端面齿盘的设计与加工
- 格式:doc
- 大小:342.50 KB
- 文档页数:22
工艺设计题目一、轴类输出轴工艺与工装设计柴油机曲轴工艺设计及夹具设计曲轴加工工艺及斜深孔加工夹具设计VF67空气压缩机曲轴加工工艺及夹具设计X62w主轴工艺规程及钻4-M12夹具设计.rar液压阀芯加工工艺及翻转铰链式钻孔夹具设计轴加工工艺规程及铣方块套筒加工工艺及夹具设计薄壁套的机械加工工艺规程及专用夹具设计X6132主轴加工工艺及夹具设计“175F柴油机凸轮轴”零件的机械加工工艺规程及铣键槽的铣床夹具彩印机偏心套工艺规程及专用夹具设计车床长丝杠零件机械加工工艺规程制订工艺装备设计丝杠零件机械加工工艺规程制订及铣键槽工序工艺装备设计钻床主轴套筒零件的工艺规程设计和滚齿用夹具设计二、连杆类汽车连杆加工工艺及两套夹具设计柴油机连杆的加工工艺CA6140杠杆加工工艺和工装设计往复杠杆的工艺夹具设计.rar铣床杠杆零件工艺设计与工装设计摇臂零件机械加工工艺规程制订及工艺装备设计杠杆加工工艺规程及端部宽22mm的槽铣削加工夹具设计左右摆动杠杆加工工艺三、叉架类拨叉零件工艺分析及加工支架零件的工艺规程及铣底面的工装夹具设计“推动架”零件的机械加工工艺及工艺设备(毕设)X5020B立式升降台铣床拔叉壳体工艺规程制订“支架”零件的机械加工工艺规程及此零件“铣77两端面”.rar 分离爪的工艺分析及工装夹具设计.rar倒档拨叉”零件机械加工工艺规程及工艺装备(钻削)设计拨叉D的加工工艺规程及夹具设计叉形凸缘加工工艺及双面铣床夹具设计XK5032A托架的加工工艺及Φ55H7镗孔夹具设计车床小刀架机械加工工艺及镗孔的夹具设计CA6140车床后拖架零件加工工艺及铣底面专用夹具设计支架零件的机械加工工艺规程编制及钻削φ4孔工序专用夹具设计右支架工艺及夹具设计齿轮架零件的机械加工工艺规程及专用夹具设计四、齿轮类传动齿轮工艺设计低速级斜齿轮零件的机械加工工艺规程端面齿盘的设计与加工惰轮轴工艺设计和工装设计过桥齿轮轴机械加工工艺规程星轮加工工艺及夹具设计X6232C齿轮加工工艺及其齿轮夹具和刀具设计蜗杆轴工艺工装夹具设计五、盘盖类设计“CA6140法兰盘”零件的机械加工工艺规程及工艺装备回转盘工艺规程设计及镗孔工序夹具设计转速器盘工艺夹具设计分度盘零件的机械加工工艺规程及工艺装备设计CA6140“法兰盘”零件的机械加工后缸盖加工工艺及夹具设计中心架盖加工工艺规程及工装夹具设计箱盖的加工工艺及夹具设计(Φ17,Φ22轴孔加工)凸缘机械加工工艺及工装设计皮带盘加工工艺规程及工装夹具设计车床转盘零件的机械加工工艺规程及工艺装备设计盘类轴向多孔成组钻模设计带轮工艺及夹具设计齿轮泵前盖加工艺及铣8mm流油槽夹具高压转子联轴器工艺过程设计端盖加工艺及专用夹具设计(小批量、大批量)“法兰盘”零件的机械加工(小批量)车用空调双孔法兰加工工艺规程及夹具设计(大批量生产)车用空调高压充注法兰加工工艺规程及夹具设计(大批量生产)汽车轮毂加工工艺的编制及钻床夹具凸轮加工工艺及夹具设计六、箱体类齿轮箱工艺及钻2-φ20孔、工装及专机设计齿轮箱工艺及钻8-φ13孔、工装及专机设计汽车变速器体的工艺及夹具设计.rar传动箱体工艺与夹具设计.rar江淮12变速箱体机械加工工艺及钻两侧面孔工序的夹具蜗轮箱I的工艺规程和夹具设计进给箱体加工工艺及夹具设计减速器箱体零件工艺及加工Φ120外圆的夹具设计及加工φ52H8孔夹具设计压缩机箱体加工工艺及夹具设计七、壳体类阀体零件工艺规则及车夹具设计柱塞泵体工艺工装设计减速机壳体加工工艺及夹具设计CA6140床头I轴轴承座及专用夹具设计“填料箱盖”零件的工艺规程及钻孔夹具设计壳体加工艺及量检具设计汽车差速器壳加工工艺及夹具设计齿轮泵泵体工艺及加工Φ14、2-M8 