当前位置:文档之家› 二次函数的应用举例

二次函数的应用举例

二次函数的应用举例
二次函数的应用举例

二次函数的应用复习

班级姓名

【复习目标】

1.能够分析和表示实际问题中变量之间的二次函数关系,把实际问题转化为数学问题,正确建立函数关系,并能运用二次函数性质解决实际问题.

2.通过分析增强应用数学的意识,培养分析问题、解决问题的能力.

【活动方案】

活动一、建平面直角坐标解决实际问题

1.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给

小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,

绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树

0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距

离为米.

2.如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水

平距离为9米.已知山坡OA与水平方向OC的夹角为30°,O、A两点相距83米.(1)求出点A的坐标及直线OA的解析式;

(2)求出球的飞行路线所在抛物线的解析式;

(3)判断小明这一杆能否把高尔夫球从O点直接打

入球洞A点.

活动二、利用二次函数的性质求实际问题的最值

1.如图,抛出一个小球,小球的高度h(单位:m)

与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么

小球从抛出至回落到地面所需要的时间是()

A、6s

B、4s

C、3s

D、2s

2.星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.

(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.

3.有一长为7.2米的木料,做成如图所示的”日”字形的窗框,窗的高和宽各取多少米时,这个窗的面积最大(不考虑木料加工时的损耗和木框本身所占的面积)?

4.某工厂的大门是一抛物线型水泥建筑物,大门的地面宽度为8米,两侧距地面3米高各有一个壁灯,两壁灯之间的水平距离为6米,如图所示,则厂门的高是多少?(水

泥建筑物厚度忽略不计,精确到0.1米)

5.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.

(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x 之间的函数表达式;(不要求写自变量的取值范围)

(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?

(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

二次函数的应用复习(课后练习)

班级 姓名

1.烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h (m )与飞行时间t (s )的关系式是1202

52++-=t t h ,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )

A 、3s

B 、4s

C 、5s

D 、6s

2.一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 cm 2.

3.用长度为20m 的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m .当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.

4.如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.

(1)求足球开始飞出到第一次落地时,该抛物线的表达式.

(2)足球第一次落地点C 距守门员多少米?(取734≈)

(3)运动员乙要抢到第二个落点D

5.如图①,梯形ABCD 中,∠C=90°.动点E 、F 同时从点B 出发,点E 沿折线BA-AD-DC 运动到点C 时停止运动,点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1cm/s .设E 、F 出发ts 时,△EBF 的面积为ycm 2.已知y 与t 的函数图象如图②所示,其中曲线OM 为抛物线的一部分,MN 、NP 为线段.请根据图中的信息,解答下列问题:

(1)梯形上底的长AD= cm ,梯形ABCD 的面积= cm 2;

(2)当点E 在BA 、DC 上运动时,分别求出y 与t 的函数关系式(注明自变量的取值范围);

(3)当t 为何值时,△EBF 与梯形ABCD 的面积之比为1:2?

6.如图,在一块三角形区域ABC 中,∠C=90°,边AC=8,BC=6,现要在△ABC 内建造一个矩形水池DEFG ,如图的设计方案是使DE 在AB 上.

⑴求△ABC 中AB 边上的高h;

⑵设DG=x,当x 取何值时,水池DEFG 的面积最大?

⑶实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使三角形区域中欲建的最大矩形水池能避开大树.

7.如图,抛物线22

12-+=bx x y 与x 轴交于A 、B 两点,与y 轴交于C 点, 且A (-1,0).

⑴求抛物线的解析式及顶点D 的坐标;

⑵判断△ABC 的形状,证明你的结论;

⑶点M(m ,0)是x 轴上的一个动点,当CM+DM 的值最小时,求m 的值.

