DCS冗余技术简介
- 格式:doc
- 大小:21.00 KB
- 文档页数:6
dcs是什么意思 dcs相关介绍你知道dcs是什么意思吗?不知道吧,那就一起来看看我为大家精心整理的“dcs是什么意思 dcs相关介绍”,欢迎大家阅读,供您参考。
dcs是什么意思 dcs相关介绍中文名:分布式控制系统外文名:Distributed Control System别称:分布式控制系统概述:DCS是分布式控制系统的英文缩写(Distributed Control System),在国内自控行业又称之为集散控制系统。
是相对于集中式控制系统而言的一种新型计算机控制系统,它是在集中式控制系统的基础上发展、演变而来的。
系统的主要技术概述系统主要有现场控制站(I/O站)、数据通讯系统、人机接口单元(操作员站OPS、工程师站ENS)、机柜、电源等组成。
系统具备开放的体系结构,可以提供多层开放数据接口。
硬件系统在恶劣的工业现场具有高度的可靠性、维修方便、工艺先进。
底层汉化的软件平台具备强大的处理功能,并提供方便的组态复杂控制系统的能力与用户自主开发专用高级控制算法的支持能力;易于组态,易于使用。
支持多种现场总线标准以便适应未来的扩充需要。
系统的设计采用合适的冗余配置和诊断至模件级的自诊断功能,具有高度的可靠性。
系统内任一组件发生故障,均不会影响整个系统的工作。
系统的参数、报警、自诊断及其他管理功能高度集中在CRT上显示和在打印机上打印,控制系统在功能和物理上真正分散,整个系统的可利用率至少为99.9%;系统平均无故障时间为10万小时,实现了核电、火电、热电、石化、化工、冶金、建材诸多领域的完整监控。
“域”的概念。
把大型控制系统用高速实时冗余网络分成若干相对独立的分系统,一个分系统构成一个域,各域共享管理和操作数据,而每个域内又是一个功能完整的DCS系统,以便更好的满足用户的使用。
网络结构可靠性、开放性及先进性。
在系统操作层,采用冗余的100Mbps以太网;在控制层,采用冗余的100Mbps工业以太网,保证系统的可靠性;在现场信号处理层,12Mbps的PROFIBUS总线连接中央控制单元和各现场信号处理模块。
第三章 DCS系统的介绍多级计算机分布控制系统又称集散控制系统(DCS,distributed control system),是网络技术和控制技术结合的产物。
它是根据分布设计的基本思想,实现功能上分离,位置上分散,达到以分散控制为主,集中管理为辅。
3.1 DCS系统的定义DCS是分布式控制系统的英文缩写(Distributed Control Systerm),在国内自控行业又称为集散控制系统。
即所谓的分布式控制系统,或在有些资料中称之为集散系统,是相对于集中式控制系统而言的一种新型计算机控制系统,它是在集中式控制系统的基础上发展、演变而来的。
在系统功能方面,DCS和集中式控制系统的区别不大,但在系统功能的实现方法上却完全不同。
3.2 DCS的组成集散控制系统DCS(Distributed Control Systerm)是基于“4C”技术(Computer Control Communicatiao CRT)在20世纪70年代中期出现的新型工业控制系统。
采用分布式的计算机系统结构,目的是为了减少风险,提高系统可靠性。
它将整个控制系统按照区域、功能和回路作适当分解,再通过总线或通讯网络将它们连接为有机整体。
1975年Honey-well公司推出了第一套DCS控制系统,首先被应用于石油化工行业。
自1975年以来,DCS控制系统的硬件和软件功能不断完善和强化,已经经历了三代,但从基本结构来看特性相同,可分解为三大基本部分。
(1)过程控制站过程控制站是集散控制系统与生产过程之间的界面,生产过程的各种过程变量和状态信息通过过程控制站转化为操作监视的数据,而操作的各种信息业通过过程控制站送到执行机构。
在过程控制装置内,进行模拟量与数字量的相互转换,完成各种控制算法的运算,以及对输入和输出量的数据处理等运算。
(2)操作站操作站是操作人员与集散控制系统的界面,操作人员通过操作站了解生产过程的运行状况,并通过他发出操作指令。
