等离子束表面冶金(熔覆)
- 格式:ppt
- 大小:30.16 MB
- 文档页数:61
等离子束表面冶金复合材料技术研究[摘要] 定义了等离子束表面冶金复合材料技术特征。
研制了等离子束表面冶金设备。
对等离子束表面冶金技术和其他相近技术如等离子堆焊技术等进行了比较。
等离子束表面冶金是一种快速非平衡冶金反应过程,类似粉末冶金。
原则上可不受组成物的相溶性、熔点、密度等性质的限制,因此不需要预制合金雾化粉,可利用任意粉末的任意配比,获得通常冶金方法不能得到的(组织与)物相。
等离子束表面冶金方法效率高,操作简便,成本低,应用前景广阔。
[关键词] 等离子束;表面冶金;堆焊;非平衡相;表面强化[中图分类号] TG174 [文献表识码] A关键词致谢:作者在从事纳米材料的研究中得到国家自然科学基金委(国家自然科学基金资助课题:59001447,59321001,59431021,59771019,59471014,59431022)、国家科委("攀登计划":纳米材料科学)、中国科学院的资助,谨在此对上述机构表示衷心感谢。
Study on the T echnology of Composite Material Productionby Plasma-Jet Surface Metallurgy(University of Science and Technology,Beijing 100083;2 Institute of Material, Shandong University of Scienceand Technology, Tai’ an 271019;3 Central Committee of RevolutionaryCommittee of the Kuomintang, 100006)[Abstract]The technical feature of composite material productionby plasma-jet surface metallurgy is delimited.A plasma-jet surfacemetallurgical equipment is developed.The technology of plasma-jetsurface metallurgy with the else corresponding technology such as plasmabuild-up welding technique is compared.Plasma-jet surface metallurgy isa kind of rapid, non-equilibrium metallurgical process, which is similarto powder metallurgy. The process can not be restricted by consistency,melting point, density of constituents, so prealloy powders are not needed.And it can obtain some special structures and phases in random powder andrandom match. Plasma-jet surface metallurgy has such characteristics ashigh efficiency, simple operation, low cost, and has extensiveapplication prospect.[Key words] plasma jet;surface metallurgy;build-upwelding;non-equilibrium phase;surface strengthening;1 前言金属零件往往要求同时具备高硬度高耐磨耐腐蚀和高强韧性。
激光等离子熔覆技术及再利用激光等离子熔覆技术是一种先进的材料表面修复技术,它可以有效地改善金属表面的性能,并提高材料的耐磨、抗腐蚀和抗疲劳性能。
在现代制造业中,激光等离子熔覆技术已经广泛应用于航空航天、汽车、船舶等行业,成为提高产品品质和延长零部件使用寿命的重要工艺手段。