孔夹具设计转向器壳体加工工艺及专用夹具设计座夹具加工艺及专用夹具设计微电机壳加工工艺规程及钻孔夹具设计轴承壳体加工艺及专用夹具设计变速器轴承外壳加工艺及钻5-φ10.5孔夹具设计八、座体类柴油机气门摇臂轴支座加工工艺及夹具设计支座零件工艺工装设计机座工艺设计与工装设计CA6140车床手柄座钻法兰四孔夹具及加工工艺和说明书C6132车床尾座体的机械加工工艺规程及夹具设计X5032A-工作台加工工艺及夹具设计“CA6140车床手柄座”零件的工艺工装设计连接座加工艺及钻床夹具设计说明书摇臂轴座工艺及夹具设计C620车床轴承座的机械加工工艺与夹具设计。
第九章典型零件制造工艺第一节连杆制造工艺第二节齿轮制造工艺第三节曲轴制造工艺第四节箱体零件制造工艺返回第二节齿轮制造工艺一、概述(一)齿轮的结构特点1)单联齿轮,孔的长径比L/D>1。
2)多联齿轮,孔的长径比L/D>1。
3)盘形齿轮,具有轮毂,孔的长径比L/D<1。
4)齿圈,没有轮毂,孔的长径比L/D<l。
5)轴齿轮(二)圆柱齿轮的精度(1)传递运动的准确性:要求限制齿轮在一转内,主动轮与从动轮传动比的不均匀性。
(2)传动的平稳性:在传递运动过程中要求工作平稳,没有振动、冲击与噪声,则要限制齿轮瞬时传动比的变动范围。
(3)载荷分布的均匀性:在传递动力时不致因接触不良而使齿面受力不匀,局部接触应力过大,引起齿面过早磨损,甚至断裂,降低工作寿命,为此要求啮合轮齿全齿宽均匀接触。
(4)齿侧间隙:齿轮传动中、互相啮合一对齿的非工作齿侧面之间应留有一定的间隙,以便储存润滑油,补偿弹性变形,热变形以及齿轮制造根差和装配误差。
但齿侧间隙也不宜过大,特别对于工作时需要反转的齿轮传动,会产生换向冲击和换向空程。
机械工业通用标准JB179—83对平行轴传动的渐开线圆柱齿轮及其齿轮副,规定了12个精度等级,从1—12级顺次降低。
标准将齿轮每个精度等级的各项公差分成三个组:(三)汽车用齿轮的主要技术要求(1)齿轮精度和表面粗糙度货车变速器的精度不低于8级,Ra3.2μm;轿车齿轮的精度不低于7级,Ra1.6μm。
汽车驱动桥主动圆柱齿轮的精度不低于8级,从动圆柱齿轮的精度不低于9级。
(2)齿轮孔或轴齿轮轴颈尺寸公差和表面粗糙度对于6级精度的齿轮,内孔为IT6,轴颈为IT5;对7级精度的齿轮,内孔为IT7,轴颈为IT6。
链接对基准孔和轴颈的尺寸公差和形状公差应遵守包容原则,表面粗糙度为Ra0.40~0.80μm。
链接页码(3)端面圆跳动端面圆跳动量视齿轮精度和分度圆直径不同而异,对于6~7级精度齿轮,规定为0.011~0.022mm。
1.适用范围该标准规定了齿轮加工应遵守的基本规则,适用于各企业的齿轮加工。
齿轮加工还应遵守JB/Z307.1(切削加工通用工艺守则总则) 2.一般要求(1)齿坯装夹前应检查其编号和实际尺寸是否与工艺规程要求相符合。
(2)装夹齿坯时应注意查看其基面标记,不得将定位基面装错。
(3)计算齿轮加工机床滚比挂轮时,一定要计算到小数点后有效数字第五位。