DCS是分散控制系统(Distributed Control System)的简称,国内一般习惯称为集散控制系统。
它是一个由过程控制级和过程监控级组成的以通信网络为纽带的多级计算机系统,综合了计算机(Computer)、通讯(Communication)、显示(CRT)和控制(Control)等4C技术,其基本思想是分散控制、DCS是分布式控制系统的英文缩写( Distributed Control System ),在国内自控行业又称之为集散控制系统。
即所谓的分布式控制系统,或在有些资料中称之为集散系统,是相对于集中式控制系统而言的一种新型计算机控制系统,它是在集中式控制系统的基础上发展、演变而来的。
它是一个由过程控制级和过程监控级组成的以通信网络为纽带的多级计算机系统,综合了计算机,通信、显示和控制等4C技术,其基本思想是分散控制、集中操作、分级管理、配置灵活以及组态方便。
在系统功能方面,DCS 和集中式控制系统的区别不大,但在系统功能的实现方法上却完全不同。
工程师站是对DCS 进行离线的配置、组态工作和在线的系统监督、控制、维护的网络节点,其主要功能是提供对DCS4行组态,配置工作的工具软件(即组态软件),并在DCS在线运行时实时地监视DCS网络上各个节点的运行情况,使系统工程师可以通过工程师站及时调整系统配置及一些系统参数的设定,使DCS 随时处在最佳的工作状态之下。
与集中式控制系统不同,所有的DCS都要求有系统组态功能,DCS分散控制系统原理第一讲绪论DCS从1975年问世以来,大约有三次比较大的变革,七十年代操作站的硬件、操作系统、监视软件都是专用的,由各DCS厂家自己开发的,也没有动态流程图,通讯网络基本上都是轮询方式的;八十年代就不一样了,通讯网络较多使用令牌方式;九十年代操作站出现了通用系统,九十年代末通讯网络有部份遵守TCP/IP协议,有的开始采用以太网。
总的来看,变化主要体现在I/O板、操作站和通讯网络。
DCS控制系统维护保养管理与故障排查处理、冗余测试方法一、DCS控制系统的维护保养管理:1、维护保养:①、定期对DCS控制系统电源进行检查,对于冗余电源系统要定期进行切换实验工作。
同时对UPS电源进行定期的切换检查,对电池应按照要求进行定期放电充电。
定期检查网络接头和各连接线是否牢固,控制柜内的各接线端子是否牢固可靠。
定期检查系统风扇是否工作正常,风道有无阻塞,以使得系统能长期可靠地运行。
经常检查控制单元、I/O模块、其他模块等的工作是否正常。
定期检查接地是否牢固,测试接地电阻是否符合要求。
②、定期检查控制器、计算机等的工作负荷,并注意是否有升高现象。
定期检查硬盘,并删除零碎文件,历史文件经常进行外设归档备份。
③、对于DCS控制系统和其他系统的接口,建议在其他系统侧的网关站上,加装病毒防火墙,并及时更新病毒库。
同时及时更新操作系统的补丁,提高系统的防护性。
④、在运行时,原则上不再进行软、硬件的改动。
⑤、对DCS控制系统所有的修改,无论是组态软件、系统软件还是文件属性等,都应在工程师站(记录本)有详细的文字记录。
每次改动组态后都要进行把主站拷贝到副站的工作。
⑥、应定期让所有的操作员站重新启动一次,以清理计算机长期运行的累计误差。
养成定期备份组态软件的习惯,每次更新点目录后应该把工程师站组态安装目录下的所有文件拷贝到各个操作员站的相应目录中,否则工程师站的损坏可能会导致系统无法更新点目录。
⑦、DCS控制室要在合适的温度、湿度、灰尘度。
应定期检查工作环境和通风状况,避免通风散热不良导致的硬件故障或硬件加速老化,一般每一个季度应该给操作员站和DPU站进行吹灰一次。
2、预防性维护管理:①、系统供电、接地系统检修检查。
定期检查UPS电池容量和充放电时间,对接地进行接地电阻测试。
②、在工艺允许前提下,定期对冗余电源、服务器、控制器、通讯网络等进行冗余测试。
③、对系统卡件进行点检。
检查和整理以延长设备的寿命。
④、操作站、控制站停电检修。
第二篇 DCS概述DCS是继1969年PLC问世后,由HONEYWELL公司在1975年首先推出的系统。