A B C D E F

G

九上二次函数的实际应用(最值问题)

第4课时 二次函数的实际应用——面积最大(小)值问题 知识要点: 在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. [例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动. (1)运动第t 秒时,△PBQ 的面积y(cm2)是多少? (2)此时五边形APQCD 的面积是S(cm2),写出S 与t 的函数关系式,并指出自变量的取值范围. (3)t 为何值时s 最小,最小值时多少? 答案: 63 363 3360726612626262 1 )1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--?=+-=?-= [例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大? 解:设花圃的宽为x 米,面积为S 平方米 则长为:x x 4342432-=+-(米) 则:)434(x x S -= x x 3442 +-=

二次函数在实际生活中的应用

二次函数在实际生活中的应用 【经典母题】 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元? 解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x, y=(x-9)(1 360-80x) =-80x2+2 080x-12 240(10≤x≤14). -b 2a=- 2 080 2×(-80) =13, ∵10≤13≤14,∴当x=13时,y取最大值, y最大=-80×132+2 080×13-12 240=1 280(元). 答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元. 【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论. 【中考变形】 1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示. (1)图中点P所表示的实际意义是__当售价定为35元 /件时,销售量为300件__;销售单价每提高1元时, 销售量相应减少__20__件; (2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1

二次函数在实际生活中的应用及建模应用

二次函数的建模 知识归纳:求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. 一、利用二次函数解决几何面积最大问题 1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。 (1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式; (2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得: x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴? ??- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是: 利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式 中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18) (2)∵x x x x y 18)18(2 +-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(2182=-?-=-=a b x 时, 81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 点评:在回答问题实际时,一定注意不要遗漏了单位。 2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大? 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米), 根据题意,得:x x x x y 252 1)250(2+-=-=; 又∵500,02 500<x<>x x >∴?????- ∵x x x x y 252 1)250(2+-=-=中,a=21-<0,∴y 有最大值,

二次函数实际应用问题及解析

中考压轴题中函数之二次函数的实际应用问题,主要是解答题,也有少量的选择和填空题,常见问题有以几何为背景问题,以球类为背景问题,以桥、隧道为背景问题和以利润为背景问题四类。 一. 以几何为背景问题 原创模拟预测题1. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中: (1)求抛物线的函数解析式; (2)求水流的落地点D 到A 点的距离是多少m ? 【答案】(1)213222y x x =-++;(2)(2+m . 【解析】 试题分析:(1)把抛物线的问题放到直角坐标系中解决,是探究实际问题常用的方法,本题关键是解等腰直角三角形,求出抛物线顶点C (2,3.5)及B (0,1.5),设顶点式求解析式; (2)求AD ,实际上是求当y=0时点D 横坐标. 在如图所建立的直角坐标系中, 由题意知,B 点的坐标为(01.5),, 45CBE BEC ∠=∴,△为等腰直角三角形, 2BE ∴=, 点坐标为(23.5), (1)设抛物线的函数解析式为2 (0)y ax bx c a =++≠,

则抛物线过点(01.5),顶点为(23.5), , 当0x =时, 1.5y c == 由22b a -=,得4b a =-, 由24 3.54ac b a -=,得2 616 3.54a a a -= 解之,得0a =(舍去),1422a b a =-∴=-=,. 所以抛物线的解析式为213222 y x x =-++. 考点:本题考查点的坐标的求法及二次函数的实际应用 点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从 中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型. 原创模拟预测题2.在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m ). (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)满足条件的花园面积能达到200 m 吗?若能,求出此时x 的值;若不能,说明理由; (3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少? 【答案】(1)x x y 202 12+- =)150(≤

二次函数的实际应用----最值问题以及设计方案问题

二次函数的实际应用——最大(小)值问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 44)2(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0 B. 0,0a h >> C. 0,0a k >> D. 0,0a k << 5.函数92 +-=x y 。当-2