3.滚齿工艺守则 (1)本守则适用于用滚动切法加工GB10095-88中规定的7、8、9级精度渐开线圆柱齿轮。
(2)滚齿前的准备。
①加工斜齿或人字齿轮时,必须验算差动挂轮的误差,一般差动挂轮应计算到小数点后有效数字第五位。
差动挂轮误差应按下式计算。
式中:δ——差动挂轮误差; m ——齿轮模数; N ——滚刀头数; B ——齿轮齿宽;K ——齿轮精度系数;对7级齿轮,K 为0.001;对8级齿轮,K 为0.002;对9级齿轮,K 为0.003;C ——滚齿机差动定数。
②加工有偏重的齿轮时,应在相应处安置适当的配重。
(3)齿坯的装夹。
①在滚齿机上安装滚齿夹具时,应按表Ⅱ-1的要求调整。
表Ⅱ-1滚齿机上安装滚齿夹具 (mm)②在滚齿机上装夹齿坯时,应将有标记的基面向下,使其与支承面贴合,不得垫纸或铜皮等物。
压紧前用千分表检查齿坯外圆径向跳动和基准端面跳动,其跳动公差不得大于表Ⅱ-2所规定数值。
压紧后需再次检查,以防压紧时产生变形。
表Ⅱ-2用千分表检查齿坯外圆径向和基准端面跳动公差1)(mm )1)当三个公差组的精度等级不同时,按最高的精度等级确定公差值;当以顶圆作基准时,表中的数值就指顶圆的径向跳动。
(4)齿轮轴的装夹①在滚齿机上装夹齿轮轴时,应用千分表检查其两基准轴颈(或一个基准轴颈及顶圆)的径向跳动,基跳动公差应按下式计算:式中:t ——跳动公差,mm ; L ——两测量点间的距离,mm ; B ——齿轮轴的齿宽,mm ;K ——精度系数:对7级和8级精度齿轮轴,K 值取0.008~0.01,对9级精度齿轮轴,K 值取0.011~0.013。
阿基米德蜗杆在端面(垂直于蜗杆轴线的平面)内的齿廓,应该是“阿基米德螺线”还是“阿基米德螺旋线”,两种说法有一字之差。
在不同的著作和文献甚至国家标准中,存在不同的说法,例如:1.张策主编,《机械原理与机械设计》,机械工业出版社,2004年10月第一版,有:阿基米德蜗杆,“在垂直其轴线的平面内,齿廓曲线为阿基米德螺旋线”。
2.濮良贵等主编,《机械设计》第八版,高等教育出版社,2006年5月,有:阿基米德蜗杆,“在垂直于轴线的平面(即端面)上,齿廓为阿基米德螺旋线”。
3.陈晓南等主编,《机械设计基础》,科学出版社,2007年2月第一版,有:阿基米德蜗杆,“在垂直于轴线的端面上,其齿廓为阿基米德螺旋线”。
4.李华敏等编著《齿轮机构设计与应用》,机械工业出版社,2008年6月第一版,有:阿基米德蜗杆,“端面齿形为阿基米德螺旋线”。
5.董庆华编著,《机械零件》,中国农业机械出版社,1981年7月第一版,有:阿基米德圆柱蜗杆,在垂直于蜗杆轴线的截面中,齿形为阿基米德螺旋线。
7.GB 10086-88(《圆柱蜗杆、蜗轮术语及代号》)中,有:阿基米德蜗杆,齿面为阿基米德螺旋面的圆柱蜗杆。
其端面齿廓是阿基米德螺旋线。
8.吴序堂编著,《齿轮啮合原理》,西安交通大学出版社,2009年3月第二版,有:如果用阿基米德螺旋面做成一个蜗杆的齿面,端面截形是阿基米德螺线。
9.孙桓等主编,《机械原理》,高等教育出版社,2001年第六版,有:阿基米德蜗杆,其端面齿形为阿基米德螺线。
等等,不再一一列举。
那么,阿基米德蜗杆的端面齿廓,到底应该是“阿基米德螺旋线”,还是“阿基米德螺线”,抑或两种说法都可以。
我们先看看“阿基米德螺旋线”和“阿基米德螺线”的区别。