即:TDC2000,它只有模拟量控制。
随后,相继有几十家美国仪表公司也推出自己的系统。
从不同方向发展起来的DCS在结构上、软件方面有些区别。
仪表公司开发的DCS的控制器的软件部分比较符合仪表工程人员应用的习惯,特别是组态方式比较方便。
传动公司设计的PLC部分比较好。
计算机公司设计的DCS的人机界面比较友好。
相继出现的DCS有MAX-1、RS3、MODⅢ、N-90、D/3、WDPF、MICRO、ECS-1200;日本横河的YEPARK MARKⅡ、东芝的TOSDIC;,英国的P4000;德国的TELEPERM、PROCONTROL P、瑞典的AC210等。
从理论上讲,一个DCS系统可以应用于各种行业。
但由于各行业有它的特殊性,所以DCS也就出现了型号与应用行业是否匹配的问题。
有时也由于DCS厂家和用户的技术人员的工艺知识的局限性而引起的。
例如:HONEYWELL公司对石化行业比较熟悉,其产品在石化行业应用较多,它缺少其它行业的特殊模块,如事件记录的快速模块。
而BAILEY的产品则在电力行业应用比较普遍,这些特殊模块都已经有了。
用户在选择DCS的时候主要是要注意其技术人员对自己生产工艺的熟悉程度,然后选择符合自己要求的DCS。
并应注意行业应用的特殊性,如电厂的SOE、水泥厂的大纯滞后,造纸厂的横向水分控制等。
DCS 系统适用于多大规模,比如使用NT操作系统的就适应于中、小规模的系统(标签量在10000点以下),最后才考虑价格因素。
各DCS厂家开发有不同类型硬件的操作站,它和控制器的不同组合会有不同的价格,其差异很大。
在作系统配置时,即使是同一个系统的不同组合,价格也不一样。
专用操作站也是可改变的。
以前是因为计算机技术不够发达、没有合适的软、硬件供选择,所以DCS厂家只能自己开发自己的专用操作站,因而造成封闭局面。
DCS控制系统介绍三篇篇一:DCS控制系统介绍集散控制系统的英文原名为:DistributedControlSystem,简称DCS,通常也称为集散控制系统。
集散控制系统的控制功能,主要由计算机技(computer)、控制技术(Control)、显示技术(CRT)和通信技术(communicate)来完成,一般也称为4C技术,4C技术是DCS系统的四大支柱。
DCS中通信技术更为重要,操作员站的操作、工程师站系统的组态以及现场设备信息的交换都依靠通信技术来完成。
第一节集散控制系统的构成一集散控制系统的构成方式如图是集散控制系统典型结构。
功能分层是集散控制系统的体系特征反映了集散控制系统的“分散控制、集中管理”的特点。
从功能上看可以分为:四个层次,分别是现场控制级的功能;过程装置控制级;车间操作管理级;全厂优化和调度管理级。
从结构看分为:三大块,分别是分散过程控制装置;集中操作和管理系统;通信系统。
图4.1DCS结构(一)集散控制系统的各层功能1、现场控制级的功能(1)微处理器进入现场变送器、传感器和执行器;现场总线的应用。
部分或完全完成过程控制级的功能;(2)采集过程数据,对数据进行数据转换;(3)输出过程操作命令;(4)进行直接数字控制;(5)完成与过程装置控制级的数据通信;(6)对现场控制级的设备进行检测和诊断。
2、过程装置控制级的功能过程装置控制级的结构采用过程控制设备+I/O卡件,其功能是:(1)采集过程数据,进行数据转换和处理;(2)数据的监视和存储;(3)实施连续、批量或顺序控制的运算和输出控制作用;(4)数据和设备的自诊断;(5)数据通信。
3、车间操作管理级的功能车间操作管理级设备有中央控制室操作站、打印机、拷贝机、工程师站、计算站,能完成功能是:(1)数据显示与记录(2)过程操作(含组态操作、维护操作)(3)数据存储和压缩归档(4)报警、事件的诊断和处理(5)系统组态、维护和优化处理(6)数据通信;(7)报表打印和画面硬拷贝。
DCS系统简介DCS系统Distributed Control System分布式控制系统DCS系统也叫集散型控制系统,自1975年问世以来经历了二十余年的时间。
这二十余年间,其可靠性、实用性不断提高,功能日益增强。
