当前位置:文档之家› Win2003多路径冗余配置手册

Win2003多路径冗余配置手册

Win2003多路径冗余配置手册

Windows 2003多路径冗余配置手册

1,安装KB932755补丁

将对应操作系统版本的KB932755补丁拷贝到临时目录直接双击运行即可,按照默认设置安装配置,安装完成后重新启动系统。

2,安装Storage Management软件,路径G:\WS03_x86_32bit\ SMIA-WS32-02.17.35.05.exe;(由于光盘版本会更新,路径可能发生变化)选择安装类型时选择Customer

3,确保RDAC选项已经勾选,NEXT

4,其他参数按照默认安装即可

几种实用的低电压冗余电源方案设计

几种实用的低电压冗余电源方案设计 引言 对于一些需要长时间不间断操作、高可靠的系统,如基站通信设备、监控设备、服务器等,往往需要高可靠的电源供应。冗余电源设计是其中的关键部分,在高可用系统中起着重要作用。冗余电源一般配置2 个以上电源。当1 个电源出现故障时,其他电源可以立刻投入,不中断设备的正常运行。这类似于UPS 电源的工作原理:当市电断电时由电池顶替供电。冗余电源的区别主要是由不同的电源供电。 电源冗余有交流220 V及各种直流电压的应用,本文主要介绍低压直流(如DC 5 V、DC 12 V 等)的冗余电源方案设计。 1冗余电源介绍 电源冗余一般可以采取的方案有容量冗余、冗余冷备份、并联均流的N+1 备份、冗余热备份等方式。容量冗余是指电源的最大负载能力大于实际负载,这对提高可靠性意义不大。 冗余冷备份是指电源由多个功能相同的模块组成,正常时由其中一个供电,当其故障时,备份模块立刻启动投入工作。这种方式的缺点是电源切换存在时间间隔,容易造成电压豁口。 并联均流的N+1 备份方式是指电源由多个相同单元组成,各单元通过或门二极管并联在一起,由各单元同时向设备供电。这种方案在1 个电源故障时不会影响负载供电,但负载端短路时容易波及所有单元。冗余热备份是指电源由多个单元组成,并且同时工作,但只由其中一个向设备供电,其他空载。主电源故障时备份电源可以立即投入,输出电压波动很小。本文主要介绍后两种方案的设计。 2传统冗余电源方案 传统的冗余电源设计方案是由2 个或多个电源通过分别连接二极管阳极,以“或门”的方式并联输出至电源总线上。如图1所示。可以让1个电源单独工作,也可以让多个电源同时工作。当其中1 个电源出现故障时,由于二极管的单向导通特性,不会影响电源总线的输出。

网络设备冗余和链路冗余-常用技术(图文)

网络设备及链路冗余部署 ——基于锐捷设备 8.1 冗余技术简介 随着Internet的发展,大型园区网络从简单的信息承载平台转变成一个公共服务提供平台。作为终端用户,希望能时时刻刻保持与网络的联系,因此健壮,高效和可靠成为园区网发展的重要目标,而要保证网络的可靠性,就需要使用到冗余技术。高冗余网络要给我们带来的体验,就是在网络设备、链路发生中断或者变化的时候,用户几乎感觉不到。 为了达成这一目标,需要在园区网的各个环节上实施冗余,包括网络设备,链路和广域网出口,用户侧等等。大型园区网的冗余部署也包含了全部的三个环节,分别是:设备级冗余,链路级冗余和网关级冗余。本章将对这三种冗余技术的基本原理和实现进行详细的说明。 8.2设备级冗余技术 设备级的冗余技术分为电源冗余和管理板卡冗余,由于设备成本上的限制,这两种技术都被应用在中高端产品上。 在锐捷网络系列产品中,S49系列,S65系列和S68系列产品能够实现电源冗余,管理板卡冗余能够在S65系列和S68系列产品上实现。下面将以S68系列产品为例为大家介绍设备级冗余技术的应用。 8.2.1S6806E交换机的电源冗余技术 图8-1 S6806E的电源冗余 如图8-1所示,锐捷S6806E内置了两个电源插槽,通过插入不同模块,可以实现两路AC电源或者两路DC电源的接入,实现设备电源的1+1备份。工程中最常见配置情况是同

时插入两块P6800-AC模块来实现220v交流电源的1+1备份。 电源模块的冗余备份实施后,在主电源供电中断时,备用电源将继续为设备供电,不会造成业务的中断。 注意:在实施电源的1+1冗余时,请使用两块相同型号的电源模块来实现。如果一块是交流电源模块P6800-AC,另一块是直流电源模块P6800-DC的话,将有可能造成交换机损坏。 8.2.2 S6806E交换机的管理板卡冗余技术 图8-2 S6806E的管理卡冗余 如图8-2所示,锐捷S6806E提供了两个管理卡插槽,M6806-CM为RG-S6806E的主管理模块。承担着系统交换、系统状态的控制、路由的管理、用户接入的控制和管理、网络维护等功能。管理模块插在机箱母板插框中间的第M1,M2槽位中,支持主备冗余,实现热备份,同时支持热插拔。 简单来说管理卡冗余也就是在交换机运行过程中,如果主管理板出现异常不能正常工作,交换机将自动切换到从管理板工作,同时不丢失用户的相应配置,从而保证网络能够正常运行,实现冗余功能。 在实际工程中使用双管理卡的设备都是自动选择主管理卡的,先被插入设备中将会成为主管理卡,后插入的板卡自动处于冗余状态,但是也可以通过命令来选择哪块板卡成为主管理卡。具体配置如下 注意:在交换机运行过程中,如果用户进行了某些配置后执行主管理卡的切换,一定要记得保存配置,否则会造成用户配置丢失 在实际项目中,S65和S68系列的高端交换机一般都处于网络的核心或区域核心位置,承

