当前位置:文档之家› 几类分块矩阵的伴随矩阵

几类分块矩阵的伴随矩阵

几类分块矩阵的伴随矩阵
几类分块矩阵的伴随矩阵

矩阵的分块及应用

矩阵的分块及应用 武夷学院毕业设计(论文) 矩阵的分块及应用院系:专业:姓名:学号: 指导教师:职称:完成日期:数学与计算机系计算机科学与技术陈航20073011014 魏耀华教授年月日武夷学院教务处制摘要矩阵分块,就是把一个大矩阵按照一定规则分成小矩阵,它是矩阵运算的一种常用技巧与方法。分块矩阵的理论不但在工程技术和实际生产中有着广泛的应用,而且在线性代数中求矩阵乘积、行列式的值、逆矩阵、矩阵的秩和矩阵的特征根的过程中也起到重要作用。分块矩阵的初等变换则是处理分块矩阵有关问题的重要工具,它在线性代数中有非常广泛的应用。讨论了分块矩阵的概念、分块矩阵的运算、分块矩阵的性质以及分块矩阵的广义初等矩

阵,归纳并提出了分块矩阵的一些应用,这些应用主要涉及到矩阵的秩,逆矩阵,行列式以及矩阵正定和半正定等方面。通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解。关键词: 分块矩阵;初等变换;计算;逆矩阵;证明。I Abstract Partitioned matrices mean dividing a big matrix into the small matrices according to the certain rule. It is a common technique and method in matrix operation. The theories of partitioned matrices have not only a wide range of applications in engineering and production, but also play an important role to the process for seeking matrix product and the value of determinant and inverse matrix and rank of matrix and the characteristic in linear algebra. Elementary transformation of partitioned matrices is an important tool to deal with the partition matrix. Also, it is

分块矩阵在行列式计算中的应用(1)

矩阵与行列式的关系 矩阵是一个有力的数学工具,有着广泛的应用,同时矩阵也是代数特别是线性代数的一个主要研究对象.矩阵的概念和性质都较易掌握,但是对于阶数较大的矩阵的运算则会是一个很繁琐的过程,甚至仅仅依靠矩阵的基本性质很难计算,为了更好的处理这个问题矩阵分块的思想应运而生[]1. 行列式在代数学中是一个非常重要、又应用广泛的概念.对行列式的研究重在计算,但由于行列式的计算灵活、技巧性强,尤其是计算高阶行列式往往较为困难.行列式的计算通常要根据行列式的具体特点采用相应的计算方法,有时甚至需要将几种方法交叉运用,而且一题多种解法的情况很多,好的方法能极大降低计算量,因此行列式计算方法往往灵活多变.在解决行列式的某些问题时,对于级数较高的行列式,常采用分块的方法,将行列式分成若干子块,往往可以使行列式的结构清晰,计算简化.本文在广泛阅读文献的基础上,从温习分块矩阵的定义和性质出发,给出了分块矩阵的一些重要结论并予以证明,在此基础上讨论利用分块矩阵计算行列式的方法,并与其他方法相互比较,以此说明分块矩阵在行列式计算中的优势. 1.1 矩阵的定义 有时候,我们将一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样[]1.特别在运算中,把这些小矩阵当做数一样来处理.这就是所谓的矩阵的分块.把原矩阵分别按照横竖需要分割成若干小块,每一小块称为矩阵的一个子块或子矩阵,则原矩阵是以这些子块为元素的分块矩阵.这是处理级数较高的矩阵时常用的方法. 定义1[]2 设A 是n m ?矩阵,将A 的行分割为r 段,每段分别包含r m m m 21行,将 A 的列分割为s 段,每段包含s m m m 21列,则 ?? ? ? ? ? ? ??=rs r r s s A A A A A A A A A A 21 2222111211 , 就称为分块矩阵,其中ij A 是j i m m ?矩阵(,,,2,1r i =s j ,,2,1 =). 注:分块矩阵的每一行(列)的小矩阵有相同的行(列)数. 例如,对矩阵A 分块, = ?? ? ? ? ? ? ? ?-=21010301012102102301A ??? ? ??22211211 A A A A , 其中