(完整版)二次函数(应用题求最值)(含答案).doc

二次函数应用题 1、某商场将进价为2000 元的冰箱以2400 元售出,平均每天能售出8 台,为了配合国家“家 电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50 元,平均每天就能多售出 4 台. ( 1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间 的函数表达式;(不要求写自变量的取值范围) 4800 元,同时又要使百姓得到实惠,每台冰( 2)商场要想在这种冰箱销售中每天盈 利箱应降价多少元? ( 3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 2. 如图,在平面直角坐标系中,顶点为( 4 ,1)的抛物线交y 轴于A 点,交x 轴于B , C 两点(点 B 在点C的左侧). 已知 A 点坐标为(0 , 3). ( 1)求此抛物线的解析式; ( 2)过点 B 作线段AB 的垂线交抛物线于点 D ,如果以点 C 为圆心的圆与直线BD 相 切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明; ( 3)已知点P 是抛物线上的一个动点,且位于 A ,C两点之间,问:当点P 运动到 什么位置时,PAC 的面积最大?并求出此时P 点的坐标和PAC 的最大面积. y D A x O B C ( 第 13 题 )

3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙 另三边用总长为32 米的篱笆恰好围成.围成的花圃是如图所 示的矩形ABCD .设 AB 边的长为x 米.矩形ABCD 的面积为 S 平方米. ( 1)求 S 与 x 之间的函数关系式(不要求写出自变量x 的取值范围). ( 2)当 x 为何值时, S 有最大值?并求出最大值. (参考公式:二次函数 y ax 2 bx c(a 0 ),当x b 4a c b2 时, y最大(小)值) 2a 4a 4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x 之间满足函数关系y 50x 2600 ,去年的月销售量p(万台)与月份x 之间成一次函数关系,其 中两个月的销售情况如下表: 月份 1 月 5 月 销售量 3.9 万台 4.3 万台 (1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少? (2)由于受国际金融危机的影响,今年1、2 月份该品牌电视机销往农村的售价都比去年 12 月份下降了m% ,且每月的销售量都比去年12 月份下降了 1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受 此政策的影响,今年 3 至 5 月份,该厂家销往农村的这种电视机在保持今年 2 月份的售价不变的情况下,平均每月的销售量比今年 2 月份增加了 1.5 万台.若今年 3 至 5 月份国家对这种电视机的销售共给予了财政补贴936 万元,求m的值(保留一位小数). (参考数据:34 ≈ 5.831 ,35 ≈5.916 ,37 ≈ 6.083 ,38 ≈ 6.164 )

二次函数在实际问题中的应用

孟老师12月23日初三学案 二次函数在实际问题中的应用 一抛物线形的物体 研究抛物线的问题,需要建立适当的平面直角坐标系,根据已知条件,求出相关点的坐标,确定解析式,这是解答其它问题的基础,. (2012?益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处. (1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明 通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等 于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号) 2(2010?南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内? 二应用二次函数解决实际问题中的最值 求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法. 二次函数的性质在实际生活中的应用

二次函数最值及应用

第17讲、二次函数最值及应用(B) 姓名________ 一、知识梳理: 知识点一:二次函数的最值: 知识点二:利用二次函数研究“最大利润”: 利用二次函数解决实际问题中的最值问题(如最大利润)的步骤为: (1)分析题意,设出自变量x ,根据题中两个变量之间的关系列出二次函数关系式; (2)利用公式法或者配方法求出其最大(小)值; (3)结合相关问题写出结果。 二、精典题型例析: 考点一、求二次函数的最值 例1.求二次函数223y x x =-+的最值。(用两种方法) 考点二、区间最值 例2.分别在下列范围内求函数223y x x =-+的最小值和最大值。 (1)20≤≤x (2)23x ≤≤ (3)30x -≤≤ 2 A . ﹣10.5 B . 2 C . ﹣2.5 D . ﹣6