在GB3374—82(《齿轮基本术语》)中,对“圆柱螺旋线[螺旋线]”的定义是:“动点沿圆柱面上的一条直母线作等速移动,而该直母线又绕圆柱面的轴线作等角速的旋转运动时,动点在此圆柱面上的运动轨迹,称为圆柱螺旋线。
典型盘类零件加工工艺分析摘要:本文对典型盘类零件---由多个端面、深孔、薄壁、曲面、外轮廓组合而成的较复杂的盘形零件进行了详细的加工工艺分析,包括图纸分析、确定加工工艺、选用机床型号、选用毛坯大小、确定走刀路线与加工顺序及主要部分程序编制等。
关键词:盘类零件;图纸分析;加工工艺;程序;MASTERCAM一、盘类零件概述盘类零件是由多个端面、深孔、螺纹孔、曲面、沟槽、外轮廓组合而成的较复杂的盘形零件。
其特点是零件基本形状呈盘形块状,零件表面汇集了多种典型表面。
加工时,装夹次数一般较少,但所用刀具一般较多,编制程序较繁琐。
加工前需要做好充分的准备,包括图纸分析、确定加工工艺、选用机床型号、选用毛坯大小、确定走刀路线与加工顺序等,其前期的准备工作比较复杂。
二、零件结构工艺分析1、零件图(如图1)分析。
(1)4个异型轮廓的尺寸公差16 mm。
(2)未标尺寸公差均为±0.10mm。
主要加工部件上部,平面加工中要保证尺寸(40)mm,孔加工中有¢36 mm和4-¢16 mm孔,¢36 mm孔是零件的基准孔,4-¢16 mm孔对基准孔¢36 mm对称0.02mm,孔间距为(142±0.02)mm,孔的尺寸精度都是比较高的,梅花形外轮廓¢120 mm壁厚2 mm,尺寸40mm对基准对称0.02mm,四方异形搭子除要保证外轮廓尺寸外,还要保证2-164 mm尺寸。
图一2、工艺方案编制拟订工艺路线时首先要确定各个表面的加工方法和加工方案。
表面加工方法的和方案的选择,应同时满足加工质量、生产率和经济性等方面的要求。
其次是机械加工工序的安排,安排原则是先加工基准面,划分加工阶段,次要表面穿插在各阶段间进行加工、先粗后精。
再次在加工中除了要灵活运用数控系统中的旋转功能外,还要用半径补尝功能来保证2-(141.42±0.02)mm,2-(164 )mm以及2-(40 )mm等尺寸。
根据以上原则对零件1的工艺路线可采用以下方案:(1)、用φ32mm铣刀粗铣,切深不得超过5mm,薄壁内可粗铣10mm深,注意各凸台之间及各凸台与薄壁之间由于空间的原因只能用¢20mm的立铣刀加工,所以在各凸台铣至相应的深度时,换用¢20mm的立铣刀继续粗加工去量,然后用该刀精加工所有面,精加工四周凸台的轮廓部分及薄壁的内外面。
齿轮零件的机械加工工艺过程及进行滚齿加工用的夹具设计第一部份齿轮零件的机械加工工艺过程1、定位基准的选择在零件的加工过程中,合理的选择定位基准对保证零件的尺寸精度和位置度有着决定性的作用。
根据工件加工要求确定工件应限制的自由度数后,某一方向自由度的限制往往会有几个定位基准可选择,则提出了如何正确选择定位基准的问题。
定位基准有粗基准和精基准之分。
1.1. 粗基准的选择原则:(1)尽量选择不要求加工的表面作为粗基准.这样可使加工表面与不加工表面之间的位置误差量最小,同时还可以在一次装夹中加工出更多的表面。
(2)若零件的所有表面都要加工,应选择加工余量和公差最小的表面作为粗基准.这样可保证作为粗基准的表面在加工时,余量均匀。
(3)选择光洁、平整、面积足够大、装夹稳定的表面作为粗基准。
(4)粗基准一般只在第一到工序中用,以后应避免重复使用。