分块矩阵求逆

一、分4块的矩阵求逆 对于分块矩阵A B 求其逆在计量经济学,马尔科夫链等科目中常常遇到,本文综合了 C D,格林等文件,提供一个一般的汇总性文件,方便查阅。 本文采用初等变化法求逆,假设先对矩阵进行了合适的分块并且灰色部分的逆存在: A B | I 0 C D | 0 I 第1行左乘-CA-1并加到第2行有: A B | I 0 0D-CA-1B | -CA-1I 第2行左乘-B(D-CA-1B)-1并加到第1行有: A 0 | I+ B(D-CA-1B)-1 CA-1-B(D-CA-1B)-1 0 D-CA-1B|-CA-1I 第1行左乘A-1,第2行左乘(D-CA-1B)-1后,右边的矩阵为原始矩阵的逆:

注意是左乘,右乘不行,因为右乘副对角线上的矩阵可能没法做矩阵乘法。 二、分9块的矩阵求逆 对于分9块的矩阵A=[A B C;D E F;G H K]求逆,可先把矩阵进行适当划分,使得以下各灰色部分可逆,然后分别左乘矩阵P和右乘矩阵Q,P、Q如下所示,易见P、Q均可逆。 P A Q I 0 0 | A B C | I -A-1B -A-1C -DA-1 I 0 | D E F | 0 I 0 = B(具体见下三行) -GA-10 I | G H K| 0 0 I A 0 0 0 E-DA-1B F-DA-1C [(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)] 0 H-GA-1B K-GA-1C 要求各灰色部分可逆

可见大矩阵B的逆主要是求其右下角的逆,而这是个分四块矩阵,用第一部分方法即可求得。因为PAQ=B,所以A=P-1BQ-1,A-1=QB-1P,经过最终计算,A-1表示如下: 其中: M=(E-DA-1B)-1+(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 N=-(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 R=-[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 S=[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 此方法原则上还可依此递推至分为n2块矩阵求逆。

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的?就如矩阵的元素(数)一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,- 般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法?比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A、C都是n阶矩阵, A B 其中A 0,并且AC CA,则可求得AD BC ;分块矩阵也可以在求解线性 C D 方程组应用? 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利

1 分块矩阵的定义及相关运算性质 1.1 分块矩阵的定义 矩阵分块 , 就是把一个大矩阵看成是由一些小矩阵组成的 . 就如矩阵的元素 ( 数) 一 样,特别是在运算中 , 把这些小矩阵当作数一样来处理 . 定义1设A 是一个m n 矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 A 11 ... 分成s 块,于是有rs 块的分块矩阵,即A .... A r1 . 1.2 分块矩阵的相关运算性质 1. 2.1 加法 A A ij r s , B B ij r s , 其中 A ij , B ij 的级数相同, A B A ij B ij r s 1.2.2 数乘 kA 1.2.3 乘法 1.2.4 转置 A A ji s r 1.2.5 分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换: A 1s ... ,其中 A ij 表示的是一个矩阵 . A rs 设 A a ij B mn b ij m n ,用同样的方法对 A,B 进行分块 设是任 A a ij mn A ij r s ,k 为任意数, 定义分块矩阵 A A ij r s 与 k 的数乘为 设 A a ij ,B sn n m 分块为 A A ij nm r l ,B B ij l r ,其中 A ij 是 s i n j 矩阵, B ij 是 n i m j 矩阵, 定义分块矩阵A A j rl 和B B ij l r 的乘积为 r C ij A i1 B 1j A i2 B 2j ... A il B lj , i 1,2,...t; j 1,2,3,..., l a ij s n 分块为 A sn A ij r s ,定义分块矩阵 A A ij r s 的转置为 rs