linux下多路径的介绍和安装配置

一、什么是多路径 普通的电脑主机都是一个硬盘挂接到一个总线上,这里是一对一的关系。而到了有光纤组成的SAN环境,或者由iSCSI组成的IPSAN环境,由于主机和存储通过了光纤交换机或者多块网卡及IP来连接,这样的话,就构成了多对多的关系。也就是说,主机到存储可以有多条路径可以选择。主机到存储之间的IO由多条路径可以选择。每个主机到所对应的存储可以经过几条不同的路径,如果是同时使用的话,I/O流量如何分配?其中一条路径坏掉了,如何处理?还有在操作系统的角度来看,每条路径,操作系统会认为是一个实际存在的物理盘,但实际上只是通向同一个物理盘的不同路径而已,这样是在使用的时候,就给用户带来了困惑。多路径软件就是为了解决上面的问题应运而生的。 多路径的主要功能就是和存储设备一起配合实现如下功能: 1.故障的切换和恢复 2.IO流量的负载均衡 3.磁盘的虚拟化 由于多路径软件是需要和存储在一起配合使用的,不同的厂商基于不同的操作系统,都提供了不同的版本。并且有的厂商,软件和硬件也不是一起卖的,如果要使用多路径软件的话,可能还需要向厂商购买license才行。比如EMC公司基于linux下的多路径软件,就需要单独的购买license。好在, RedHat和Suse的2.6的内核中都自带了免费的多路径软件包,并且可以免费使用,同时也是一个比较通用的包,可以支持大多数存储厂商的设备,即使是一些不是出名的厂商,通过对配置文件进行稍作修改,也是可以支持并运行的很好的。 二、Linux下multipath介绍,需要以下工具包: 在CentOS 5中,最小安装系统时multipath已经被安装,查看multipath是否安装如下: 1、device-mapper-multipath:即multipath-tools。主要提供multipathd和multipath 等工具和 multipath.conf等配置文件。这些工具通过device mapper的ioctr的接口创建和配置multipath设备(调用device-mapper的用户空间库。创建的多路径设备会在/dev /mapper中)。

软冗余实例

Siemens PLC系统软件冗余 的说明与实现 软件冗余基本信息介绍 软件冗余是Siemens实现冗余功能的一种低成本解决方案,可以应用于对主备系统切换时间要求不高的控制系统中。 A.系统结构 Siemens软件冗余系统的软件、硬件包括: 1套STEP7编程软件(V5.x)加软冗余软件包(V1.x); 2套PLC控制器及I/O模块,可以是S7-300或S7-400系统; 3条通讯链路,主系统与从站通讯链路(PROFIBUS 1)、备用系统与从站通讯链路(PROFIBUS 2)、主系统与备用系统的数据同步通讯链路(MPI 或 PROFIBUS 或 Ethernet); 若干个ET200M从站,每个从站包括2个IM153-2接口模块和若干个I/O模块; 除此之外,还需要一些相关的附件,用于编程和上位机监控的PC-Adapter(连接在计算机串口)或CP5611(插在主板上的PCI槽上)或CP5511(插在笔记本的PCMIA槽里)、PROFIBUS电缆、PROFIBUS总线链接器等; 下图说明了软冗余系统的基本结构: 图2 可以看出,系统是由两套独立的S7-300或S7-400 PLC系统组成,软冗余能够实现: I.主机架电源、背板总线等冗余; II.PLC处理器冗余; III.PROFIBUS现场总线网络冗余(包括通讯接口、总线接头、总线电缆的冗余); IV.ET200M站的通讯接口模块IM153-2冗余。

软冗余系统由A和B两套PLC控制系统组成。开始时,A系统为主,B系统为备用,当主系统A中的任何一个组件出错,控制任务会自动切换到备用系统B当中执行,这时,B系统为主,A系统为备用,这种切换过程是包括电源、CPU、通讯电缆和IM153接口模块的整体切换。系统运行过程中,即使没有任何组件出错,操作人员也可以通过设定控制字,实现手动的主备系统切换,这种手动切换过程,对于控制系统的软硬件调整,更换,扩容非常有用,即Altering Configuration and Application Program in RUN Mode 。 B.系统工作原理 在软冗余系统进行工作时,A、B控制系统(处理器,通讯、I/O)独立运行,由主系统的PLC掌握对ET200从站中的I/O控制权。A、B系统中的PLC程序由非冗余(non-duplicated)用户程序段和冗余(redundant backup)用户程序段组成,主系统PLC执行全部的用户程序,备用系统PLC只执行非冗余用户程序段,而跳过冗余用户程序段。 下面我们看一下软冗余系统中PLC内部的运行过程: 图3 主系统的CPU将数据同步到备用系统的CPU需要几个程序扫描循环:

GPS车辆定位导航系统中多路径效应的误差分析

GPS车辆定位导航系统中多路径效应的误差分析 【摘要】车辆定位导航技术是智能交通系统技术的核心部分,是实现道路管理智能化的关键技术之一。本文分析了GPS车载导航系统中的误差,并对多路径效应产生的误差进行重点分析,通过对传统的解决多路径效应误差的方法的分析,结合新技术指出了适合在车载导航定位系统中消除或减弱误差的方法,从而可以提高车辆定位的精度。 【关键词】车载定位导航系统;GPS;多路径效应;误差 0 前言 车载定位导航系统是集中应用了自动车辆定位技术、地理信息系统与数据库技术、计算机技术、多媒体技术、无线通信技术的高科技综合系统,为车辆驾驶员提供自动车辆定位、行车路线设计、路径引导服务、综合信息服务、无线通信等功能。提供车辆的位置、速度和航向等信息是车辆导航定位系统的首要功能。对任何性能良好的车辆定位导航系统来说,精度可靠的车辆定位是实现导航功能的前提和基础。 在车辆定位导航系统中,GPS定位误差的性质与其他GPS应用中的误差有所不同。因为车辆主要在高楼林立、林荫道纵横的城市环境中运行,所以城市当中的电磁环境会严重的干扰GPS信号而使定位误差增大,同时GPS接收机将遭遇非常复杂的,且变化无常的多路径。在存在恶劣多路径的环境下,多路径定位误差可高达几十米,甚至上百米。因此在车辆导航定位中,多路径误差就成为一个必须考虑的误差源。 1 多路径误差的原理及特性 1.1 多路径误差的原理 GPS信号接收机所测得的站星距离,应该是GPS信号接收天线相位中心至GPS卫星发射天线相位中心的距离。接收的GPS信号理论上应该是从GPS卫星发射天线相位中心直接到达GPS信号接收天线相位中心,称之为直接波。实际上除了直接波还有:地面反射波,星体反射波,介质散射波等几种间接波。GPS 信号从高空通过电离层和对流层而到达地面时包括了直接从GPS卫星到达用户接收天线的直接波以及经过反射和散射而到达用户接收天线的间接波。GPS信号接收机所观测的GPS信号是直接波和间接波的合成波。所谓的“多路径误差”就是间接波对直接波的破坏性干涉而引起的站星距离误差。这种由多路径的信号传播所引起的干涉时延效应被称作多路径效应。 在GPS信号接收天线接收的间接波中以地面反射波为主,现以地面反射为例来说明这种组合。若天线收到卫星的信号为S,同时收到经地面反射后的反射波信号S′。显然这两种信号所经过的路径不同,其路径差值称为程差,用Δ来

电源系统ORing的基本原理

电源系统 ORing 的基本原理 为您的便携设备、刀片服务器以及电信交换机寻找适用的 ORing 功能以及技术 作者:Martin Patoka,德州仪器 (TI) 工程总监 许多现代设备和系统都要求带有冗余设计、电源容量总计或者多电源选择功能的电源架构。在本文中,这些功能一般来说是指 ORing。使用 ORing 的系统非常普遍,规格和复杂性多种多样。这包括诸如便携式设备、刀片服务器、电信交换机之类的系统。 一旦应用中要求有超过一个以上的单电源时,电源组合、选择、热插拔及总线保护之类的问题就出现了。由于故障、短路、热插拔或者拆卸器件,没有带保护功能的并联电源就会导致运行中断的现象。虽然这些功能与典型的浪涌和故障保护热插拔功能相类似,但它们在位置和操作中却明显不同。这样的 ORing 功能最初是由半导体二级管来完成的,而且在一些应用中仍然是最好的解决方案。随着MOSFET 的进一步的发展,它们已成为较高性能解决方案的基础。 在许多情况下,都必须把多个电源组合起来为负载供电。在高功率系统中(例如:刀片服务器或基于机架的电信系统),为了提高灵活性、冗余或者一个N+1 结构中的电容量,可能会具有多个电源组合。一般而言,在系统处于工作状态时(可热插拔)这些电源均为可替换的,而且是采用电路卡的形式。另一个例子是一个可能由交流电适配器、USB或者电池电源供电的设备。 ORing 架构 电源组合的拓扑如图 1 所示。二级管符号可能以半导体二极管的形式来实现,或由一个较高性能的功能模块来实现。从物理层面来说,ORing 可以被置于数个地方。如果聚合在 B 线的左边,那么 ORing 可以被放置在电源中。如果置于 A 线和 B 线之间,那么 ORing 同样可以被放置在背板或者中间板上。最后,如果置于 A 线的右边,那么 ORing 则可以被放置在负载中。 图1、多个电源输入

多路径的配置与管理V2.0

多路径配置与管理

目录 1. 多路径概述 (1) 1.1 什么是多路径 (1) 1.2 业界的MPIO (1) 2. Windows Server 2008/2012 MPIO配置与管理 (1) 2.1 MPIO安装 (1) 3.2 MPIO配置 (5) 3.3 MPIO切换策略介绍 (13) 4. RedHat Linux MPIO配置与管理 (15) 4.1 多路径软件的安装 (15) 4.2 Multipath.conf配置文件解析 (16) 4.3 配置multipath.conf (19) 4.3.1 快速配置 (19) 4.3.2 高级配置 (19) 4.4 多路径管理 (24) 4.5 多路径磁盘的使用 (25) 5 各产品multipath.conf参数配置 (26) 5.1 INSPUR AS500G/E、AS520G/E (26) 5.1.1 Windows客户端 (26) 5.1.2 Linux客户端 (27) 6 Multipath Issues Troubleshooting (27) 6.1在群集中保持多路径设备名称一致 (27)