考点三、面积最值问题 例3、(2012·张家界).如图,抛物线 233 5 2++ -=x x y 与x 轴交于 C 、A 两点,与y 轴交于点B ,OB =2点O 关于直线AB 的对称点为D . (1) 分别求出点A 、点B 的坐标 (2) 求直线AB 的解析式, (3) 若反比例函数x k y = 的图像过点D ,求k 值. (4)两动点P 、Q 同时从点A 出发,分别沿AB 、AO 方向向B 、O 移动,点P 每秒移动1个单位,点Q 每秒移动 2 1 个单位,设△POQ 的面积为S ,移动时间为t ,问:S 是否存在最大值?若存在,求出这个最大值,并求出此时的t 值,若不存在,请说明理由. 考点四、应用题中的最值问题 例4、(2014.成都)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用长为28米长的篱笆围成一个矩形花园ABCD (篱笆只围AB 、BC 两边),设AB=x 米。 (1)若花园的面积为192平方米,求x 的值; (2)若在P 处有一棵树与墙CD 、AD 的距离分别是15米和6米,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值。 y x B D P A Q O C 2

二次函数及实际应用之利润最大(小)值问题

二次函数的实际应用——利润最大(小)值问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 44)2(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0

2 [例1]:求下列二次函数的最值: (1)求函数322 -+=x x y 的最值. [例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? [练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?

2021中考数学专题08 二次函数在实际应用中的最值问题

专题二次函数在实际应用中的最值问题 1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率; (2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y (元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大? (3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元? 2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表: (1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式; (2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大? (3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)3、怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元. (1)该店每天卖出这两种菜品共多少份;

(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少. 4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现, 影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数: y=﹣4x+220(10≤x≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入﹣运营成本). (1)试求w 与x 之间的函数关系式; (2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元? 5、把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180,得到新函数2C 的图 象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t . (1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12 x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于,A B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90,得到它的对应线段''A D ,若线''A D 与2C 的图象有公共点,结合函数图象,求a 的取值范围. 6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养 天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本). (1)设每天的放养费用是万元,收购成本为万元,求和的值; (2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可

(文章)应用二次函数求实际问题的最值

应用二次函数求实际问题的最值 运用二次函数解决实际问题中的最大(小)值问题是近几年来各地中考命题的一个热点,解决这类问题的关键是从实际问题中抽象出二次函数的模型,然后再应用二次函数的有关性质去寻找实际问题的最佳答案,请看几个典型的例子. 例1. 张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (2)当x 为何值时,S 有最大值?并求出最大值. (参考公式:二次函数2 y ax bx c =++(0a ≠),当2b x a =-时,2 44ac b y a -=最大(小)值) 分析:(1)由矩形的面积公式建立函数关系式;(2)利用二次函数的顶点坐标公式求解. 解:(1)由题意得(322)S AB BC x x ==- ,2232S x x ∴=-+; (2)20a =-< ,S ∴有最大值.32822(2)b x a ∴=-=-=?-. 2243212844(2) ac b S a --===?-最大值,8x ∴=时,S 有最大值是128. 说明:解决几何类问题时,图形的有关公式是寻找解题思路的有效途径. 例2.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.

知识点20 二次函数在实际生活中应用

知识点20 二次函数在实际生活中应用 一、选择题 9.(2019·山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米,(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则次抛物线型钢拱的函数表达式为( ) A.y = 26 675 x 2 B.y =26675 - x 2 C.y = 13 1350 x 2 D.y =13 1350 - x 2 第9题图 【答案】B 【解析】设二次函数表达式为y =ax 2,由题可知,点A 坐标为(-45,-78),代入表达式可得:-78=a(-45)2,解得a =26675- ,∴二次函数表达式为y =26675 -x 2 ,故选B. 三、解答题 22.(2019年浙江省绍兴市,第22题,12分 ).有一块形状如图的五边形余料ABCDE ,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大. (1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积; (2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由. 【解题过程】

24.(2019·嘉兴)某农作物的生长率p 与温度t (℃)有如下关系:如图1,当10≤t ≤25时可近似用函数p = t ﹣刻画;当25≤t ≤37时可近似用函数p =﹣ (t ﹣h )2 +0.4刻画. (1)求h 的值. (2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系: 生长率p 0.2 0.25 0.3 0.35 提前上市的天数m (天) 5 10 15 ①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m . (3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用). 【解题过程】(1)把(25,0.3)的坐标代入21 ()0.4160 p t h =- -+,得h =29或h =21. ∵h >25,∴h =29. (2)①由表格可知m 是p 的一次函数,∴m=100p-20.