随着材料资源的日益枯竭和环境污染问题的日益严重,再利用激光等离子熔覆技术产生的废弃材料已经成为一个值得关注的问题。
本文将围绕激光等离子熔覆技术及再利用展开论述,介绍其原理、应用及再利用的相关问题。
一、激光等离子熔覆技术的原理激光等离子熔覆技术是一种利用激光和等离子喷涂材料对金属表面进行热熔修复的先进技术。
其原理是利用高能密度的激光束对金属表面进行快速加热,使其表面形成等离子状态,然后再喷涂合金粉末,最终形成一层均匀致密的合金涂层。
通过激光熔覆技术,不仅可以提高金属表面的硬度、耐磨性和抗腐蚀性,还可以修复金属表面的缺陷和损伤,延长其使用寿命。
激光等离子熔覆技术已经成为现代制造业中不可缺少的一部分,广泛应用于航空航天、汽车、船舶、石油化工等领域。
在航空航天领域,激光等离子熔覆技术被用于修复发动机叶片、涡轮叶片、航空发动机外壳等部件,提高其耐高温、抗氧化性能。
在汽车制造领域,激光等离子熔覆技术被用于修复发动机缸体、缸盖、曲轴等部件,提高其耐磨、耐热性能。
在船舶制造领域,激光等离子熔覆技术被用于修复船体、船舶推进器等部件,提高其抗腐蚀、抗海水侵蚀性能。
激光等离子熔覆技术已经成为提高产品品质和延长零部件使用寿命的重要工艺手段。
尽管激光等离子熔覆技术在金属表面修复方面取得了很大的成功,但是其产生的废弃材料也引起了人们的关注。
因为在激光熔覆过程中,一部分喷涂材料会因为无法完全熔化而产生废弃物,这些废弃物包括未完全熔化的合金粉末、冷凝的气体等,这些废弃物并非一般的金属垃圾,其中还包含着能源和资源。
如何有效地再利用激光熔覆废弃材料,不仅能够减少金属资源的浪费,还能够减少对环境的污染,是一个亟待解决的问题。
等离子熔覆成本1. 引言等离子熔覆是一种先进的表面处理技术,通过等离子弧放电产生的高温等离子体,将金属粉末或线材熔化喷射到基材表面,形成一层均匀、致密的熔覆层。
等离子熔覆具有熔覆层与基材结合强度高、耐磨性好、耐腐蚀性强等优点,被广泛应用于航空航天、汽车制造、能源装备等领域。
然而,等离子熔覆技术在一定程度上受到成本的限制。
本文将详细探讨等离子熔覆成本的构成要素以及如何降低成本,以提高等离子熔覆技术的竞争力。
2. 等离子熔覆成本构成要素等离子熔覆成本主要由以下几个要素构成:2.1 原材料成本原材料成本是等离子熔覆成本的重要组成部分。
原材料包括熔覆粉末或线材,其成本取决于材料的种类、规格和市场价格。
不同的材料具有不同的价格,例如钨、钼等高性能金属的价格较高,而铁、铝等常见金属的价格较低。
为降低原材料成本,可以采取以下措施:•寻找替代材料:寻找价格更低廉的替代材料,如选择合适的合金材料,可以在一定程度上降低原材料成本。
•提高利用率:合理设计熔覆工艺,优化熔覆参数,提高原材料的利用率,减少浪费。
2.2 设备投资成本等离子熔覆设备的投资成本对整体成本有着重要的影响。
设备投资成本包括设备购买费用、设备安装费用、设备维护费用等。
等离子熔覆设备的价格较高,尤其是大型设备,需要进行维护和保养,增加了设备的运营成本。
为降低设备投资成本,可以考虑以下措施:•租赁设备:对于小规模生产企业,可以考虑租赁设备,降低设备购买费用。
•选择合适规模的设备:根据实际生产需求选择合适规模的设备,避免过度投资。
2.3 能源消耗成本等离子熔覆过程需要消耗大量的电能和气体,能源消耗成本也是等离子熔覆成本的重要组成部分。
电能消耗主要用于产生等离子弧放电,气体消耗主要用于保护等离子弧和冷却喷嘴。
为降低能源消耗成本,可以考虑以下措施:•优化工艺参数:合理选择等离子弧放电电流和电压,控制气体流量,降低能源消耗。
•使用高效设备:选择能源利用效率高的设备,如高效等离子弧发生器、气体供应系统等。
激光等离子熔覆技术及再利用
激光等离子熔覆技术(Laser Plasma Melting,LPM)是一种先进的表面处理技术,其核心是利用激光产生的等离子体将材料表面溶解,形成一层薄膜,用以增强表面硬度、耐磨、抗腐蚀性能和减少摩擦系数。
LPM技术不但可以提高材料的性能,还可以实现原有材料的再利用,具有重要的应用价值和社会效益。
LPM技术的基本原理是以高功率密度激光束为能量源,瞬间加热材料表面,产生等离子体,使材料表面迅速熔化并形成液态金属谷物,再通过液态金属的匀勻化和混合,实现表面层的涂布并形成均一的涂层结构。
