西北师大光催化铋系化合物1
- 格式:ppt
- 大小:2.46 MB
- 文档页数:14
铋基光催化剂的调控与污染物降解机理研究伴随着我国社会和工业技术的不断发展,大量污染物尤其是抗生素等难降解有机污染物被排放到天然水体当中,由此引起的水质污染和供水安全问题,已成为关乎可持续发展和实现小康社会的关键因素。
因此,急需发展自由基强化氧化技术,以实现水中污染物的高效降解和安全转化。
半导体光催化技术是通过将光能转化为化学能,在光能的驱动下催化产生羟基自由基(<sup>·</sup>OH)、、超氧自由基(O<sub>2</sub><sup>·-</sup>)、单线态氧(<sup>1</sup>O<sub>2</sub>)和空穴(h<sup>+</sup>)等活性氧物种以达到降解水中有机污染物的效果,它具有氧化能力强、污染物降解彻底、反应条件温和与环境友好的特点,在水污染治理方面具有较好的应用前景。
然而,传统的光催化材料如二氧化钛由于禁带宽度大(3.2 eV),只能吸收占太阳光4%的紫外光,对占太阳光约43%的可见光的利用效率低,极大限制了该技术的实际应用。
为提高太阳能的利用率,特别是可见光的利用率,构筑高效可见光催化剂成为现阶段光催化领域的发展前沿。
对于具有较宽带隙或较窄带隙的半导体材料,通过调控禁带宽度可以有效提高半导体材料对可见光的响应;对于本身具有较强可见光吸收的半导体材料,通过构建异质结构,促进光生载流子的传导,从而抑制光生电子-空穴复合可以有效提高其对可见光的利用效率;借助上述两种手段,设计并构建纳米复合材料,发展可见光催化技术,可以有效解决上述问题。
近年来,一系列含铋的半导体材料被报道具有优良的光催化活性,其具有独特且可调的电子能带结构和形貌等优点,受到研究者们的广泛关注和研究。
根据其化学组成及晶体结构的不同,铋基半导体材料的带隙可从0.3 eV的超窄带隙覆盖到3-4 eV的宽带隙。
铋系光催化剂的最新研究进展王军;伍水生;赵文波;廉培超;王亚明【摘要】铋系光催化剂作为一种新型的催化剂成为了近年来的研究热点.综述了铋系光催化剂包括钨酸铋,钒酸铋,钛酸铋及卤氧化铋的一些最新研究进展,从合成方法,影响因素,反应机理,光催化活性等方面对其进行阐述.并指出了该类型催化剂目前存在的问题和发展前景.【期刊名称】《化工科技》【年(卷),期】2014(022)002【总页数】6页(P74-79)【关键词】铋系光催化剂;钨酸铋;光催化活性;研究进展【作者】王军;伍水生;赵文波;廉培超;王亚明【作者单位】昆明理工大学化学工程学院,云南昆明650500;昆明理工大学化学工程学院,云南昆明650500;昆明理工大学化学工程学院,云南昆明650500;昆明理工大学化学工程学院,云南昆明650500;昆明理工大学化学工程学院,云南昆明650500【正文语种】中文【中图分类】TQ426.8环境污染和能源短缺是21世纪人类迫切需要解决的2大问题,光催化反应在室温下利用太阳能作为光源可以直接驱动反应的独特性能,成为了一种理想的环境污染控制技术和清洁能源生产技术。
TiO2具有无毒,催化活性高,抗氧化能力和稳定性强等优点。
但TiO2的禁带较宽为3.2e V,在可见光范围内没有响应,太阳能的利用率较低,激发产生的电子和空穴复合率高,光量子效率<4%。
因此急需开发新的半导体催化剂,使其在可见光范围内有响应,并具有较高的催化活性。
在这种情况下科研工作者研究和开发出了铋系光催化剂并取得了一系列显著成效。
作者将介绍几种常用的铋系光催化剂。
1 光催化原理光催化反应是指利用光能进行物质转化的一种方式,是光与物质之间相互作用的多种方式之一。
光催化剂一般是一些在常温下导电性能介于导体和绝缘体之间的半导体材料。
半导体一般是由充满电子的低能价带(VB)和空的高能导带(CB)构成,价带和导带之间称为禁带,没有能级存在。
用公式大概可进行估算。
第46卷第3期2021年6月广州化学Guangzhou ChemistryV ol. 46 No. 3Jun. 2021文章编号:1009-220X(2021)03-0029-08 DOI:10.16560/ki.gzhx.20210304铋及其复合物的研究进展吕振春(上海理工大学,上海200093)摘要:简单介绍了单质铋的低毒或无毒性、低电导率超导电性、冷膨胀和热收缩等独特性质。
基于文献重点讨论了铋及其复合物近些年在电催化、光催化、抗肿瘤、光热放射治疗等方面的新应用,尤其是在光催化净化水体污染和抗肿瘤/癌药物方面具有广阔的发展前景。
铋复合物独特的层状结构、合适的带隙、近红外光吸收及X-射线衰减等特性为其进一步应用奠定了坚实的基础,且不同的制备工艺及掺杂金属元素等各种改性方法也为其广泛普及提供了新的思路。
关键词:铋;光催化;电催化;光热放射治疗中图分类号:O6-1 文献标识码:A半导体光催化技术能够实现高效且环境友好的净化水资源,因此,利用光催化反应处理水污染问题被认为是具有广阔前景的绿色环境治理技术。
而铋(Bi)及其复合物因为独特的层状结构、合适的禁带宽度、更适合被可见光激发等特点,逐渐发展成为一类独特的新型光催化材料,引起了人们的广泛关注。
与此同时,随着研究的深入,铋的各种特殊性质及不同应用也开始进入人们的视线。
最开始,Bi的典型应用集中在冶金添加剂、焊料、弹药等方面,其化合物广泛应用于颜料、化妆品和药物中。
特别是后者,水杨酸铋常见于腹泻的治疗[1]。