1.2.精基准的选择原则:基准重合的选择原则。
尽可能的用设计基准作为定位基准,这样可避免因定位基准与设计基准不重合而引起的定位误差,以保证加工表面与设计基准间的位置精度。
基准同一原则.一尽可能多的表面加工都用同一个定位基准,这样有利于保证各加工面之间的位置精度。
选择面积大、精度较高、安装稳定的表面作为精基准,而且所选的基准使夹具结构简单,装夹和加工方便。
综合上面的粗基准和精基准的选择原则,为使基准同一和基准重合,齿轮加工时常选内孔和端面作为精基准加工外圆和齿轮,用作精基准的端面和内孔要在一次装夹中加工出来以保证两者之间的垂直度,但是在加工大型齿轮时可用外圆作找正基准,但此时应保证内孔与外圆同轴。
所以加工本设计齿轮用齿轮外圆和端面作为粗基准,用内孔和端面作为精基准。
2.、装夹方法在加工齿轮时在滚齿机上一般用心轴装夹,滚齿心轴夹具3.、加工工艺问题(1)、基准修正齿形表面淬火后,内孔会受到影响而变形:一般的孔直径会缩小0.01-0.05mm,因此淬火后应安排精基准修正工序.修正的方法有推孔和磨孔,也可以用镗孔。
端面齿盘的用途
端面齿盘是一种特殊类型的齿轮,它的用途是用于传递转矩和动力,
同时具有环形齿的特点。
它主要用于装配在旋转机械设备中的输送链或齿
轮系统中,以便提供高扭矩、低速度的动力传递。
1.机械传动系统:端面齿盘常用于各种工业机械设备的传动系统中,
如制冷设备、搅拌设备、输送设备、压力机等。
在这些设备中,端面齿盘
能够可靠地传递转矩和动力,使设备正常运转。
2.汽车行业:端面齿盘在汽车变速器系统中得到广泛应用。
在变速器
系统中,端面齿盘被用来传递汽车发动机的动力,使汽车能够平稳地换挡
和提供足够的扭矩。
3.矿山和石油工业:在矿山和石油工业中,端面齿盘被广泛应用于输
送系统和钻井设备中。
它们能够经受高扭矩和重负荷,确保设备持续运转。
4.风能和水能发电:在风能和水能发电设备中,端面齿盘被用于传递
风力或水力能源,通过发电机来产生电能。
这些应用需要齿盘能够承受高
速旋转和不断变化的扭矩。
5.重型机械:端面齿盘也被广泛用于重型机械设备,如升降机、卷绕
机和起重机等。
在这些应用中,齿盘需要能够承受大量的重量和强大的扭矩。
总结来说,端面齿盘在工业领域中的应用非常广泛,可以用于各种机
械设备的传动系统中。
它们具有高扭力传递、平稳运转和可靠性强的特点,使得机械设备能够有效地工作。
同时,端面齿盘也需要具有耐磨、耐腐蚀
和承重能力强等特性,以适应不同行业的需求。
摘要现代制造业飞速发展,以数控机床为技术代表的新型制造技术已几乎覆盖了普通机床,编程已由手工编程发展到计算机编程,它是制造业进一步向智能化方面的过度,它不仅提高了生产效率还保证了加工质量。
对于加工拥有纵多相同或以一定规律变化的工位的零件,传统的手工编程十分烦琐而且容易出错。
例如计算机显示器的模具加工、分度盘的加工、端面齿盘的加工等。
由于端面齿盘拥有纵多的齿而且在同一平面,一般编程很难完成零件的加工,所以我们采用了宏程序编程,从工件造型到计算机模拟加工,再到计算机处理,刀具的选择等等,都可以比较简单的完成。
并且工件的质量也可以得到保证。
宏程序与普通程序的区别在于:在宏程序中,能使用变量,可以给变量赋值,变量间可以运算,程序可以跳转;而普通程序中,只能指定常量,常量之间不能运算,程序只能按顺序执行,不能跳转,因此功能是固定的,不能变化。