分块矩阵求逆公式及证明

分块矩阵求逆公式及证明 A 12 ,如果A ii (i=1,2)的逆存在,则 A 22 A 11 B 12 * A 12B 22 A 21B 11 A 22B 21 A 21 B 12 A 22B 22 将B 22代入方程(2)可以得到: B q 厂-A -1|A 12F 2 将B/弋入方程(1)可以得到: B qi = A ;;(I iq + A 12F 2A 21A ;1) 证毕。 同理可得,A ;1的另外一种表达形式为: F -F -1A A -1 1 A I ;;; ;; 1 12 22 ,其中 F 广(A ii-A i2A 22;;A 2i ) A - -1 -1 -1 化 1 A 11 (I + A 12F 2A 21A 11 ) _A 11A 12F 2 ; -F 2A 21A 11 F 2 其中 F 2= (A 2^A 21A 11A 12 F 1 证明: 设A 的逆为B 二 B 11 _B 21 B B :,其中B 与A 分块形式相同'则: A 11 A 12 B 11 A 22 _ -B 21 B q? I 11 B 22H 22 - A 11B 11 A 12B 21 111 (1 ) 定理: A= A 11 A 21 ⑷- A 21A -?⑵二 A 22 B 22 -1 - A 21A 11B 22 -1 1 1 22 = B 22 二(A 22 一 A 21A 11A 12) F 2 (3) - A 21A 11 (1) — A 22B 21 - A 21A 11A 12B 21 =-A 21A -1 二 B 21 二一 B 22A 21A 11

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

矩阵的分块求逆及解线性方程组

实验3 矩阵的分块求逆及解线性方程组 一、 问题 化已知矩阵为上三角矩阵,构作范德蒙矩阵,高阶非奇异矩阵的分块求逆,求非齐次线性方程组的通解。 二、 实验目的 学会用Matlab 语言编程,实施矩阵的初等变换将已知矩阵化为上三角矩阵;掌握 用循环语句由已知向量构造范德蒙矩阵;了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析;能根据由软件求得的非齐次线性方程组增广矩阵的阶梯型的最简形式写出线性方程组的通解。 三、 预备知识 1. 线性代数知识: (1) 向量},,,{21n x x x X =作出的 n 阶范德蒙矩阵为 ??? ?? ??? ??---112112222 1 21111 n n n n n n x x x x x x x x x (2)分块矩阵???? ??=2221 1211A A A A A ,其中11A 为方的可逆子块,求逆矩阵有如下公式: 设??? ? ??=-2221 1211 1 B B B B A ,则2212111121 12111212222,)(B A A B A A A A B ----=-=, 1 11211211111111212221,----=-=A A B A B A A B B (3)常用的矩阵范数为Frobenius 范数;2 1112||||||??? ? ??=∑∑==n i n j ij F a A 2. 本实验所用Matlab 命令提示: (1)输入语句:input('输入提示'); (2)循环语句:for 循环变量=初始值 :步长 :终值 循环语句组 end (3)条件语句: if(条件式1) 条件块语句组1 elseif(条件式2) 条件块语句组2 else 条件块语句组3 end (4)矩阵和向量的范数:norm(A); (5)求矩阵A 的秩:rank (A ); (6)求矩阵A 的阶梯型的行最简形式:rref(A)。

分块矩阵及其应用

分块矩阵及其应用 徐健,数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量, 而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

分块矩阵的初等变换及应用_百度文库.

十.研究创新题 解: 1.分块矩阵的初等变换 分块矩阵的初等变换与初等矩阵 吴云在1997年8月的《工科数学》上的《分块矩阵的初等变换》一文中提到定义1分块矩阵的行(列初等变换是指: (1)交换两行(列的位置; (2)第i行(列的各个元素分别左乘(右乘该行(列的一个阶左(右保秩因子H; (3)第i行(列的各个元素分别左乘(右乘一个阶矩阵K后加到第j行. 定义2 对应于分块矩阵的初等分块矩阵是指: (1)= 或=

(2)=或= 其中H为第i行(列的一个左(右保秩因子; (1 = (2 或= 初等分块矩阵与通常的初等矩阵类似,但由于矩阵乘法不满足交换律,故需要分为左、右两种.直接验算可得: 定理1(1交换的第i行与第j行,相当于左乘一个m阶初等分块矩阵,其中中的元素为h(i阶单位矩阵,为h(j阶单位矩阵, 当r≠i且r≠j时,为h(r阶单位矩阵;交换的第i列与第j列相当于右乘一个n阶初等分块矩阵,其中为l(i阶单位矩阵,为l(j阶单位矩阵,当r≠i且r≠j时,为l(r阶单位矩阵;