初始粉末经过激光熔覆后与基材接触后固化成为配好比例的合金结构,从而让材料的表面性能得以显著提高。
与其他表面加工技术相比,LPM技术具有许多优点。
首先,LPM技术能够在没有导体或者完好的气氛条件下对材料进行熔覆,使其具有独特的环境适应性。
其次,LPM技术熔覆后的涂层结构形式稳定,附着力强,不易脱落。
此外,LPM技术可以加工高硬度、高溶点及复杂形状的材料,并且可以实现自动化加工,生产效率高。
LPM技术的应用十分广泛。
其中,飞机发动机涡轮叶片、船用螺旋桨、汽车发动机零部件、刀具、模具、航空及能源材料等领域都很适合采用LPM技术进行加工和表面改性。
除了提高材料表面性能外,LPM技术可以实现原有材料的再利用。
例如,对于磨损材料,可以通过LPM技术进行表面重建,提高材料的使用寿命。
对于过时的产品,可以通过LPM技术将其重新加工后再次利用。
因此,LPM技术具有二次开发和再利用的价值。
等离子熔覆技术
嘿,你问等离子熔覆技术啊?这事儿咱得好好唠唠。
先说说这等离子熔覆是啥玩意儿吧。
简单来讲呢,就是一种能让东西变得更厉害的技术。
它可以在各种材料的表面弄上一层特别硬、特别耐磨的东西。
这技术咋弄的呢?就是用等离子体。
啥是等离子体呢?就有点像那种特别热、特别厉害的气。
用这种等离子体把一些粉末材料加热到超级高的温度,然后喷到要处理的材料表面上。
这些粉末就会熔化,然后和原来的材料融合在一起,形成一层新的、很厉害的涂层。
这涂层有啥好处呢?那可多了去了。
首先呢,特别耐磨。
比如说一些机器零件,老是被摩擦,用了等离子熔覆技术后,就不容易被磨坏了,可以用更长时间。
其次呢,还很耐腐蚀。
有些材料在一些恶劣的环境下容易生锈啥的,有了这涂层,就不怕了。
还有啊,这涂层可以提高材料的硬度,让它更结实。
在实际应用中,等离子熔覆技术可牛了。
比如说在矿山机械上,那些铲子啊、钻头啊啥的,用了这技术,就更
耐用了。
还有在汽车制造上,一些关键的零件也可以用这技术来提高性能。
我给你讲个事儿吧。
有一次我去一个工厂参观,看到他们正在用等离子熔覆技术处理一些零件。
那些零件本来都有点旧了,但是经过这技术一处理,哇,变得跟新的一样。
而且听说用了这种处理过的零件,机器的寿命都延长了好多呢。
从那以后,我就知道了等离子熔覆技术的厉害。
总之呢,等离子熔覆技术是个很厉害的技术。
它能让材料变得更耐磨、耐腐蚀、更硬。
在很多领域都有大用处。
加油吧!。
等离子熔覆成本
(原创实用版)
目录
1.等离子熔覆技术的概述
2.等离子熔覆的成本构成
3.等离子熔覆的优点
4.等离子熔覆的局限性
5.我国在等离子熔覆技术方面的发展
正文
一、等离子熔覆技术的概述
等离子熔覆技术,是一种将金属或非金属材料通过等离子弧加热至高温,使其熔化后涂覆在基材表面的一种表面处理技术。
这种技术广泛应用于航空航天、汽车制造、电子工业等领域,以提高材料表面的硬度、耐磨性、耐腐蚀性等性能。
二、等离子熔覆的成本构成
等离子熔覆的成本主要包括设备成本、材料成本、人力成本和能源成本。
1.设备成本:等离子熔覆设备价格较高,包括等离子发生器、电源、冷却系统等,价格从几万元到几十万元不等。
2.材料成本:等离子熔覆的材料主要包括金属或非金属粉末,其价格根据所使用的材料种类和质量而有所不同。
3.人力成本:等离子熔覆的操作需要专业技术人员,人力成本较高。
4.能源成本:等离子熔覆设备需要大量的电力,因此能源成本也较高。
三、等离子熔覆的优点
等离子熔覆技术具有许多优点,如涂层均匀、粘附力强、涂层硬度高、耐磨性好等。
四、等离子熔覆的局限性
等离子熔覆技术也存在一些局限性,如设备成本高、操作技术要求高、能耗大等。
等离子熔覆与激光熔覆的优缺点关键词:薄板焊接、等离子表面处理、中部槽堆焊、粉末堆焊机、等离子堆焊机、等离子堆焊、上海粉末堆焊哪家好、等离子焊机说明、等离子熔覆工艺一、激光熔覆特点1. 技术特点激光熔覆最重要特点是热量集中,加热快冷却快热影响区小,特别对不同材质之间熔融有着其它热源无法比拟的特点,也正是这一特殊的加热和冷却过程,在熔铸区域产生的组织结构也不同于其它熔覆(喷焊·堆焊·普通焊接等)手段,甚至可以产生非晶态组织,特别是脉冲激光更为明显。
这就是所谓激光熔覆不变形无退火的原因。
