角形ADE的面积是20平方厘米,三角形ABC的面积是多少? 【练练5】 (2008年第一届“学而思杯”综合素质测评六年级2试) 如图,BC 45,AC 21,ABC被分成9个面积相等的小三角形,那么 DI FK __________ .

【练练 6】 如右图,ABFE和CDEF都是矩形, 分的面积是_________ 平方厘米.

【练练7】 (2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积是_________ 平方厘米. 【练练8】 如下图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方形ABCD的长是20 ,宽是12,则它 内部阴影部分的面积是_________ ?

B E C 【练练9】 (第三届“华杯赛”初赛试题)一个长方形分成4个不同的三角形,绿色三角形面积占长 方形面积的15%,黄色三角形面积是21cm2?问:长方形的面积是多少平方厘米? 【练练10】 如图,正方形ABCD的边长为6, AE 1 .5, CF 2 .长方形EFGH的面积为________________

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

小学数学几何五大模型教师版

几何五大模型 一、五大模型简介 (1)等积变换模型 1、等底等高的两个三角形面积相等; 2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b; 3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b; 4、在一组平行线之间的等积变形,如图③所示,S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。 例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型 1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。 如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点 则有:S△ABC:S△ADE=(AB×AC):(AD×AE) 我们现在以互补为例来简单证明一下共角定理! 如图连接BE,根据等积变化模型知,S△ADE:S△ABE=AD:AB、S△ABE:S△CBE=AE:CE,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC,因此S△ADE:S△ABC=(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。 例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

(3)蝴蝶模型 1、梯形中比例关系(“梯形蝴蝶定理”) 例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。 2、任意四边形中的比例关系(“蝴蝶定理”):

相似三角形基本模型——A字型、旋转型相似

课题:相似三角形基本模型——A字型、旋转型相似 教学目标: 1、通过习题引入,了解“A字型、旋转型”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质; 2、利用“A字型、旋转型”中两个三角的相似性解决一些计算、证明等简单问题; 3、在“A字型、旋转型”变化的过程中经历图形动态思考,积累做“A字型、旋转型”相似解题的特点与经验。 教学重点难点: 1、在已知图形中观察关键特征——“A字型、旋转型”; 2、在“A字型、旋转型”图的两个三角形中,探索其相似条件。 教学过程: 一、复习与回顾: 相似三角形的性质和判定定理; 二、引入 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。而识别(或构造)A字型、8字型、母子相似型、旋转型等基本图形是解证题的关键。 三、新课讲解: (一)、模型分析有一个公共角(图①、图②)或角有公共部分(图③,∠BAC与∠DAE有公共部分∠DAF),此时需要找另一对角相等,另外若题中未明确相似三角形对应顶点,则需要分类讨论,如图③中可找条件∠D=∠C或∠D=∠B. (二)、基础巩固 1、若△ABC∽△ADE,你可以得出什么结论(图1) 2、D、E分别是△ABC边AB、AC上的点,请你添加一个条件,使△ADE与△ABC相似。(图2) (三)、例题探究:

(四)课堂练习: 三、课堂小结: 我们今天这堂课收获了什么呢 (1)学习了A型相似; (2)学会从复杂图形中分解出基本图形。 (3)数学思想:方程思想,转化思想,分类讨论思想四、作业布置: 中考新航线251页

相似三角形典型模型及其例题

:相似三角形判定的基本模型 三)母子型 四)一线三等角型: 三等角型相似三角形是以 等腰三角形(等腰梯形)或者等边三角形 为背景,一个与 形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示: 1:相似三角形模 型 一) A 字型、 反 A 字型(斜 A 字型) 二) 8 字型、 反 8 字型 平行) 蝴蝶型) 腰三角 C C

五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方 形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 六)双垂型:

:相似三角形判定的变化模型

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC,对角线AC、BD 交于点O,BE∥ CD 交CA 延长线于E. 2 求证:OC2 OA OE . 例2:已知:如图,△ABC 中,点 E 在中线AD 上, DEB ABC .求证:(1)DB2DE DA;(2)DCE DAC . 例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:BE2 EF EG . 2 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FD 2 FB FC .

2、已知:AD 是Rt△ABC 中∠A的平分线,∠ C=90°,EF是AD 的垂直平分线交AD 于M,EF、BC的延

相似三角形经典模型总结与例题分类(超全)

相似三角形经典模型总结 经典模型 【精选例题】“平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 【例2】 如图,AD EF MN BC ∥∥∥,若9AD =, 18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的 直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = M 1F 1E 1M E F A B C M N A B C D E F P H G F E D C B A

【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求BF EF 的值 【例5】 已知:在ABC ?中,12AD AB = , 延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC = 求证:CEF ?为等腰三角形 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. F E D C B A 【例8】 如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例9】 如图,四边形ABCD 中,90B D ∠=∠=?,M 是AC 上一点,ME AD ⊥于点E ,MF BC ⊥于点F 求证: 1MF ME AB CD += F E D C B A A B C D F E F E D C B A

相似三角形-模型分析与典型例题讲解大全

第一部分 相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行)(不平行) (二)8字型、反8字型 (蝴蝶型) (平行) (不平行) (三)母子型 D B D 垂直 不垂直 (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型:

C A D 二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。8字型拓展 C B E D A 共享性G A B C E F 一线三等角的变形 一线三直角的变形

第二部分相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD中,AD∥BC ,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证: OE OA OC? = 2. 例2:已知:如图,△ABC中,点E在中线AD上,ABC DEB∠ = ∠. 求证:(1)DA DE DB? = 2;(2)DAC DCE∠ = ∠. 例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:EG EF BE? = 2. 相关练习: 1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FC FB FD? = 2. 2、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。 求证:(1)△AME∽△NMD; (2)ND2=NC·NB D E B

3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。 求证:EB·DF=AE·DB 4.在?ABC中,AB=AC,高AD与BE交于H,EF BC ⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。 求证:∠=? GBM90 G M F E H D C B A 5.已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y. (1)求证:AE=2PE; (2)求y关于x的函数解析式,并写出它的定义域; (3)当△BEP与△ABC相似时,求△BEP的面积. 双垂型 1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,求证:(1)△ABD∽△ACE;(2)△ADE ∽△ABC;(3)BC=2ED

奥数几何三角形五大模型带解析

三角形五大模型 【专题知识点概述】 本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。 重点模型重温 一、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b = ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线 平行于CD . ④等底等高的两个平行四边形面积相等( 长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、等分点结论(“鸟头定理”) D C B A b a s 2 s 1

如图,三角形AED 占三角形ABC 面积的23×14=1 6 三、任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3) 梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b 2 ②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2 模型四:相似三角形性质 如何判断相似 (1)相似的基本概念: 两个三角形对应边城比例,对应角相等。 (2)判断相似的方法: ①两个三角形若有两个角对应相等则这两个三角形相似; ②两个三角形若有两条边对应成比例, 且这两组对应边所夹的角相等则两个 S 4 S 3 s 2 s 1O D C B A S 4 S 3s 2 s 1 b a

相关主题
文本预览
相关文档 最新文档