14.二次函数的实际应用

第六节 二次函数的实际应用 姓名:________ 班级:________ 用时:______分钟 1.(2019·易错题)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m )与足球被踢出后经过的时间t(单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h 0 8 14 18 20 20 18 14 … 下列结论:①足球距离地面的最大高度为20 m ;②足球飞行路线的对称轴是直线t =9 2;③足球被踢出9 s 时落地;④足球被踢出1.5 s 时,距离地面的高度 是11 m .其中正确结论的个数是( ) A .1 B .2 C .3 D .4 2.(2018·北京中考)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m )与水平距离x(单位:m )近似满足函数关系y =ax 2+bx +c(a≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( ) A .10 m B .15 m C .20 m D .22.5 m

3.(2018·武汉中考)飞机着陆后滑行的距离y(单位:m )关于滑行时间t(单位: s )的函数解析式是y =60t -32 t 2.在飞机着陆滑行中,最后 4 s 滑行的距离是 ________m . 4.(2018·沈阳中考)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =__________m 时,矩形土地ABCD 的面积最大. 5.(2017·成都中考)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y 1(单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站 A B C D E x(千米) 8 9 10 11.5 13 y 1(分钟) 18 20 22 25 28 (1)求y 1关于x 的函数表达式; (2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用y 2=12x 2 -11x +78来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.

初中数学二次函数的最值问题专题复习

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值2 44ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值.

二次函数求最值方法总结

二次函数求最值方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

XX 教育辅导教案 学生姓名 性别 年级 学科 数学 授课教师 上课时间 年 月 日 第( )次课 共( )次课 课时: 课时 教学课题 二次函数求最大值和最小值 教学目标 利用二次函数的图像和性质特点,求函数的最大值和最小值 教学重点 与难点 含有参数的二次函数最值求解。 课堂引入: 1) 由二次函数应用题最值求解问题引申至一般二次函数求最值问题,阐述二次函数求最值问题 方法的重要性(初高中衔接、高中必修一重点学习内容)。 2) 当22x -≤≤时,求函数223y x x =--的最大值和最小值. (引导学生用初中所学的二次函数知识求解,为下面引出二次函数求最值方法总结做铺垫) 二次函数求最值方法总结: 一、设)0(2≠++=a c bx ax y ,当n x m ≤≤时,求y 的最大值与最小值。 1、当0>a 时,它的图象是开口向上的抛物线,数形结合可求得y 的最值: 1) 当n a b m ≤-≤2时,a b x 2-=时,y 取最小值:a b a c y 442min -=;y 的最大值在m x =或n x =处取到。 2) 若m a b <-2,二次函数在n x m ≤≤时的函数图像是递增的,则m x =时,y 取最小值;则n x =时,y 取最大值。 若n a b >- 2,二次函数在n x m ≤≤时的函数图像是递减的,则n x =时,y 取最小值;则m x =时,y 取最大值。

【变式训练】 变式1、当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,1max -=y ,当2x =时,5min -=y . 【例题解析】 例2、当1t x t ≤≤+时,求函数21522 y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522 y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+?≤≤时: 当1x =时,2min 1511322 y =?--=-; (3) 当对称轴在所给范围右侧.即110t t +

二次函数的实际应用(利润最值问题)

第3课时 二次函数的实际应用——最大(小)值问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 44)2(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0

二次函数的实际应用(典型例题分类)

二次函数与实际问题 1、理论应用(基本性质的考查:解析式、图象、性质等) 2、实际应用(求最值、最大利润、最大面积等) 解决此类问题的基本思路是: (1)理解问题; (2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解; (5)检验结果的合理性,拓展等. 例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值? 变式练习1:如图,用50m长的护栏全部用于建造 一块靠墙的长方形花园,写出长方形花园的面积 y(㎡)与它与墙平行的边的长x(m)之间的函数 关系式?当x为多长时,花园面积最大?