用户宏功能是用户提高数控机床性能的一种特殊功能,在相类似工件的加工中巧用宏程序将起到事半功倍的效果。
宏程序是加工编程的重要补充。
宏程序属于计算机高级语言,可以实现变量的算术运算,逻辑运算和条件转移等操作。
它可以很轻松的完成分度盘的加工。
关键词:分度盘数控机床宏程序切削参数目录第一章引言 (1)1.1数控机床的特点 (1)1.2设计采用的方法 (1)第二章分度盘的加工与编程 (2)2.1加工任务分析 (2)2.2工艺处理 (4)2.2.1毛坯准备 (4)2.2.2装夹 (4)2.2.3工艺设计 (5)2.3数控刀具 (7)2.4宏程序编程 (9)2.5模拟仿真 (11)2.5.1定义机床 (11)2.5.2定义毛坯 (12)2.5.3选择夹具 (13)2.5.4安装工件 (13)2.5.5定义刀具 (13)2.5.6建立工件坐标系 (14)2.5.7 输入代码—输入宏程序代码进行准备模拟 (14)2.5.8空运行 (14)2.5.9模拟加工 (14)2.5.10模拟三维工件和刀具 (15)2.6总结 (16)第三章主要参考文献 (18)第四章结束语 (19)附零件图1张第一章引言1.1数控机床的特点在数控技术中,所谓的加工程序,就是把零件的加工工艺路线、工艺参数、刀具的运动轨迹、切削参数以及辅助动作等,按照数控机床规定的指令代码及程序格式编写成加工程序单,再把程序中的内容通过控制介质或直接输入到数控机床的数控装置中,从而控制机床加工零件。
数控编程分为手工编程和自动编程。
手工编程是从零件图样确定工艺路线,计算数值和编写零件加工程序单,制备控制介质到校验程序都由人工完成。
对于形状简单零件的加工,计算比较简单,程序较短,采用手工编程可以完成,但对于形状复杂的零件,特别是具有非圆曲线,列表曲线的零件,用手工编程相当困难,必须用自动变成完成.自动编程是编程人员根据加工零件图纸要求,进行参数选择和设置,由计算机自动地进行数值计算,后置处理,编写出零件加工程序单,直至将加工程序通过直接通信的方式进入数控机床,控制机床进行加工。
随着数控技术的发展,数控机床得到了广泛的应用。
目前,在机械行业中,单件小批量生产所占有的比例越来越大。
这对工件的加工要求也提高了,目前在数控加工中比较广泛的应用了手工编程,它是按照事先编制好的加工程序,根据加工程序自动的对被加工零件进行加工,我们把零件的加工工艺路线,工艺参数,刀具轨迹,切削参数以及辅助功能,按照数控机床规定的指令代码及编写成的加工程序单,然后输入到数控机床中,从而控制机床完成对零件的加工,但这种手工编程只能加工一些简单的面。
面对具有复杂曲面的点位关系是无法完成的。
例如在分度盘的加工过程中,孔的数量相当多,而且加工精度要求高,在加工中还有很多变量,一般编程很难完成,但我们可以采用宏程序来完成。
宏程序结构类似于计算机高级语言,可以实现变量的算术运算,逻辑运算和条件转移等操作。
它可以很轻松的完成分度盘的加工。
1.2设计采用的方法本设计采用宏程序进行加工程序的编制,在分度盘的实际运用中比较适用,在运用过程中还可以采用算术运算和逻辑运算,能够多次转移和循环,极大的简化了我们的操作过程,与普通加工相比,也减轻了编程人员的劳动强度和工作时间。
在这次设计分度盘的过程中,我们要感受到计算机在工业生产中的重要辅助作用。