(2 的第i行的每一个元素左乘一个矩阵H相当于左乘一个m阶分块矩阵 中H为h(i阶方阵; 的第i列的每一个元素右乘一个矩阵H,相当于 右乘一个n阶初等到变换矩阵,其中H为l(i阶方阵; (3 的第j行的每个元素分别左乘一个h(i×h(j矩阵K后加到第i行,相当 于左乘一个初等分块矩阵;第j列的每一个元素分别右乘l(j×l(i矩阵K后加到第i列,相当于右乘. 定理2设A为方阵,则分块矩阵施行第一种行初等变换后,对应的行列式为 , 其中 h(i,j=h(ih(j-l+h(i+l]+…+h(j[h(i+h(i+j+…+h(j-l], l(i,j=l(ih(j-l+l(i+l]+…+l(j[l(i+l(i+j+…+l(j-l], 施行第二种初等变换后,对应的行列式为|H|·|A|;施行第三种初等变换后,对应的行列式的值不变. 证明: ,显然成立. 下证,所在的第1行逐次与它相邻的行交换,移至前,共进行h(i-1+h(i+1+…+h(j-1次交换两行,第2行逐次与它相邻的行交换,移至前,同样进行相同次交换两行,依此类推,把所在的行移至所在的行前,共进行 h(i[h(i-1+h(i+1+…+h(j-1]次交换两行,然后把移至适当的位置,同理共进行h(j[h(i+h(i+1+…+h(j-1]次交换两行,所以交换两行的总次数为h(i,j,故 ;同理. 所以有==(-1或==(-1) ==或= ==== 定理3 分块矩阵进行初等变换后,秩不变.

分块矩阵的若干性质及其应用

分类号密级 U D C 编号 本科毕业论文(设计) 题目分块矩阵的若干性质及其应用 学院数学与经济学院 专业名称应用统计学 年级 学生姓名 2017 年 4 月

文献综述 一、概述 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。分块矩阵是矩阵的一种特殊形式,对于一些高阶矩阵,形式表达上就比较抽象,运算上就更为繁杂,然而通过矩阵分块的方法达到降阶的目的。分块矩阵的若干性质及其应用是一个应用型的课题,是通过对分块矩阵的若干性质的掌握并应用于现实生活上的实际问题,它的应用范围非常广,远远不止于本文所列出的这几个方面,还有更广阔的应用有待于我们更加深入地去研究与探索。 二、正文 通过阅读居余马著作的《线性代数》一书中了解到,“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个术语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。但是追根溯源,矩阵最早是出现在我国的《九章算术》中,在《九章算术》方程一章中,就提出了解线性方程各项系数、常数按顺序排列成一个长方形的形状,随后移动,就可以求出这个方程。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。 现阶段,分块矩阵的性质及其应用在各个方面都起着至关重要的作用,分块矩阵的应用非常广泛和深刻,特别是在高等代数和线性代数中的应用更加广阔,例如在计算行列式以及矩阵的秩等方面,都有着很重要的应用。但国内一些专家对其研究主要还是在证明和计算方面。 林瑾瑜在《分块矩阵的若干性质及其在行列式计算中的应用》中,从行列式计算中的经常用到的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明问题中的应用。 蔡铭晶在《例说分块矩阵的应用》中论述了分块矩阵的概念,举例说明和分析了分块矩阵在线性代数中的应用,包括利用分块矩阵求逆矩阵、求高阶行