例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多? 设销售单价为x元,(0<x≤13.5)元,那么 (1)销售量可以表示为____________________; (2)销售额可以表示为____________________; (3)所获利润可以表示为__________________; (4)当销售单价是________元时,可以获得最大利润,最大利润是__________。 变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. (1)问题中有哪些变量?其中自变量是_______,因变量是___________. (2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结 _________个橙子. (3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________. (4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。

二次函数的最值及其应用

二次函数的最值及其应用 若自变量是全体实数,则当x=-a b 2时,y 最值= 2 44ac b a - (2008年南京市中考题)已知二次函数y=x2+bx+c 中,函数y 与自变量x 的部分对应值如下表: x … -1 0 1 2 3 4 … y … 10 5 2 1 2 5 … (1)求该二次函数的关系式; 当x 为何值时,y 有最小值,最小值是多少? 分析:(1)任选表中两组对应值待入y=x2+bx+c 可求b 、c 。(2)得出y=x2+bx+c 后代x=-a b 2时,y 最值= 2 44ac b a - 解:(1)根据题意,当x=0时,y=5;当x=1时,y=2。 所以???++==c b c 125 解得???=-=54 c b 所以,该二次函数关系式为y=x2-4x+5 (2)因为y=x2-4x+5,所以当x=124 ?- =2时,y 有最小值,最小值为 1 44 5142 ?-??=1 一、 求实际问题中的二次函数的最值 例2 (2008年黄冈市中考题) 四川汶川大地震发生后,我市某工厂A 车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成。已知每项帐篷的成本价为800元,该车间平时每天能生产帐篷20顶。为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高。这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶,由于机器损耗等原因,当每天生产的帐篷数达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元。设生产这批帐篷的时间为x 天,每天生产的帐篷为y 顶。 (1) 直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2) 若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那 一天的全部利润捐献给灾区,设该车间每天的利润为W 元,试求出W 与x 之间的函数关系式,并求出该车间捐献给灾区多少钱? 分析:(1)由题意直接列出。(2)当1≤x ≤5时,由一次函数的增减性得W 的最大值;当5<x ≤12时,由二次函数的增减性得W 的最大值。 解:(1)y=2x+20(1≤x ≤12) (2)当1≤x ≤5时, W=(1200-800)×(2x+20)=800x+8000

经典二次函数和实际应用题解法

二次函数运用题 一:知识点 利润问题:总利润=总售价–总成本 总利润=每件商品的利润×销售数量 二:例题讲解 1、(2009年内蒙古包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2. 2、(2010年聊城冠县实验中学二模)某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是________________ 3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大最大面积是多少 4、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.(1)若每件降价x元,每天盈利y元,求y与x的关系式.(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元(3)每件衬衫降价多少元时,商场每天盈利最多盈利多少元

5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求: (1)房间每天的入住量y(间)关于x(元)的函数关系式. (2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式. (3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值最大值是多少 6、某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x(元),日销售量为y(件). (1)写出日销售量y(件)与销售单价x(元)之间的函数关系式; (2)设日销售的毛利润(毛利润=销售总额-总进价)为P(元),求出毛利润P (元)与销售单价x(元)之间的函数关系式; (3)在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标; (4)观察图象,说出当销售单价为多少元时,日销售的毛利润最高是多少

相关主题
文本预览
相关文档 最新文档