但我以为这只是从工件整体宏观讲,而当你对熔覆层和热影响区进行微观分析时,你会看到另一种景象,这一点我将在后面讲到。
2. 设备特点激光熔覆目前国内采用采用两种机型;CO2激光器,YAG激光器。
前者为连续输出,熔覆用机一般在3KW以上;YAG激光为脉冲输出,一般在600W左右。
对于设备,一般使用者很难吃透,严重依赖生产方的服务,购买价格昂贵,维护成本、零部件价格很高,再加上设备稳定性和耐受性与国外比较普遍都有差距。
因此激光熔覆机一般用在特殊领域,普通工业制造、维修领域难有效益。
3. 工艺特点第一前期处理:激光熔覆一般只需将工件打磨干净,除油,除锈,去疲劳层等,比较简单。
第二送粉:CO2激光器功率较大,一般用氩气送粉;YAG激光功率小,一般用自然落粉的方式。
这两种方式在熔覆时都基本在水平位置形成熔池,倾斜稍大粉末便不能正常送达,激光的使用范围受到限制,特别是YAG激光器。
第三从熔池形成的状态看:由于激光的控制精度高,输出功率恒定,且没有电弧接触,所以熔池大小深度一致性好。
第四加热快冷却快:影响金属相形成的均匀度,也对排气浮渣不利,这也是造成激光熔覆形成气孔,硬度不均的重要原因,特别是YAG激光倾向更严重。
第五材料选择:由于不同材料对不同波长激光的吸收能力不同,造成激光熔覆材料选择限制较大,激光更适于镍基自熔性合金等一些材料,对碳化物,氧化物的熔覆更困难一些。
激光等离子熔覆技术-回复激光等离子熔覆技术是一种先进的表面修复和材料涂覆技术。
它使用激光器产生的高能量激光束,将金属粉末加热到熔化状态,并通过高速离子喷射使其沉积在工件表面上,形成一个坚固耐磨的涂层。
这项技术广泛应用于许多领域,包括航空航天、汽车制造、电子设备等,可以有效地提高工件的耐磨性、耐蚀性和抗高温性能。
本文将以激光等离子熔覆技术为主题,详细介绍它的原理、应用和发展前景。
第一部分:激光等离子熔覆技术的原理激光等离子熔覆技术是利用高能量激光束对金属粉末进行加热,并通过高速离子喷射使其凝结在工件表面上。
整个过程可以分为以下几个步骤:1. 激光加热:激光束聚焦在金属粉末上,通过光能转换为热能,使粉末迅速升温,直至熔化。
2. 离子喷射:熔化的金属经过激光的作用形成等离子体,激光器会向等离子体中注入适当的气体,使其离子化。
高能量的离子会以极高的速度喷射到工件表面,将熔化的金属粉末沉积在工件上。
3. 冷却凝固:工件表面的金属粉末在接触到工件表面后迅速冷却,并与工件表面的金属结合,形成坚固的涂层。
第二部分:激光等离子熔覆技术的应用激光等离子熔覆技术具有广泛的应用前景,可以在很多工业领域中发挥重要作用。
以下是一些典型的应用领域:1. 航空航天:在航空航天领域,激光等离子熔覆技术可以用于修复零件表面的损伤和磨损,提高零件的耐磨性和抗高温性能。
例如,飞机发动机涡轮叶片的修复和表面涂覆可以显著延长其使用寿命。
2. 汽车制造:汽车发动机缸体、气门座圈等零部件表面的磨损和腐蚀问题是制约其寿命和性能的重要因素,激光等离子熔覆技术可以有效修复和加固这些零件的表面,提高其耐久性和可靠性。
3. 电子设备:电子设备中的导电材料往往面临着高温、腐蚀等环境的考验,采用激光等离子熔覆技术可以在导电材料表面形成保护涂层,提高其耐蚀性和耐高温性,确保设备的正常运行。
第三部分:激光等离子熔覆技术的发展前景激光等离子熔覆技术具有许多优势,如高加工效率、灵活性高、精确控制等,因此受到了广泛的关注和应用。
等离子熔覆技术的研究现状及展望等离子熔覆技术作为一种能将两种或多种材料物理有机结合在一起的技术,在机械,化学,航空航天,汽车,工业等领域都得到了广泛的应用。
它具有制备宽范围的多组分熔体的能力,在高温下可以对不同材料进行熔覆,使材料间的界面复合抗物理,化学和热性能相对稳定效果更好。
由此,等离子熔覆技术在金属的修复,增强表面材料的抗蚀,提高产品的外观和力学性能等方面发挥着重要的作用。
随着科技的发展和社会的进步,等离子熔覆技术越来越得到了社会的重视,各方投入了大量的资源进行研究和应用。
在等离子熔覆材料方面,研究者们不仅仅限于金属材料,还逐渐研究了塑料,陶瓷,复合材料等新型材料。
在控制方面,进一步发展计算机自动控制、智能控制技术,从而使熔覆过程可以更加精确、节省材料,提高工件的质量,降低生产成本。
另外还有仿真技术,建立灰色模型可以用于提前预测熔覆的结果。