目前大多数的研究针对于Bi基材料的热电、铁电、光电化学、电催化、光催化性能、其纳米材料及合成方法、薄膜制备及薄膜电极替代汞电极测定重金属离子等方面[2-8]。
近年来,关于Bi及其复合物的特殊性质及综合应用的相关综述较少,大多数是描述其一种具体的应用,例如Bi基光催化材料的研究进展等。
本综述则简单介绍了Bi的特殊性质,对光电催化、抗肿瘤及光热放射治疗等方面的应用进行总结,并详细介绍了Bi及其复合物光热治疗的研究进展。
第49卷第7期2021年4月广州化工Guangzhou Chemical IndustryVol.49No.7Apr.2021锤基光催化材料的应用研究进展吕振春(上海理工大学,上海200093)摘要:钮基光催化材料具有独特的层状结构、合适的带隙,可调的价导带位置,在环境与能源领域具有广阔的应用前景,是近年来被广泛研究的一类环境友好型新型光催化剂。
本文介绍了钮基光催化材料的种类,以及形貌调控构建异质结等结构调控方法,并总结了铤基光催化材料在污水处理及产氢等环境净化和能源转化领域的研究进展,最后对锤基光催化材料的未来进行了展望。
关键词:铤基光催化材料;光催化;能源转化中图分类号:06-1文献标志码:A文章编号:1001-9677(2021)07-0010-05 Research Progress on Application of Bismuth-based Photocatalytic MaterialsLV Zhen-chun(University of Shanghai for Science and Technology,Shanghai200093,China)Abstract:Bismuth-based photocatalysts have been widely studied as a new type of environment-friendly photocatalyst due to their unique layered structure,appropriate band gap,and adjustable valence band position in the field of environment and energy.The types of bismuth-based photocatalytic materials and structural adjustment methods such as morphology adjustment and construction of heterojunction were introduced,and the research progress on bismuth-based photocatalytic materials in the fields of environmental purification and energy conversion such as sewage treatment and hydrogen production was summarized.The future of bismuth-based photocatalytic materials was forecasted.Key words:bismuth photocatalysis material;photocatalysis;energy conversion社会发展所带来的环境安全问题正逐渐成为全球面临的最大挑战之一,在我国,环境安全问题已经引起政府的高度关注。
2021 年第50 卷第 5 期石油化工PETROCHEMICAL TECHNOLOGY·479·卤氧化铋在光催化领域的研究进展孙新宇,李会鹏,赵 华,蔡天凤(辽宁石油化工大学 石油化工学院,辽宁 抚顺 113001)[摘要]卤氧化铋(BiOX ,X=Cl ,Br ,I )作为窄带隙的光催化材料,具有优秀的可见光吸收能力,特殊的层状结构使光生电子更容易分离,体现了优秀的光催化性能。
首先对BiOX 的晶体结构和电子结构进行了介绍,分析了BiOX 一般的光催化机理;其次分析了阻碍BiOX 实际应用的问题,对近年来BiOX 的改性措施进行了综述,包括异质结的构建、元素掺杂、表面修饰、特殊形貌的构建等四种改性措施;最后对BiOX 在今后的研究方向进行了展望。
[关键词]卤氧化铋;光催化;表面修饰;光催化活性[文章编号]1000-8144(2021)05-0479-08 [中图分类号]TQ 06 [文献标志码]ARecent advances on bismuth oxyhalide in photocatalysisSun Xinyu ,Li Huipeng ,Zhao Hua ,Cai Tianfeng(Institute of Petroleum and Chemical Engineering ,Liaoning Petrochemical University ,Fushun Liaoning 113001,China )[Abstract ]Bismuth oxyhalide(BiOX ,X is Cl ,Br ,I),as a narrow band gap photocatalytic material ,has shown excellent visible light absorption and photocatalytic performance due to its special layered structure which makes