有些复杂的曲面和多孔零件在加工中必须要通过电脑软件的帮助才能完成工件的加工,人工计算是很难得到的,而通过自动编程和宏程序就可以简单快速的完成。
通过这次毕业设计,使我能更熟练的应用宏程序进行设计、加工等。
第二章分度盘的加工与编程2.1 任务分析在加工编程前,必须按照加工工艺要求先对该零件进行详细的加工工艺分析,这是编程人员编辑程序的重要依据之一。
由于分度盘的加工较复杂,如果用普通机床加工,必须先进行人工画线,打样冲,钻孔,再扩孔等工艺,而操作过程中需要人为干涉,不仅费时而且误差较大,使其加工精度底,产品质量不高,同时生产效率也大大降低。
分度盘示意图如图一所示:图一分度盘采用数控机床加工,因数控机床对工件的加工是按事先编好的程序自动完成的,工件加工过程中不需要人为干涉,加工完成后自动停止,消除了操作者人为产生的误差,提高了加工精度高,同时也减少了划线,打样冲等时间,提高了生产效率。
数控加工编程分为自动编程和手工编程,手工编程无法完成具有较多变量的加工,而宏程序可以完成有较多变量的编程,所以我们选择了宏程序编程,它是一固定功能,避免多次编程的繁琐,减少了编程时间,提高了加工效率,并且其结构类似于计算机高级语言,可以实现变量的算术运算,逻辑运算和条件转移等操作。
按照工件的加工及实际应用的基本要求,可以将该工件的加工主要分为三个部分:外轮廓加工:外轮廓加工主要完成将工件毛坯加工到需要的尺寸精度,外轮廓加工一般需要经过粗加工、半精加工、精加工等步骤才能达到需要的精度要求。
由于本设计的分度盘零件对外圆没有加工要求,因此这里只进行了一次加工,即能满足实际要求。
上表面加工:由于需要在上表面上进行大量的孔加工,再加上钻削过程中所产生的切削抗力较大以及较大的振动,因此在孔加工之前需要将上表面加工光整。
孔加工:孔加工是本设计的一个重点加工部位,本设计采用了两个子程序的办法来完成该加工,并作出了一个标准孔加工宏程序,在设计中通过反复调用即可完成。
在调用宏程序时,只要改变其中任意一个参数,就可完成不同厚度,不同大小,不同孔数的分度盘或类似扇形的分度盘多孔的加工。
在孔加工中,主要经过了中心钻钻引入孔、麻花钻钻底孔等步骤。
2.2 工艺处理由于加工分度盘较复杂,精度要求高,所以选择数控加工中心进行加工,这就可以保证较高的加工精度并满足加工要求。
加工中心加工选择定位基准的基本要求:1、所选基准与各加工部位见的各个尺寸计算简单。
2、保证各项加工精度。
3、选择定位基准应遵循的原则:尽量选择分度盘的设计基准为准,选择设计基准做为定位基准不仅可以避免因基准不重合而引起的定位误差,保证加工精度,可以简化程序编制。
当在加工中心上无法同时完成包括设计基准在内的全部表面加工时,要考虑所选择基准定位后,一次装夹能够完成全部关键精度部位的加工。
由于加工分度盘较复杂,精度要求高,所以选择数控加工中心进行加工,这就可以保证较高的加工精度并满足加工要求。
2.2.1毛坯准备毛坯如图二所示:图二 毛坯示意图2.2.2装夹对夹具的基本要求:夹紧结构或其他元件不得影响进给,加工部位要敞开。
为保持工件在本工序中所有需要完成的待加工面在外,夹具要开敞。
为保持分度盘安装方位与机床坐标系及编程坐标系方向的一致性,夹具应能保证在机床上事项定向安装,还要求能使零件定位面于机床之间保持一定的坐标联系。
夹具的刚性和稳定性要好,在考虑夹紧方案时,夹紧力应靠近主要支撑点或在支撑点所组成的三角形内,靠近切削部位及刚性好的地方,尽量不要在被加工孔的上方。