如控制器的处理能力、网络通讯能力、控制算法、画面显示及综合管理能力等。
所以DCS系统由过去的只应用在少数大型企业的控制系统,发展到电力、石油、化工、制药、冶金等多行业的广泛应用。
特别是电力、石化这样的行业?DCS即集散型控制系统,又称分布式控制系统(Distributed Control System)。
它是基于计算机技术(Conputer)、控制技术(Control)、通讯技术(Communication)和图形显示技术(CRT)等4C技术,通过某种通信网络将分布在工业现场(附近)的现场控制站、检测站和操作控制中心的操作管理站、控制管理站及工程师站等连接起来,共同完成分散控制和集中操作、管理和综合控制的系统。
DCS之前的控制系统单元组合仪表:采用单元组合仪表的控制系统功能单一,配置也很不灵活,无法完成比较复杂的控制。
集中式的计算机控制系统:这种系统因采用了计算机,其运算速度、数据处理能力和控制功能大大提高。
但集中式计算机控制系统有着严重不足,由于系统的一个主机担负着现场数据采集、处理、控制运算、显示、打印和控制操作,这样它的控制或采集规模受限制,性能不宜提高,且危险集中,可靠性低。
早期的DCS系统采用以微处理器为基础的过程控制单元(PROCESS CONTROL UNIT),实现了分散控制 ,有各种控制功能要求的算法,通过组态独立完成回路控制;具有自诊断功能,采用可靠性技术,信号处理采取了抗干扰措施。
这些技术特点在现代的DCS 系统中仍存在,另外,还采用带屏幕显示器的操作站与过程控制单元分离,实现集中监视,集中操作,系统信息综合管理,与现场控制分离。
在通讯方面采用冗余通信系统,用同轴电缆作传输介质,将过程单元的信息送到操作站和上位计算机,实现了分散控制和集中管理。
dcs工作原理
DCS(分布式控制系统)是一种用于工业自动化控制的系统,它的工作原理如下:
1. 分布式架构:DCS系统由多个分布式控制器(DCS节点)
组成,每个节点负责一部分设备或控制回路的控制。
这种分布式架构使得系统具有良好的可扩展性和灵活性。
2. 实时控制:DCS系统通过传感器获取实时的过程变量信息,如温度、压力、流量等,并将这些信息传输到控制器。
控制器根据预设的控制算法计算出相应的控制命令,并通过执行器将控制命令传送给执行器,以实现对过程的实时控制。
3. 数据通信:DCS系统的各个节点通过高速、可靠的网络进
行数据通信。
节点之间可以相互传输实时数据、控制命令、报警信息等。
这种通信能力使得DCS能够集中监控和控制整个
工业过程,实时响应各种变化和异常情况。
4. 分级控制:DCS系统通常采用分级控制策略,将控制任务
分为不同层次,包括过程层、操作层、监控层和管理层。
过程层负责实际的控制操作,操作层提供人机接口,监控层负责监视和报警,管理层用于数据分析和决策支持。
这种分级控制能够实现对工业过程的细致管理和优化。
5. 可靠性和冗余性:DCS系统通常采用冗余设计,即系统中
的某些关键部件(如控制器、网络等)采用多个备份,以提高系统的可靠性和容错能力。
当系统的某个组件发生故障时,备
份组件可以自动接管其工作,保证系统的正常运行。
总的来说,DCS工作原理是通过分布式架构、实时控制、数据通信、分级控制和可靠性冗余等技术手段,实现对工业自动化过程的监控和控制。
这种系统具有高效、可靠、灵活和智能化的特点,广泛应用于各个工业领域。
DCS(集散控制系统)简介集散控制系统简称DCS,也可直译为“分散控制系统”或“分布式计算机控制系统”。
它采用控制分散、操作和管理集中的基本设计思想,采用多层分级、合作自治的结构形式。
其主要特征是它的集中管理和分散控制。
目前DCS在电力、冶金、石化等各行各业都获得了极其广泛的应用。
DCS通常采用分级递阶结构,每一级由若干子系统组成,每一个子系统实现若干特定的有限目标,形成金字塔结构。
可靠性是DCS发展的生命,要保证DCS的高可靠性主要有三种措施:一是广泛应用高可靠性的硬件设备和生产工艺;二是广泛采用冗余技术;三是在软件设计上广泛实现系统的容错技术、故障自诊断和自动处理技术等。