分块矩阵及其应用

分块矩阵及其应用 【摘要】矩阵论是代数学中是一个重要的组成部分和主要的研究对象。而分块矩阵可以降低较高级数的矩阵级数,使矩阵的结构更加清晰,从而使矩阵的相关计算简化,并且可以证明一些与矩阵有关的问题。本文详细且全面论述了分块矩阵阵的概念、分块矩阵的运算和其初等变换,而且证明了矩阵的分块在高等代数中的应用,包括用分块矩阵证明矩阵秩的问题,用分块矩阵求行列式问题,用分块矩阵求逆矩阵的问题,分块矩阵相似的问题。 【关键词】:分块矩阵;矩阵的秩;逆矩阵;行列式 目录 1引言 (2) 2矩阵分块的定义和性质 (2) 2.1 矩阵分块的定义 (2) 2.2 分块矩阵的运算 (2) 2.3 分块矩阵的初等变换 (3) 2.4 n阶准对角矩阵的性质 (3) 3分块矩阵在高等代数中的应用 (4) 3.1 分块矩阵在矩阵的秩的相关证明中的应用 (4) 3.2 利用分块矩阵计算行列式 (7) 3.3 分块矩阵在求逆矩阵方面的应用 (11) 3.4 分块矩阵在解线性方程组方面的应用 (16) 4总结 (19) 参考文献 (20)

1 引言 矩阵是高等代数中的一个重要内容,也是高等数学的很多分支研究问题的工具。在学习高等代数的时候常常碰到一些很难的问题,我们要经常用到矩阵的分块去解决,它可以使矩阵的结构更简单,从而使问题的解决更简明。比如当我们处理阶数较高或具有特殊结构的矩阵时,用处理一般低阶矩阵的方法,往往比较困难,为了研究问题的方便,也为了显示出矩阵中某些部分的特性,我们常把一个大型矩阵分成若干子块,把每个子块看作一个元素,从而构成一个分块矩阵,这是处理矩阵问题的重要技巧。利用矩阵的分块,可以把高阶矩阵划分成阶数较低的“块”,然后对这些以“块”为元素的矩阵施行矩阵的运算。本文就分块矩阵的加法、乘法、转置、初等变换等运算性质,及分块矩阵在证明矩阵相关秩的问题、矩阵求逆、行列式展开计算等方面的应用作了较为深入的研究。矩阵的分块能使矩阵的一些证明和计算变的非常简洁和快速,易于理解和掌握,而且能开拓思维,提高灵活应用知识解决问题的能力。

第八讲 矩阵的分块法

第八讲 矩阵的分块法 一、矩阵的分块法 用处:(1)将高阶矩阵用低阶矩阵表示 (2)把每一小块看成元素一样按矩阵的运算来进行运算 (3)分块之后使得矩阵的一些运算简化 分块的标准:(1)能分出一些零子块 (2)能分出一些单位矩阵 (3)分成数量矩阵 二、分块矩阵的运算 简单解释一下即可,不做要求 三、分块对角矩阵 1、定义 2、对应的行列式的求法 3、逆矩阵的求法 例题1、设???? ? ??--=320210002A ,求A ,1-A 四、线性方程组的矩阵表示 1、一般表示 ?????=++=++m n mn m n n b x a x a b x a x a 1 111111 系数矩阵n m m m n a a a a A ?????? ??=11111

未知量矩阵???? ? ??=n x x X 1 常数项矩阵???? ? ??=m b b b 1 2、线性方程组的矩阵表示 将上面的方程组用矩阵表示: ???? ? ??=????? ??????? ??m n m m n b b x x a a a a 1111111 b AX = 例题:设?????=--=-+-=+-02212321 321321x x x x x x x x x ,写出矩阵表达式。 对角矩阵的行列式值和逆矩阵的求法要求必须会。 练习题 1、 求逆矩阵101210002A ?? ?= ? ??? 2、 求逆矩阵1200250000620032A ?? ? ?= ? ??? 3、求x 和y ,使2180341x y -??????+= ??? ?-?????? . 4、 求x ,y 和z ,使110101************x y z --?????? ??? ?-= ??? ? ??? ?-??????

分块矩阵的初等变换及应用49554

十.研究创新题 解: 1.分块矩阵的初等变换 分块矩阵的初等变换与初等矩阵 吴云在1997年8月的《工科数学》上的《分块矩阵的初等变换》一文中提到 定义1 分块矩阵的行(列)初等变换是指: (1)交换两行(列)的位置; (2)第i行(列)的各个元素分别左乘(右乘)该行(列)的一个) (i h 阶)阶)((i l 左(右)保秩因子H; (3)第i行(列)的各个元素分别左乘(右乘)一个) (i h 阶)阶)((i l 矩阵K后加到第j行. 定义2 对应于分块矩阵t s ij A ?)(的初等分块矩阵是指: (1)))((k j i P i +=?????????? ? ? ?ss ll ii E E K E E 11 或ijk P =?????????? ? ? ?ii ll ii jj E O E E O E (2) )(H P il =???????? ??ss ll E H E 或)(H P ik =?? ? ?? ? ?? ? ?ii E H E 11 其中H为第i行(列)的一个左(右)保秩因子;