加工中心夹具的选择要根据零件精度等级,结构特点,产品批量及机床精度等情况综合考虑。
在单件生产或产品研制中,应广泛采用通用夹具。
我们在这次分度盘的设计中所选用的是通用夹具三爪卡盘。
为使其定位和装夹准确可靠,由于毛坯中已经有中心空,不需要再加工中心孔。
所以我们只需要限制零件的X 轴的移动与转动,Y 轴的移动与转动,Z 轴的移动就可以保证零件的定位精度要求。
能满足这种要求的夹具就是三爪卡盘,所以采用三爪卡盘进行定位安装,数控加工工件和零件设定,见表一:1、08F 低碳钢材料2、淬火后回火至HRC40-50表一工件安装卡片零件图号J30102-4数控加工工件安装卡片工序号零件名称分度盘装夹次数一次装夹零件分度盘钻铣夹具GS53-61 编制(日期)审核(日期)批准(日期)第1页表一三爪卡盘00102007/6/20 2007/6/20 共4页序号夹具名称夹具图号2.2.3工艺设计先对零件毛坯在热处理,热处理可以减少加工过程中内应力的产生,提高加工精度。
然后再进行粗加工,为数控铣削加工工序提供了可靠的工艺基准,用三爪卡盘装夹零件时,零件的各孔,外圆,及端面均留0.2mm~0.5mm 粗加工余量,经调质处理后对零件的内孔进行半精铣加工,外圆及端面均留1.0mm~2.0mm余量,其中数控加工工艺卡片详见表二:表二工序卡2.3数控刀具刀具是机械制造系统中重要的组成部分之一,机械工业的生产过程中要涉及大量的金属切削。
数控机床于普通机床相比较,对刀具提出了更高的要求,不仅要精度高,刚性好,装夹调整方便,而且要求切削性能强,耐用度高,因此数控加工中刀具的选择是非常重要的内容,刀具选择合理于否不仅影响机床的加工效率,而且还直接影响加工余量,选择刀具通常要考虑机床的加工能力,工序内容,工件材料等多中因素。
数控刀具通常应考虑的因素有:(1)被加工工件的材料及性能,如材料的硬度,耐磨度,韧性。
(2)切削工艺的类别。
(3)加工的几何形状,零件精度,加工余量等因素。
(4)要求刀具能承受的背吃刀量,进给速度,切削速度等切削参数。
铣刀主要参数的选择:粗铣时,铣刀直径要小些,因为粗铣切削力大,选小直径铣刀可减少切削按扭;精铣时,铣刀直径要大些,尽量包容工件整个加工宽度,一提高加工精度和效率并减小相邻两次刀具的接刀痕迹。
根据工件的材料,刀具材料及加工性质的不同来确定铣刀的几何参数。
刀柄的选择是根据零件的加工工艺,尽量选用加工效率较高的刀柄和刀具,选用模块式刀柄或复合刀柄要综合考虑。
1、由于分度盘的加工精度要求较高、并且加工过程需要进行多次换刀,因此对刀具的要求十分严格,刀具安装时,一般要在机外对刀仪上预先调整刀具直径和位置,这样才能保证刀具的安装精度要求。
刀具卡反映了刀具编号和材料等。
它是组装刀具和调整刀具的依据,详见表三:表三数控铣削刀具卡片零件图号J30102-4数控刀具卡片使用设备刀具名称铣刀加工中心刀具编号T13006 换刀方式自动程序编号O0001刀具组成编号刀具名称规格数量备注7013960 拉钉 1390.140-5063050 刀柄 1391.35-4063110M 铣刀杆 1448S-405628-11 铣刀体 1TRMR110314-21SIP 铣刀头 1拉钉刀柄铣刀杆铣刀体铣刀头编制杨闯审校批准共4页第3 页2、分度盘加工中所用刀具和刀具尺寸、半径长度补偿。