当今大多数集散控制系统的MTBF可达几万甚至几十万小时。
1.集散控制系统的发展趋势近年来,在DCS关联领域有许多新进展,主要表现在如下一些方面。
(1)系统功能向开放式方向发展传统DCS的结构是封闭式的,不同制造商的DCS之间难以兼容。
而开放式的DCS将可以赋予用户更大的系统集成自主权,用户可根据实际需要选择不同厂商的设备连同软件资源连入控制系统,达到最佳的系统集成。
这里不仅包括DCS与DCS的集成,更包括DCS与PLC、FCS及各种控制设备和软件资源的广义集成。
(2)仪表技术向数字化、智能化、网络化方向发展工业控制设备的智能化、网络化发展,可以促使过程控制的功能进一步分散下移,实现真正意义上的“全数字”、“全分散”控制。
另外,由于这些智能仪表具有的精度高、重复性好、可靠性高,并具备双向通信和自诊断功能等特点,致使系统的安装、使用和维护工作更为方便。
(3)工控软件正向先进控制方向发展广泛应用各种先进控制与优化技术是挖掘并提升DCS综合性能最有效、最直接、也是最具价值的发展方向,主要包括先进控制、过程优化、信息集成、系统集成等软件的开发和产业化应用。
在未来,工业控制软件也将继续向标准化、网络化、智能化和开放性发展方向。
(4)系统架构向FCS方向发展单纯从技术而言,现阶段现场总线集成于DCS可以有三种方式:①现场总线于DCS系统I/O总线上的集成――通过一个现场总线接口卡挂在DCS的I/O总线上,使得在DCS控制器所看到的现场总线来的信息就如同来自一个传统的DCS设备卡一样。
技术部分对外通讯接口本工程每台单元机组均设计配置2台通讯站,其中一台为与SIS的通讯网关。
通讯站使用DELL 品牌机,型号:2.8G/1g/80G/CD/,通讯站运行的是通讯服务任务,不需要经常监视,因此不配置专用的显示器,和系统服务器公用一台显示器。
每台通讯站配置一对互为冗余的100M以太网接口、2块MOXA通讯卡,操作系统为WindowsXP。
该DCS系统具有广泛的开放性,支持OPC/ODBC、MODBUS等通讯协议,采用RS232/RS485、100M网络等接口方式,通过通讯站或交换机实现与其它系统的信息交流。
系统间根据需要实现单向或双向交流。
本工程根据招标书要求将实现与厂用电等第三方控制系统的通讯。
一、DCS与其他控制系统通讯基础1、M O X A通讯卡说明MOXA通讯卡主要用于完成Modbus通讯任务,物理层支持RS232/RS422/RS485。
如下图所示:使用前,必须先检查卡的跳线,正确设置跳线,通讯任务才能正常。
SW2拨至ON位置。
如果是RS485,则SW1拨至ON位置,JP5、JP6跳至左侧;如果是RS422,则SW1拨至OFF位置,JP5、JP6跳至左侧。
SW1、SW2拨码的1、2、3、4分别控制Port1(com2)、技术部分Port2(com3)、Port3(com4)、Port4(com5)。
如果是RS232,JP5跳至右侧,能使Port1为RS232;JP6跳至右侧,能使Port2为RS232;也就是说,端口Port1、Prot2可以通过跳线选择RS232/RS422/RS485;端口Port3、Prot4可以通过跳线选择RS422/RS485。
2 通讯接口接线定义2.1R S232如果使用8线制,则接线定义如下:如果使用3线制(地线可以不接),则接线定义如下:2.2R S485管脚定义如下:技术部分RS485是直通线,地线可以不接;如果使用屏蔽线,则屏蔽层一端接地。
DCS系统技术方案DCS(分散式控制系统)是一种为工业生产过程提供自动化控制和监控功能的系统。
它由一系列分布在不同位置的控制器、感知器和执行器组成,通过网络相互连接,实现对整个生产过程的集中控制和监控。
下面是一个DCS系统技术方案的详细介绍。
一、硬件方案1.控制器:选择高性能、可靠稳定的工业控制器,能够满足实时控制需求。
控制器需要具备分布式控制能力,能够与各个子系统进行通信和协同工作。
2.感知器:选择适合不同工艺流程的感知器,包括温度传感器、压力传感器、流量传感器等。
感知器需要具备高精度、高灵敏度和稳定性能,能够准确地采集和传输工艺参数。