1. 多路径概述 1.1 什么是多路径 普通的电脑主机都是一个硬盘挂接到一个总线上,这里是一对一的关系。而到了有光纤组成的SAN环境,或者由iSCSI组成的IPSAN环境,由于主机和存储通过了光纤交换机或者多块网卡及IP来连接,这样的话,就构成了多对多的关系。也就是说,主机到存储之间的IO由多条路径可以选择。每个主机到所对应的存储可以经过几条不同的路径,如果是同时使用的话,I/O流量如何分配?其中一条路径坏掉了,如何处理?还有在操作系统的角度来看,每条路径,操作系统会认为是一个实际存在的物理盘,但实际上只是通向同一个物理盘的不同路径而已,这样在使用的时候,就给用户带来了困惑。多路径软件就是为了解决上面的问题应运而生的。 多路径管理MPIO(Multi-Path),对支持MPIO的存储设备,MPIO自动发现、配置和管理多个存储路径,提供IO高可靠性和负载均衡。MPIO方案的实现有三个部分组成,分别为存储系统部分、存储软件部分和操作系统部分。 多路径的主要功能就是和存储设备一起配合实现如下功能: 1.故障的切换和恢复 2.IO流量的负载均衡 3.磁盘的虚拟化 在RedHat和Suse的2.6内核中都自带了免费的多路径软件包,并且可以免费使用,同时也是一个比较通用的包,可以支持大多数存储厂商的设备,即使是一些不是出名的厂商,通过对配置文件进行稍作修改,也是可以支持并运行的很好的。 1.2 业界的MPIO 由于多路径软件是需要和存储在一起配合使用的,不同的厂商基于不同的操作系统,都提供了不同的版本。并且有的厂商,软件和硬件也不是一起卖的,如果要使用多路径软件的话,可能还需要向厂商购买license才行。,业界比较常见的MPIO功能软件有EMC 的PowerPath,IBM的SDD,日立的Hitachi Dynamic Link Manager和广泛使用的linux开源软件device-mapper。 2. Windows Server 2008/2012 MPIO配置与管理 2.1 MPIO安装 Windows Server 2008系统包含MPIO软件,不需要使用其它的MPIO软件。具体安装步

软件冗余的原理和配置

软件冗余的原理和配置 7.1 软件冗余基本信息介绍 软件冗余是Siemens实现冗余功能的一种低成本解决方案,可以应用于对主备系统切换时间为秒级的控制系统中。 7.1.1系统结构 Siemens软件冗余系统的软件、硬件包括: (1)1套STEP7编程软件(V5.2或更高)加软冗余软件包(V1.x); (2)2套PLC控制器及I/O模块,可以是S7-300(313C-2DP,314C-2DP,31X-2DP)或S7-400(全部S7-400系列CPU)系统; (3)3条通讯链路,主系统与从站通讯链路(PROFIBUS 1)、备用系统与从站通讯链路(PROFIBUS 2)、主系统与备用系统的数据同步通讯链路(MPI 或 PROFIBUS 或 Ethernet); (4)若干个ET200M从站,每个从站包括2个IM153-2接口模块和若干个I/O模块;Y-Link不能用于软冗余系统; (5)除此之外,还需要一些相关的附件,用于编程和上位机监控的PC-Adapter(连接在计算机串口)或CP5611(插在主板上的PCI槽上)或CP5511(插在笔记本的 PCMIA槽里)、PROFIBUS电缆、PROFIBUS总线链接器等。 系统架构如图7-1所示: 图7-1软冗余的系统架构

可以看出,系统是由两套独立的S7-300或S7-400 PLC系统组成,软冗余能够实现: 主机架电源、背板总线等冗余;PLC处理器冗余;PROFIBUS现场总线网络冗余(包括通讯接口、总线接头、总线电缆的冗余);ET200M站的通讯接口模块IM153-2冗余。 软冗余系统由A和B两套PLC控制系统组成。开始时,A系统为主,B系统为备用,当主系统A中的任何一个组件出错,控制任务会自动切换到备用系统B当中执行,这时,B 系统为主,A系统为备用,这种切换过程是包括电源、CPU、通讯电缆和IM153接口模块的整体切换。系统运行过程中,即使没有任何组件出错,操作人员也可以通过设定控制字,实现手动的主备系统切换,这种手动切换过程,对于控制系统的软硬件调整,更换,扩容非常有用,即Altering Configuration and Application Program in RUN Mode 。 7.1.2 系统工作原理 在软冗余系统进行工作时,A、B控制系统(处理器,通讯、I/O)独立运行,由主系统的PLC掌握对ET200从站中的I/O控制权。A、B系统中的PLC程序由非冗余(non-duplicated)用户程序段和冗余(redundant backup)用户程序段组成,主系统PLC执行全部的用户程序,备用系统PLC只执行非冗余用户程序段,而跳过冗余用户程序段。 软冗余系统内部的运行过程参考图7-2。 图7-2软冗余系统内部的运行过程 主系统的CPU将数据同步到备用系统的CPU需要1到几个程序扫描循环,如图7-3所示:

摘要_论述了冗余热备份电源的工作原理和设计方案

一种冗余热备份电源的设计 摘要:在设计某高可靠性计算机系统时,要求其配套电源采取冗余设计。一般来说,可以采取的方案有容量冗余、冗余冷备份方式、并联均流的N+1备份方式、冗余热备份方式。本文论述了冗余热备份电源的工作原理和设计方案。 关键词:正激变换器;冗余热备份;或门二极管 0、引言 在设计某高可靠性计算机系统时,要求其配套电源采取冗余设计。一般来说,可以采取的方案有容量冗余、冗余冷备份方式、并联均流的N+1备份方式、冗余热备份方式。 容量冗余是指电源的最大负载能力大于实际负载,也就是“大马拉小车”,其缺点是不利于提高电源的效率,而且对提高电源的可靠性意义不大。 冗余冷备份方式是指电源由两个或多个功能相同的单元模块组成,电源启动后由其中一个单元模块向设备供电,当工作单元发生故障时,备份单元立刻启动向设备供电。这种方式的缺点是备份单元的启动到输出电压的建立需要一定的时间,容易造成输出电压出现较大的豁口,这样会对被供电的设备产生影响。 并联均流的N+1备份方式是指电源由多个功能相同的单元组成,所有单元的输出功率之和大于系统要求的功率,各单元的输出通过或门二极管并联在一起,有时输出采取均流控制电路,目前采用较多的就是这种方式。N+1备份方式由于是多个单元同时向设备供电,单个单元故障(失效)一般不会对输出电压产生影响,但是,如果输出线发生故障容易波及到所有单元。 冗余热备份方式是指电源由多个功能相同的单元组成,电源启动时所有单元同时工作,由其中预先设定的单元向设备供电,备份单元处于空载状态,当向设备供电的单元出现故障时,备份单元立刻向设备供电,维持了输出电压的稳定。这种方式的优点是工作单元故障后,备份单元输出响应速度快,可以保证输出电压只在一个很小的范围内波动。 本文详细论述了采取冗余热备份方式的电源设计方案。 1、工作原理 冗余热备份结构的主电路由两个功能相同且同时处于工作状态的单元组成,由切换电路控制其中一路向设备供电,另一路空载。当向设备供电的单元发生故障时,切换电路立即动作,使另一个单元向设备供电,同时切断故障单元的输出。 主电路拓扑采用正激变换器,由输入滤波电路、功率变换电路、控制电路、输出滤波电路、监测切换电路组成。电源框图如图1所示。DC 28V输入经过滤波后提供给功率变换电路,控制电路通过实时检测来控制功率变换电路,以实现输出隔离稳定的5V电压,同时对输出电压进行过压、过流保护。

CentOS系统光纤连接存储的多路径配置及使用方法

C e n t O S系统光纤连接存储的多路径配置及使用方法 1、安装多路径软件包: 2、检查安装包的安装情况 #rpm–aq|grepmultipath 3、安装上述多路径软件包 #? #?rpm?-ivh?devic 安装过程中可能会提示需要安装其他的关联软件包: 主要与多路径软件相关联的软件包如下: libaio libaio-devel- 如服务器可以连接公网的话,可直接用yum来安装,yum会自动将相关联的软件安装上. #yuminstally device-mapper* 检查安装情况 #rpm–aq|grepmultipath 安装完成后需重启机器. 4、配置多路径软件multipath 4.1、将多路径软件添加至内核模块中 #modprobedm-multipath #modprobedm-round-robin 检查内核添加情况 #lsmod|grepmultipath 4.2、将多路径软件multipath设置为开机自启动 #chkconfig--level2345multipathdon 检查 #chkconfig--list|grepmultipathd 启动multipath服务 #servicemultipathdrestart 4.3、配置multipath软件,编辑/etc/multipath.conf 注意:默认情况下,/etc/multipath.conf是不存在的,需要做如下准备工作: 4.3.1、cd至/sbin下,用如下命令生成multipath.conf文件: #mpathconf--enable--find_multipathsy--with_moduley--with_chkconfigy 4.3.2、查看并获取存储分配给服务器的逻辑盘lun的wwid信息 #more/etc/multipath/wwids 编辑/etc/multipath.conf,编辑multipath的配置文件时,可将自动生成的multipath.conf保留,重新vim 个新的multipath文件. #vim/etc/multipath.conf [root@ahltimt3~]#vim/etc/multipath.conf defaults{ find_multipathsyes user_friendly_namesno }

冗余配置例子

1 引言 Controllogix是Rockwell公司在1998年推出AB系列的模块化PLC,代表了当前PLC发展的最高水平,是目前世界上最具有竞争力的控制系统之一,Control- logix将顺序控制、过程控制、传动控制及运动控制、通讯、I/O技术集成在一个平台上,可以为各种工业应用提供强有力的支持,适用于各种场合,最大的特点是可以使用网络将其相互连接,各个控制站之间能够按照客户的要求进行信息的交换。 Controllogix可以提供完善的控制器的冗余功能,采用热备的方式构建控制器,两个控制器框架采用完全相同的配置,它们之间使用同步电缆连接,不仅控制器可以采用热备,通讯网络也可以采用相似的方式进行热备,除以上的部分可以热备外,控制器的电源也可以进行热备,这样大大提高了控制器的运行的可靠性。 2 系统介绍 在某焦化厂干熄焦汽轮机发电项目的DCS控制系统中,采用了冗余的Controllogix,系统结构如图1所示。上位机通过交换机与PLC处理器通讯,远程框架通过冗余的ControlNet连接到控制器框架,同时,远程框架采用了冗余电源配置。整套系统具有很高的可靠性,满足了汽轮机发电系统对于PLC控制部分需要长期无故障运行的要求。上位机采用Rsview32软件,用以监控现场设备的运行。 图1 系统结构图 本地框架由L1和L2 框架构成,运行时L1和L2互为热备,构成了冗余,L1和L2框架各个槽位的所配置的模块如表1所示。R1,R2和R3是远程框架,所有的点号都连接到远程框架的模块,远程框架的供电使用了AB的冗余电源(1756-PAR2)。 收藏 引用 muzi_woody 1楼2007-9-21 7:41:00 表1 L1和L2框架各个槽位的所配置的模块 设置主从控制器框架的1756-CNBR/D的节点地址时应注意,他们的地址拨码应该相同,应该是系统中挂接在冗余ControlNET网上所有节点的最高地址,在本系统里面都设置为4,远程站的节点地址分别为1,2,3。在冗余系统正常运行时,从控制器框架的CNBR/D 节点地址会自动加1,变为5。 1757-SRM是用于同步的冗余模块,主从控制器框架的SRM通过光纤连接。正常工作时,1756- L61中所有的程序和数据通过光纤进行同步,在RSLOGIX5000编程中,不必对此模块进行组态。 1756-ENBT是以太网接口模块,通过网线连接到交换机。ENBT的地址分配为两个连续的IP即可,在这个系统中IP地址分别为192.168.1.11和192.168.1.12。 3 模块的升级 冗余系统中,主控制器框架和从控制器框架上各个模块的版本必须严格一致,