it easier to separate photo-generated electrons. The crystal structure and electronic structure of BiOX are firstly introduced and general photocatalytic mechanism of BiOX is also analyzed. The problems which hinder the practical application of BiOX is illustrated and the modification measures of that in recent years ,especially four kind of modification measures ,namely ,heterojunction construction ,element doping ,surface modification and special morphology construction ,are reviewed. The research direction of BiOX in the future is further prospected.[Keywords ]bismuth oxyhalide ;photocatalysis ;surface modification ;photocatalytic activityDOI :10.3969/j.issn.1000-8144.2021.05.013[收稿日期]2020-12-22;[修改稿日期]2021-01-28。
铁酸铋的制备及其在光催化领域的研究进展卢鹏;胡雪利;赖昕;刘小平;芦婉婷;王晓雪;邱建【摘要】不同的制备方法,可以得到不同形貌的BiFeO3晶体,从而使其具备不同的性能.该材料的制备方法主要有固相反应法、共沉淀法、水热法、溶胶-凝胶法等.旨在对目前已见报道的BiFeO3的制备方法进行比较,并对该材料在水处理方面的光催化应用进行了综述.集光催化性及铁电磁性于一身的BiFeO3,将在光催化领域有着广阔的应用前景.【期刊名称】《应用化工》【年(卷),期】2018(047)006【总页数】4页(P1270-1273)【关键词】铁酸铋;制备;光催化;研究进展【作者】卢鹏;胡雪利;赖昕;刘小平;芦婉婷;王晓雪;邱建【作者单位】重庆工商大学环境与资源学院,重庆 400067;重庆工商大学环境保护研究所,重庆 400067;重庆工商大学环境与资源学院,重庆 400067;重庆工商大学环境与资源学院,重庆 400067;重庆工商大学环境与资源学院,重庆 400067;西华大学食品与生物工程学院,四川成都 610039;重庆市南岸区生态环境监测站,重庆400067;重庆工商大学环境保护研究所,重庆 400067【正文语种】中文【中图分类】TQ135.3+2;Q643.36光催化技术因其具有反应速度快、处理对象无差别、对污染物降解完全等优点,使该技术成为在污染物处理、空气净化等领域被广泛应用的新技术[1-2]。
目前,TiO2因具有氧化能力强、催化活性高、性质稳定、价廉无毒等特点,被广泛应用于废水处理、空气净化、杀菌自洁等方面。
但是,由于TiO2的禁带宽度为3.2 eV,对可见光的利用效率低,且目前多为粉末状形态,极难回收。
这些劣势极大地限制了TiO2光催化材料在现实工程中的应用。
因此,开发新型且便于回收的光催化材料,已成为目前研究的热点[3-5]。
BiFeO3是一种新型的铁电磁材料,该材料具有三方扭曲的钙钛矿结构,在室温下同时具有铁电有序和G型反铁磁有序两种结构。
BiOCl 晶体结构BiOCl 是由V-VI-VII 主族元素组成三元氧化物半导体,其晶体结构属于典型的PbFCl 型层状结构,具有高度的各向异性。
该层状结构是由-Cl-Bi-O-Bi-Cl-重复单元通过Cl 原子层间较小的非键力(范德华键,Van der Waals bond)结合,同时沿c 轴交替堆积排列而成,因此结构比较疏松,容易沿晶体的[001]方向发生解离,其晶体结构如图1-1所示。
值得注意的是,BiOCl 独特的层状结构具有较大的空间来极化相应的原子和原子轨道,从而可诱导在[001]方向上产生内部静电场,故当BiOCl 受到光照激发时,光生电子与空穴会在内部静电场的驱动下沿[001]方向实现有效分离与转移;此外,BiOCl 晶体中Bi-O 具有相对较弱的键能和较长的键长,在高强度光照下容易出现氧空位,形成电子捕获陷阱,因此,BiOCl 光催化剂的光生电子-空穴对的复合率较低。
BiOCl 晶体信息详细如下:BiOCl 晶体属于四方晶系,其对称性和空间群分别为D 7 4h 和P4/nmm ,晶格参数为:a=b=3.890 Å,c=7.370 Å,α=β=γ=90°,c/a=1.895,V 0=111.52 Å3;各原子坐标:Bi(0,0.5,0.171),O(0,0,0),Cl(0,0.5,0.645)。
图1-1 BiOCl 结构示意图:(a)原晶胞;(b)晶体结构 Fig. 1-1 The schematic diagram of BiOCl: (a) unit cell; (b) crystal structure (a) (-Cl-Bi-O-Bi-Cl-) (b) Nonbonding InteractionBiOCl cb a [001] [110]。