(1) ))((k j i P i +=??????????? ? ?ss ll ii E E K E E 11 (2) 或))((k j i P k +=?????????? ? ? ?ll ll ii E E K E E 11 初等分块矩阵与通常的初等矩阵类似,但由于矩阵乘法不满足交换律,故需要分为左、右两种.直接验算可得: 定理1 (1)交换t s ij A ?)(的第i行与第j行,相当于左乘一个m阶初等分块矩阵ijL P ,其中ijL P 中的元素ii E 为h(i)阶单位矩阵, jj E 为h(j)阶单位矩阵, 当r≠i且r≠j时, rr E 为h(r)阶单位矩阵;交换t s ij A ?)(的第i列与第j列相当于 右乘一个n阶初等分块矩阵ijk P ,其中ii E 为l(i)阶单位矩阵, jj E 为l(j)阶单位矩阵, 当r≠i且r≠j时, rr E 为l(r)阶单位矩阵; (2) t s ij A ?)(的第i行的每一个元素左乘一个矩阵H相当于t s ij A ?)(左乘一个m阶分块矩阵)(H P iL 中H为h(i)阶方阵; t s ij A ?)(的第i列的每一个元素右乘一个矩阵H,相当于t s ij A ?)(右乘一个n阶初等到变换矩阵) (H P ik ,其中H为l(i)阶方阵; (3) t s ij A ?)(的第j行的每个元素分别左乘一个h(i)×h(j)矩阵K后加到第i行,相当于t s ij A ?)(左乘一个初等分块矩阵))((k j i P L +;第j列的每一个元素分别右乘l(j)×l(i)矩阵K后加到第i列,相当于t s ij A ?)(右乘))((k j i P k +. 定理2设A为方阵,则分块矩阵t s ij A ?)(施行第一种行初等变换后,对应的行列式为 A j i h ) ,()(1-, 其中 h(i,j)=h(i)h(j)-l+h(i+l)]+…+h(j)[h(i)+h(i+j)+…+h(j-l)], l(i,j)=l(i)h(j)-l+l(i+l)]+…+l(j)[l(i)+l(i+j)+…+l(j-l)], 施行第二种初等变换后,对应的行列式为|H|·|A|;施行第三种初等变换后,对应的行列式的值不变. 证明: H H P i =) (,A k j i P =+))((显然成立. 下证) ,()(j i h irL P 1-= ,ii E 所在的第1行逐次与它相邻的行交换,移至jj E 前,共进行h (i)-1+h(i+1)+…+h(j-1)次交换两行,第2行逐次与它相邻的行交换,移至jj E 前,同样进行相同次交换两行,依此类推,把ii E 所在的行移至jj E 所在的行前,共进行

分块矩阵的初等变换及其应用开题报告 [开题报告]

毕业论文开题报告 信息与计算科学 分块矩阵的初等变换及其应用 一、选题的背景、意义 1.选题的背景 在数学的矩阵理论中,一个分块矩阵或是分段矩阵就是将矩阵分割出较小的矩形矩阵,这些较小的矩阵就称为区块。换个方式来说,就是以较小的矩阵组合成一个矩阵。分块矩阵的分割原则是以水平线和垂直线进行划分。分块矩阵中,位在同一行(列)的每一个子矩阵,都拥有相同的列数(行数)。 通过将大的矩阵通过分块的方式划分,并将每个分块看做另一个矩阵的元素,这样之后再参与运算,通常可以让计算变得清晰甚至得以大幅简化。例如,有的大矩阵可以通过分块变为对角矩阵或者是三角矩阵等特殊形式的矩阵。 2.选题的意义 矩阵的分块是处理较高阶矩阵时常用的方法,用一些贯穿于矩阵的纵线和横线将矩阵分成若干子块,使得阶数较高的矩阵化为阶数较低的分块矩阵。在运算中,我们有时把这些子块当作元素一样来处理,从而简化了表示,便于计算。分块矩阵初等变换是线性代数中重要而基本的运算,它在研究矩阵行列式、特征值、秩等各种性质及求矩阵的逆、解线性代数方程中有着广泛的应用。因此,如何直接对分块矩阵实行初等变换显得非常重要,本文的目的就是讨论分块矩阵的初等变换及其应用[1]。 二、研究的基本内容与拟解决的主要问题 2.1 分块矩阵及其初等变换 2.1.1 分块矩阵的定义: 将一个分块矩阵A用若干条纵线和横线分成许多块的低阶矩阵,每一块低阶矩阵称为A 的子块。以子块为元素的矩阵A称为分块矩阵。 我们将单位矩阵E分块:

??? ? ? ??=s r r E E E 0 00 001O ,其中E r 是r i 阶单位矩阵(1

701高等数学

中国农业科学院 2017年硕士研究生招生考试自命题科目考试大纲 科目代码: 701 考试科目:高等数学 一、考查目标 要求考生比较系统地理解高等数学的基本概念和基本理论,掌握数学的基本方法,具备一定的运算能力、抽象概括能力、逻辑思维能力、空间想象力和综合运用所学知识分析问题和解决实际问题的能力。 二、考试形式和试卷结构 1.试卷满分及考试时间 试卷满分为150分,考试时间为180分钟。 2.答题方式 闭卷、笔试。 3.试卷内容结构 考试内容包括微积分、线性代数和概率论与数理统计三部分。其中微积分的分值约占60%左右,线性代数和概率论与数理统计各占20%。题型包括单项选择、填空、解答题等。 三、考试大纲 《微积分》部分 (一)函数、极限、连续 考试内容 函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立。 数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限: 0sin 1lim 1,lim(1)x x x x e x x →→∞=+= 函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。 2.了解函数的有界性、单调性、周期性和奇偶性。 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4.掌握基本初等函数的性质及其图形,了解初等函数的概念。 5.了解数列极限和函数极限(包括左极限和右极限)的概念。

正定矩阵的性质及应用

正定矩阵的性质及应用 摘要: 正定矩阵是矩阵理论中的一类重要的矩阵,且在多个不同领域内均有重要的作用,本文回顾了正定矩阵的发展史、性质及应用。矩阵理论的应用愈来愈广,它在众多学科和领域中发挥着不可替代的作用,如在数学分析中用黑塞矩阵来判断函数的极值等。把矩阵理论应用到这些数学学科中时,使很多问题变得简单明了. 关键字: 正定矩阵;主子式;顺序主子式;特征值. 研究矩阵的正定性,在数学理论或应用中具有重要意义,是矩阵论中的热门课题之一.正定矩阵具有广泛的应用价值,是计算数学、数学物理、控制论等领域中具有广泛应用的重要矩阵类,其应用引起人们极大的研究兴趣.本文首先给出了正定矩阵的定义,然后研究了正定矩阵的一些等价条件和一些正定矩阵的若干性质,最后简单的列举了一些正定矩阵在数学其它方面的应用. 一、正定矩阵的定义 定义1.设),,,(21n x x x f 是一个实二次型,若对任意的一组不全为零的实数n c c c ,,, 21 都 有0),,,(21>n c c c f ,则称),,,(21n x x x f 是实正定二次型,它所对应的对称矩阵为正定对称矩阵,简称正定矩阵. 定义2.n 阶是对称矩阵A 称为正定矩阵.如果对于任意的n 维实非零列向量) ,,,(21n x x x f X =都有0>' A X X ,正定的是对称矩阵A 简称为正定矩阵. 注:二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定型,不具备有定型的二次型及其矩阵为不定. 二次型的有定型与其矩阵的有定型之间具有——对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性的判别. 二.正定矩阵的一些性质 1.正定矩阵的充分必要条 (1)n 元实二次型),,,(21n x x x f 正定?它的惯性指数为n .

相关主题
文本预览
相关文档 最新文档