3.执行器:选择高效、可靠的执行器,包括电动执行器、气动执行器等。
执行器需要具备高精度、高响应速度和长寿命,能够准确地执行控制指令。
4.通信设备:选择高速、可靠的通信设备,包括以太网交换机、光纤传输设备等。
通信设备需要具备高带宽、低延迟和抗干扰能力,能够实现实时数据传输和可靠数据交换。
5.服务器和存储设备:选择高性能、高可靠性的服务器和存储设备,用于数据存储和处理。
服务器和存储设备需要具备大容量、高速读写和冗余备份等特性,能够满足大规模数据处理的需求。
二、软件方案1.控制算法:根据不同的工艺需求,选择合适的控制算法,包括PID 控制、模糊控制、神经网络控制等。
控制算法需要具备高鲁棒性和自适应能力,能够对复杂的工艺过程进行精确控制。
2.监控软件:开发高效、易用的监控软件,用于实时显示和记录生产过程的状态和数据。
监控软件需要具备友好的界面和多样化的功能,能够实时监测和报警,并支持生产数据的存储和分析。
3. 通信协议:选择通用的工业通信协议,如Modbus、OPC等,用于实现不同设备之间的数据交换和通信。
通信协议需要具备高效、可靠的数据传输和处理能力,能够实现设备的互联互通。
4.数据存储和分析:开发高性能、高可靠性的数据存储和分析系统,用于实时存储和分析生产数据。
数据存储和分析系统需要具备高速读写和可扩展性,能够支持大规模数据存储和复杂数据分析。
DCS冗余技术简介高可靠性是过程控制系统的第一要求。
冗余技术是计算机系统可靠性设计中常采用的一种技术,是提高计算机系统可靠性的最有效方法之一。
为了达到高可靠性和低失效率相统一的目的,我们通常会在控制系统的设计和应用中采用冗余技术。
合理的冗余设计将大大提高系统的可靠性,但是同时也增加了系统的复杂度和设计的难度,应用冗余配置的系统还增加了用户投资。
因此,如何合理而有效的进行控制系统冗余设计,是值得研究的课题。
1:冗余技术冗余技术概要:冗余技术就是增加多余的设备,以保证系统更加可靠、安全地工作。
冗余的分类方法多种多样,按照在系统中所处的位置,冗余可分为元件级、部件级和系统级;按照冗余的程度可分为1:1冗余、1:2冗余、1:n冗余等多种。
在当前元器件可靠性不断提高的情况下,和其它形式的冗余方式相比,1:1的部件级热冗余是一种有效而又相对简单、配置灵活的冗余技术实现方式,如I/O卡件冗余、电源冗余、主控制器冗余等。
因此,目前国内外主流的过程控制系统中大多采用了这种方式。
当然,在某些局部设计中也有采用元件级或多种冗余方式组合的成功范例。
控制系统冗余设计的目的:系统运行不受局部故障的影响,而且故障部件的维护对整个系统的功能实现没有影响,并可以实现在线维护,使故障部件得到及时的修复。
冗余设计会增加系统设计的难度,冗余配置会增加用户系统的投资,但这种投资换来了系统的可靠性,它提高了整个用户系统的平均无故障时间(MTBF),缩短了平均故障修复时间(MTTR),因此,应用在重要场合的控制系统,冗余是非常必要的。
二个部件组成的并联系统(互为冗余)与单部件相比,平均无故障时间是原来的1.5倍。
系统的可用性指标可以用两个参数进行简单的描述,一个是平均无故障时间(MTBF),另一个是平均修复时间(MTBR)。
系统的可用性可用下式表示:系统可用性=MTBF/(MTBF+MTBR)当可用性达到99.999%时,系统每年停止服务的时间只有6分钟。
2:控制系统冗余的关键技术冗余是一种高级的可靠性设计技术,1:1热冗余也就是所谓的双重化,是其中一种有效的冗余方式,但它并不是两个部件简单的并联运行,而是需要硬件、软件、通讯等协同工作来实现。
将互为冗余的两个部件构成一个有机的整体,通常包括以下多个技术要点:1)信息同步技术它是工作、备用部件之间实现无扰动(Bumpless)切换技术的前提,只有按控制实时性要求进行高速有效的信息同步,保证工作、备用部件步调一致地工作,才能实现冗余部件之间的无扰动切换。
在热备用工作方式下,其中一块处于工作状态(工作卡),实现系统的数据采集、运算、控制输出、网络通讯等功能;而另一块处于备用状态(备用卡),它实时跟踪工作卡的内部控制状态(即状态同步)。