5.8GHz多路径识别方案解析

一、引言 高速公路联网后,出口和入口之间可能存在多种行车路径。当车主选走不同的路径时,可能涉及不同的路费拆分,甚至不同的收费标准。为精确识别车辆的行驶路径,并针对行驶路径给出正确、公平的路费拆分或收费标准,需要在车辆进入高速后采用某种手段来跟踪该车辆的行驶路径,并体现到过车流水或费率中去。本文深入分析了目前存在的车牌识别、有源射频卡等方案的优劣性,并针对有源射频卡方案提出了创新型5.8G统一多路径识别解决方案,并阐明对比433M 频段有源射频卡方案的先进性。 二、多路径识别方案分析 1、高速公路多路径识别 高速公路联网后,从地点A到达地点B存在多种可选路径。车主选用不同的路径导致行驶的高速里程不同,或者涉及的道路业主不同。因此在收费标准、路费拆分方面,也需要采用不同的方案。多路径识别是指通过一定的手段识别车辆行驶的路径,作为收费或者拆分结算的依据。 图 1 高速公路多路径识别 2、多路径识别整体路线选择 多路径识别目前普遍采用的方案有两大类:模糊识别与精确识别。模糊识别是指通过地感、雷达、视频识别等技术,辅以车型识别设备,统计经过不同路径的车辆数量和类型。后续在做路费拆分时,根据统计数据,将路费拆分给不同的业主。这种方案不能够精确识别某辆车的行驶路径,因此不能够作为向车主区别收费的依据,只能作为拆分路费的依据。

作为拆分依据,也因识别率有限,整体方案也不够精确,远远不能满足业主需求。 精确识别的方案较多,但普遍采用的主要有三类:合建站识别、视频车牌识别、有源射频识别。合建站是在不同业主路段或多路径交叉点处建设的写卡站点。车主到达合建站后交卡并由工作人员在卡内写入路径信息。此方案涉及大规模工程建设,且严重影响高速公路联网后的畅通性,因此按照交通部整体规划,未来几年将逐步废除。并且新建的高速公路不准再引入新的合建站。 视频车牌识别是指在高速公路多路径识别点架设高清摄像设备,并铺设高速通信光纤网。当车辆经过摄像点时,自动拍照,提取图像特征和车牌信息后,将数据实时传输到后端服务器,形成车辆行驶的路径信息,作为后续结算的依据。如果还需要实现根据路径差异化收费,则需要由后端服务器将数据转换为该车的路径信息,进一步实时同步到所有的高速公路出入口站点。当车辆到达出口时,车道上位机从站点服务器获取该车辆的路径信息,并体现到收费中去。视频识别对车主没有额外的要求,但在面临地面积水、阴雨、大雾、夜间等外部情况时,会导致识别率下降。 有源射频方案是指在高速公路入口处给车主发放可远程接受路径信息的射频复合卡,同时在道路旁架设无线基站,无线基站会持续广播本路径的标识信息。当车辆行驶到不同的路径上时,无线基站广播的标识信息会被该射频复合卡接收,并记录在卡内。当车辆到达出口时,车主交回复合卡,出口车道系统读出路径信息与出入口信息,实现根据路径的差异化收费和差异化结算功能。有源射频方案识别率可达到99%以上,且不受天气、时间影响,是目前最具优势的精确识别方案。 目前还有其他的非主流解决方案,如通过移动运营商的基站定位方案。在高速公路入口处给车主发放内置手机通信模块的射频复合卡。当车辆在高速公路行驶时,该射频复合卡实时收集并记录基站广播的CELL id信息。到达出口时,根据沿途的基站标识信息,得到车辆行驶的路径信息。但该方案设计与运营商合作,存在月租费用等因素。在移动基站射频复合卡的研发技术上,也存在电流大、成本高、待机时间短等问题。

一种冗余热备份电源的设计

一种冗余热备份电源的设计 作者:祝海强,尹明 摘要:论述了冗余热备份电源的工作原理和设计方案。 关键词:正激变换器;冗余热备份;或门二极管 0 引言 在设计某高可靠性计算机系统时,要求其配套电源采取冗余设计。一般来说,可以采取的方案有容量冗余、冗余冷备份方式、并联均流的N+1备份方式、冗余热备份方式。 容量冗余是指电源的最大负载能力大于实际负载,也就是“大马拉小车”,其缺点是不利于提高电源的效率,而且对提高电源的可靠性意义不大。 冗余冷备份方式是指电源由两个或多个功能相同的单元模块组成,电源启动后由其中一个单元模块向设备供电,当工作单元发生故障时,备份单元立刻启动向设备供电。这种方式的缺点是备份单元的启动到输出电压的建立需要一定的时间,容易造成输出电压出现较大的豁口,这样会对被供电的设备产生影响。 并联均流的N+1备份方式是指电源由多个功能相同的单元组成,所有单元的输出功率之和大于系统要求的功率,各单元的输出通过或门二极管并联在一起,有时输出采取均流控制电路,目前采用较多的就是这种方式。N+1备份方式由于是多个单元同时向设备供电,单个单元故障(失效)一般不会对输出电压产生影响,但是,如果输出线发生故障容易波及到所有单元。 冗余热备份方式是指电源由多个功能相同的单元组成,电源启动时所有单元同时工作,由其中预先设定的单元向设备供电,备份单元处于空载状态,当向设备供电的单元出现故障时,备份单元立刻向设备供电,维持了输出电压的稳定。这种方式的优点是工作单元故障后,备份单元输出响应速度快,可以保证输出电压只在一个很小的范围内波动。 本文详细论述了采取冗余热备份方式的电源设计方案。 1 工作原理 冗余热备份结构的主电路由两个功能相同且同时处于工作状态的单元组成,由切换电路控制其中一路向设备供电,另一路空载。当向设备供电的单元发生故障时,切换电路立即动作,使另一个单元向设备供电,同时切断故障单元的输出。 主电路拓扑采用正激变换器,由输入滤波电路、功率变换电路、控制电路、输出滤波电路、监测切换电路组成。电源框图如图1所示。DC 28V输入经过滤波后提供给功率变换电路,控制电路通过实时检测来控制功率变换电路,以实现输出隔离稳定的5V电压,同时对输出电压进行过压、过流保护。