工作/备用卡件之间的正/负逻辑是互斥的,即一个为工作卡,另一个必定是备用卡;而且它们之间有冗余控制电路(又称工作/备用控制电路)和信息通讯电路,以协调两块卡件同时而且有序地运行,保证对外输入输出特性的同一性,即对于用户使用而言,可以认为只有一个部件。
一般在设计中,工作、备用部件之间通过高速的冗余通讯通道(串行或并行)实现运行状态互检和控制状态的同步(如组态信息、输出阀位、控制参数等)。
2)故障检测技术为了保证系统在出现故障时及时将冗余部分投入工作,必须有高精确的在线故障检测技术,实现故障发现、故障定位、故障隔离和故障报警。
故障检测包括电源、微处理器、数据通讯链路、数据总线及I/O状态等。
其中故障诊断包括故障自诊断和故障互检(工作、备用卡件之间的相互检查)3)故障仲裁技术和切换技术精确及时地发现故障后,还需要及时确定故障的部位、分析故障的严重性,依赖前文提到的冗余控制电路,对工作、备用故障状态进行分析、比较和仲裁,以判定是否需要进行工作/备用之间的状态切换。
控制权切换到冗余备用部件还必须保证快速、安全、无扰动。
当处于工作状态的部件出现故障(断电、复位、软件故障、硬件故障等)或者工作部件的故障较备用部件严重时,备用部件必须快速地无扰动地接替工作部件的所有控制任务,对现场控制不造成任何影响。
同时要求切换时间应为毫秒级,甚至是微秒级,这样就不会因为该部件的故障而造成外部控制对象的失控或检测信息失效等等。
另外,还需要尽快通过网络通讯或就地LED显示进行报警,通知用户出现故障的部件和故障情况,以便进行及时维护。
4)热插拔技术为了保证容错系统具有高可靠性,必须尽量减少系统的平均修复时间MTBR。
要做到这一点,在设计上应努力提高单元的独立性、可修复性、故障可维护性。
实现故障部件的在线维护和更换也是冗余技术的重要组成部分,它是实现控制系统故障部件快速修复技术的关键。
部件的热插拔功能可以在不中断系统正常控制功能的情况下增加或更换组件,使系统平稳地运行。
5)故障隔离技术冗余设计时,必须考虑工作、备用部件之间的故障应该做到尽可能互不影响或影响的概率相当小(0.01%),即可认为故障是隔离的。
这样可以保证:处于备用状态的部件发生故障时,不会影响冗余工作部件或其他关联部件的正常运行,保证冗余的有效性。
3:冗余技术在控制系统中的应用实现分析通过控制系统冗余原理与方法的具体分析可以看到,系统的可用性在很大程度上取决于那些MTBF值较低而能对系统正常运行造成重大影响的部件,如主控制卡、网络、电源、通讯转发卡等。
在系统设计中对关键部件进行冗余设计,可以大大提高系统的可用性。
下面以SUPCON JX-300X 为例分析冗余的实现方式。
SUPCON JX-300X 型集散控制系统[1]的各个部件的冗余,实现了从电源、主控制器、过程控制网络,直至I/O卡件的冗余。
JX-300X型DCS采用全智能化、全数字化设计,在此基础上成功地实现了卡件的热插拔、故障诊断、信息同步等前文提到的各项技术。
该系统采用典型控制系统三层模型,每个层次内均可冗余配置,而层次之间采用全冗余连接。
即整个系统内以冗余过程控制网络(S Cnet)和冗余现场I/O总线(SBUS)为高可靠的连接通道,系统内各个部件的运行和部件之间点对点连接都可冗余。
根据控制系统内各个部件功能定位的不同,采用了具体方式有所差别,具体策略为:1)主控制卡的冗余主控制卡是整个系统的核心控制单元,完成系统的控制任务。
而冗余技术各个设计要点在此得到充分应用。
互为冗余的两块主控制卡软件、硬件完全一致,它们执行同样的系统软件和应用程序,在工作/备用冗余逻辑电路的控制下,其中一个运行在工作状态(工作卡),另外一个运行在备用状态(备用卡),如图2所示。
工作卡和备用卡之间具有公共的冗余逻辑控制电路和专用的高速对等冗余通讯通道,同时也可以通过I/O总线和过程控制网络进行信息交互或故障诊测。
互为冗余的主控制卡都能访问I/O和过程控制网络,备用模式下的主控制卡执行诊断程序,监视工作卡的状态,通过周期查询工作卡件中的数据存储器,接受工作卡发送的实时控制运行信息。
备用处理器可随时保存最新的控制数据,以保证工作/备用的无扰动切换,但工作模式下的主控制卡起着控制、输出、实时过程信息发布,等决定性的作用(具有发言权)。
冗余技术的关键在于实现信息同步,而信息同步的最终目的是为了实现冗余部件之间无扰动切换。
我们把信息同步的方法分为“自然同步”和“强制同步”。
互为冗余的两个主控制卡作为一个整体与外界交换信息(网络通讯、I/O通讯),共享进入这个整体的输入信息,这就是冗余部件的同一性(也可以称为单一性)。
对外输出信息时工作卡掌握主动权,代表这个整体发言,即冗余的协同性。
通俗地讲,两个互为冗余的部件,对于用户使用和外部控制对象而言,可被视为一个整体。
为了保证互为冗余的两个卡件具有平等获取外部信息(I/O通讯、网络通讯)的权利,冗余部件具有同样的通讯接口,保证卡件内输入信息的一致。
冗余的两块卡件有各自的通讯通路,只要保证相同的输入信息在两个通信通路上同时进行传输,两块卡件就可以获得相同的信息。
这种凭借外部设备实现输入信息的同步称为“自然同步”。
“自然同步”发生在冗余系统和外部设备之间。
工作卡掌握主动权,代表整体发言,并通过冗余通信将各种状态信息传送给备用卡,达到控制任务的同步,这就是“强制同步”。
“强制同步”通过冗余通信使备用卡内部控制状态与工作卡保持一致,它发生在互为冗余的卡件之间。
根据变量特性的不同,具体采用的同步方式也各不相同.2) 电源系统冗余。
电源是整个控制系统得以正常工作的动力源泉,一旦电源单元发生故障,往往会使整个控制系统的工作中断,造成严重后果。
要使控制系统能够安全、可靠、长期、稳定地运行,首先稳定的供电必须得到保证。
JX-300X型DCS采用可热插拔的冗余电源,正常工作时,两台电源各输出一半功率,从而使每一台电源都工作在轻负载状态,有利于电源稳定工作。
当其中一台发生故障,短时由另一台接替其工作,并报警。
设计为可热插拔的冗余电源,这样系统维护时可以在不影响系统正常运行的情况下更换故障的电源。
3) 网络系统冗余。
采用冗余网卡和冗余网络接口。
正常工作时,冗余的两条数据高速通路同时并行运行,自动分摊网络流量,并考虑了负载均衡的冗余设计,使系统网络通信带宽提高。
当其中一路故障(网卡损坏或出现线路故障)时,另一路自动地承担全部通信负载,保证通信的正常进行。
4)冷却系统冗余。
利用控制柜内可自动切换的冗余风扇,对风扇和机柜内温度进行实时监测,发现工作风扇故障或柜内温度过高时都会自动报警,并自动启动备用风扇。
5) 信息冗余。
除了硬件部件的冗余,JX-300X型DCS还采用了信息冗余技术,这也是提高系统可靠性的一个重要手段。
信息冗余技术是指在通信过程中或存放组态信息(重要信息)时,利用增加的多余信息位提供检错甚至纠错的能力。
该系统中SBUS总线通讯和SCnet控制网络都采用循环冗余码校验(CRC)方法。
而重要组态信息(如系统配置)在主控制卡内的存放采用1:1冗余存放,使重要信息具备故障(出错)自我恢复能力,保证系统运行过程中重要信息的安全性。
通过对以上关键部件的冗余设计,可以保证系统具有很高的可用性。
MTBF,即平均无故障时间,英文全称是“Mean Time Between Failure”。
是衡量一个产品(尤其是电器产品)的可靠性指标。
单位为“小时”。
它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力。
具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。
它仅适用于可维修产品。
同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。
磁带机产品的MTBF值不应低于200000小时。
通常,我们在产品的手册或包装上能够看到这个MTBF值,如8000小时,2万小时,那么,MTBF的数值是怎样算出来的呢,假设一台电脑的MTBF为3万小时,是不是把这台电脑连续运行3万小时检测出来的呢?答案是否定的,如果是那样的话,我们有那么多产品要用几十年都检测不完的。