RHEL_ENTERPRISE_6.4_多路径软件multi-path配置操作手册

RHEL ENTERPRISE 6.4 多路径软件multi-path 配置操作手册

目录 一、什么是多路径 (1) 1.1 多路径的主要功能 (1) 1.2 UUID的作用及意义 (2) 二、Linux下multipath介绍 (2) 2.1 查看multipath是否安装 (2) 2.2 Linux下multipath需要以下工具包介绍 (2) 三、multipath在Redhat中的基本配置过程 (3) 3.1 安装和加载多路径软件包 (3) 3.2 设置开机启动 (4) 3.3 生成multipath配置文件 (4) 四、multipath 高级配置 (4) 4.1 获取存储设备的UUID/wwid和路径 (5) 4.2 配置/etc/multipath.conf 文件例子 (5) 4.3 关于:scsi_id (8) 五、multipath 基本命令 (8) 六、multipath.conf配置文件说明 (9) 七、对multipath磁盘的基本操作 (10) 八、使用multipath的一个例子 (12) 九、PV/VG/LV常用操作命令 (12) 十、使用udev配置固定iSCSI磁盘设备名称 (16)

一、什么是多路径 普通的电脑主机都是一个硬盘挂接到一个总线上,这里是一对一的关系。而到了有光纤组成的SAN 环境,或者由iSCSI组成的IPSAN环境,由于主机和存储通过了光纤交换机或者多块网卡及IP来连接,这样的话,就构成了多对多的关系。 也就是说,主机到存储可以有多条路径可以选择。主机到存储之间的IO由多条路径可以选择。每个主机到所对应的存储可以经过几条不同的路径,如果是同时使用的话,I/O流量如何分配?其中一条路径坏掉了,如何处理?还有在操作系统的角度来看,每条路径,操作系统会认为是一个实际存在的物理盘,但实际上只是通向同一个物理盘的不同路径而已,这样是在使用的时候,就给用户带来了困惑。多路径软件就是为了解决上面的问题应运而生的。 另外在linux中,同样的设备在重新插拔、系统重启等情况下,自动分配的设备名称并非总是一致的,它们依赖于启动时内核加载模块的顺序,就有可能导致设备名分配不一致。 1.1多路径的主要功能 多路径的主要功能就是和存储设备一起配合实现如下功能: 1.故障的切换和恢复 2.IO流量的负载均衡 3.磁盘的虚拟化 由于多路径软件是需要和存储在一起配合使用的,不同的厂商基于不同的操作系统,都提供了不同的版本。并且有的厂商,软件和硬件也不是一起卖的,如果要使用多路径软件的话,可能还需要向厂商购买license才行。 比如EMC公司基于linux下的多路径软件,就需要单独的购买license。好在,RedHat和Suse的2.6的内核中都自带了免费的多路径软件包,并且可以免费使用,同时也是一个比较通用的包,可以支持大多数存储厂商的设备,即使是一些不是出名的厂商,通过对配置文件进行稍作修改,也是可以支持并运行的很好的。

软冗余和硬冗余的区别

从字面上讲,也就是实现的方式上: 1)软冗余是通过软件实现,也就是是西门子的SWR软件包;硬冗余,则是使用CPU417H;414H;412H来实现,对于PLC 本身的操作系统及硬件设置上均不同,硬冗余的同步机理为事件同步。 2)硬冗余的两个热备系统必须使用相同的PLC;软冗余的两个暖被系统可以使用不同的PLC。 3)硬冗余的同步链路采用同步模块和光纤,有长距,短距两种;软冗余则使用MPI,DP(CP343-5,CP443-5)和IE(CP343-1,CP443-1),程序内部调用的是xsend/xrcv;AGsend/rcv以及Bsend/rcv(仅对400),这也就是为什么S7-300 PN CPU 无法使用集成PN口来实现同步的原因。 从性能上来: 1)冗余的层级:软冗余无法进行IO冗余;IO冗余仅能在硬冗余里实现。 此外,Y-link仅能在硬冗余中实现。 2)系统切换的时间:硬冗余:PLC无切换时间,因为程序同时在两个CPU里运行,硬冗余里成为主动切换;被动切换,也就是从站切换的时间<100ms; 对于软冗余,冗余程序仅在主CPU内执行,备用CPU仅执行非冗余段程序,切换时为整个系统的切换。切换时间取决于同步链路的类型,速率和同步数据量的大小,DP从站的多少,多为秒级。 对于切换,软冗余系统中,DP从站的接口模板或DP链路故障均会造成主备CPU的切换,而引起整个系统的切换;而在硬冗余中,从站的故障不会造成主备CPU的切换。 3)信息的丢失:2)提到了切换,很自然的,CPU间的切换可能导致部分信息,如报警的丢失,因为报警在当前激活的主CPU 中进行处理。所以,软冗余系统中会存在信息的丢失;而硬冗余系统中,由于CPU间为事件同步的方式,且切换无时间,保证了信息不会丢失,也就是硬冗余中所说的平滑切换。 4)通信架构: 400H系统与上位机间的通信有多种架构,需要使用CP1613和redconnect实现,网络构成方式:双通道,四通道,单环,双环等;400H间建立的是容错S7连接。 5)H-CiR功能: 硬冗余系统支持H-Cir功能,可在线修改组态,增删模板,更换存储卡等

冗余设计

引言 不间断供电系统(Uninterruptible Power System,UPS)的出现是为了适应信息社会的到来。为了保证对重要负载供电的连续性,满足高新技术产品和设备对供电质量提出的越来越严格的技术要求。应用模块化并联冗余技术的UPS系统进一步提高了对负载供电的可靠性,同时也扩大供电容量,是国内外研究的热门技术。 利用多台UPS模块并联运行,都是以UPS扩容或提高UPS可靠性为目的。不论采用何种并联冗余连接技术,都是将多台UPS单机的输出端直接进行连接。一般的UPS因为都有逆变供电主回路和旁路供电回路两条供电回路,所以对负载来说相当于有两个电源。任何两个电源之间的转换开关都是一个单点故障点,即使两个上游的电源再可靠,只要转换开关一出现故障,都可能造成负载断电,由于这种开关的造价比较高,再加之其它技术因素,往往不能冗余并联,专门作为一个模块,有较高的可靠性要求。利用静态转换开关(Static Transfer Switch,STS)统一集中控制并联系统的主-旁路切换功能,实现快速切换和系统保护等一系列控制功能,是比较理想的控制方案。 本文主要介绍模块化并联冗余UPS系统静态转换开关模块的设计方案,模块控制采用DSP实现。通过设计和完成一台两路(并联系统输出与旁路)220V单相输入、10kVA/220V 单相输出的STS功能样机,验证了该方案的有效性。 1.并联组合式切换开关结构 目前的静态转换开关大多是采用微处理器数字控制技术的,可以称为数字型静态转换开关(Digital Static Transfer Switch,DSTS)。目前美国德州仪器(Texas Instruments,TI)公司的TMS320系列DSP已成为中大功率电力电子应用场合的主流控制芯片,它的突出特点是采用了先进的多总线并行结构和流水线的工作方式,从而极大地提高了系统的运行速度和数字信号的处理能力。本系统采用的是TMS320LF2407A作为主控DSP芯片。 静态转换开关包括两类交流切换开关:静态旁路开关和静态并联系统总输出开关。从快速切换的角度出发,每个切换开关与UPS单机的静态旁路开关结构可以完全一样,采用一对可控硅背靠背连接或直接用三端双向可控硅器件的可控硅型双向开关结构。但为了增容需要而采用并联冗余结构,在大功率输出的情况下单用可控硅型STS损耗过大,发热严重,恶劣条件下甚至会导致STS模块的损坏。交流接触器(图1)是继电器型交流切换开关,可靠闭合后导通阻抗小、损耗小,是理想的交流电路连接方式,但是交流接触器存在与继电器型STS同样的问题,切换速度较慢,不能实现快速切换。因此采用上述两者并联的结构是比较理想的方案。

LINUX下多路径(详细)

LINUX下多路径(multi-path)介绍及使用 2013-05-16 11:15:34| 分类:openfiler系统+fr|举报|字号订阅 一、什么是多路径 普通的电脑主机都是一个硬盘挂接到一个总线上,这里是一对一的关系。而到了有光纤组成的SAN环境,或者由iSCSI组成的IPSAN环境,由于主机和存储通过了光纤交换机或者多块网卡及IP来连接,这样的话,就构成了多对多的关系。也就是说,主机到存储可以有多条路径可以选择。主机到存储之间的IO由多条路径可以选择。每个主机到所对应的存储可以经过几条不同的路径,如果是同时使用的话,I/O流量如何分配?其中一条路径坏掉了,如何处理?还有在操作系统的角度来看,每条路径,操作系统会认为是一个实际存在的物理盘,但实际上只是通向同一个物理盘的不同路径而已,这样是在使用的时候,就给用户带来了困惑。多路径软件就是为了解决上面的问题应运而生的。多路径的主要功能就是和存储设备一起配合实现如下功能: 1.故障的切换和恢复 2.IO流量的负载均衡 3.磁盘的虚拟化 由于多路径软件是需要和存储在一起配合使用的,不同的厂商基于不同的操作系统,都提供了不同的版本。并且有的厂商,软件和硬件也不是一起卖的,如果要使用多路径软件的话,可能还需要向厂商购买license才行。比如EMC公司基于linux下的多路径软件,就需要单独的购买license。好在, RedHat和Suse的2.6的内核中都自带了免费的多路径软件包,并且可以免费使用,同时也是一个比较通用的包,可以支持大多数存储厂商的设备,即使是一些不是出名的厂商,通过对配置文件进行稍作修改,也是可以支持并运行的很好的。 二、Linux下multipath介绍,需要以下工具包: 在CentOS 5中,最小安装系统时multipath已经被安装,查看multipath是否安装如下:

相关主题
文本预览
相关文档 最新文档