通过上述的研究,等离子熔覆技术在各个领域得到了很好的应用。
同时,在许多现存的技术问题上,也建立了许多可解决方案,深化了对熔覆技术的理解。
对熔覆技术的更深入研究可能会拓宽熔覆材料的范围,提高材料间的结合强度,建立复杂的熔覆结构,充分发挥熔覆技术的潜力。
总之,等离子熔覆技术正逐步发展成为一种新兴的结合技术,它可以为金属技术、航空航天、机械、化学等领域提供强大而可靠的技术手段,被越来越多的应用。
随着科技的发展,等离子熔覆技术应用范围也将越来越广泛,将发挥更大的作用。
随着现代材料板块的深入发展,等离子熔覆将继续在金属修复,表面增强,材料结合等方面发挥重要的作用。
展望未来,等离子熔覆技术研究将将发展的更加宽泛,并将在安全性能,环境适应性,应用范围等方面获得更多的发展,不仅在广泛的工业领域生产出更好的产品,也在社会服务方面发挥重要的作用。
激光等离子熔覆技术及再利用
激光等离子熔覆技术是一种新型的表面改性技术,它将激光束聚焦在物体表面形成高
温等离子体,在等离子体中需要溶解或熔化的材料被熔化或熔覆在基体表面,形成一层坚
固的表面涂层,由于熔覆后的层与基体结合紧密,表面涂层具有高强度、耐磨、耐腐蚀、
耐高温等优良特性,常用于地质钻具、汽车发动机、航空航天、通讯器材等领域。
激光等离子熔覆技术的有效推广对于材料领域的可持续发展具有重要意义,它能够解
决传统材料加工技术难以克服的缺陷。
随着材料利用领域的扩大,废旧材料的再利用也引起了广泛关注。
在激光等离子熔覆
技术中,利用废旧材料进行表面涂层的制造可以有效减少资源浪费和环境污染。
例如,将废旧金属材料进行熔覆,可以形成高强度的表面涂层。
铁及其合金材料在熔
覆过程中释放出的高热能可以加速氧化物的分解,提高涂层的致密性和结合强度。
同时,
在碳纤维等复合材料表面熔覆过程中,利用高能量激光加热,能够在复合材料表面产生碳
分子的桥接,将其与基体结合更加紧密。
基于废旧材料的熔覆技术具有以下优势:
(1)环保:利用废旧材料进行表面涂层制造,可以减少资源消耗和污染排放。
(2)经济:废旧材料的再利用可以降低生产成本,增加经济效益。
(3)燃料节约:熔覆技术中使用的激光所需的能量比传统加热方式低,因此节约能源,减少二氧化碳排放。
总之,激光等离子熔覆技术及其再利用有望成为未来材料加工领域的热点技术,它不
仅可以提高表面材料的质量、使用寿命和安全性能,还可以实现资源的有效循环利用,具
有重要的社会和经济效益。
激光等离子熔覆技术及再利用激光等离子熔覆技术(LPMF)是一种合金加工方法,其应用范围主要包括金属涂覆、表面硬化及再生等领域。
LPMF是一种高温加工技术,需要对工作材料进行加热处理以使其融化,并通过高强度的激光束将其溅射到基体上。
在此过程中,物质由于高温加热而被转变为等离子体,成为了高能量物质,此时的材料相对于原始的材料已经发生了重大的变化。
本文将介绍激光等离子熔覆技术的原理和工程应用,以及利用该技术再利用金属废料的方法。
LPMF技术的原理LPMF技术是一种将激光束集中在工件表面上的过程。
当光束达到一定能量时,工件表面的金属将被加热至其熔点以上,并逐渐融化。
在此过程中,金属表面的材料开始变为等离子体,具有很高的能量。
随着熔化的深度越来越深,金属表面的温度也越来越高,并且开始变得不稳定。
这个等离子体将成为一个非常高能量的物质,可以在短时间内产生很多熔化和重组,能够形成一个非常密集和均匀的涂层。
1. 涂覆技术:LPMF技术可以广泛应用于表面涂覆。
涂层可以通过喷粉法或溅射法应用在金属表面上。
该技术可以用于建筑、化工、机械、汽车、电子等许多领域。
2. 表面硬化:LPMF可以应用于制造一些需要高硬度材料的零件。
例如,发动机的活塞、齿轮等需要进行表面硬化以增强其耐磨性和耐腐蚀性。
3. 再生技术:LPMF可以被用于回收和再利用金属废料。
这个过程在回收过程中将金属废料加热到一定的温度,使其融化并形成一种等离子体。
然后在等离子体中加入相关的材料以实现目标含量的再生量。
在再生过程中,当废料被加热时,杂质因其化学性质而被吸收并自动被从废料中清除。
这个过程使再生的材料具有更高的质量和更好的应用性能。
LPMF技术可以提供一种环保和经济的方式来回收金属废料。
结论。
激光等离子熔覆技术及再利用激光等离子熔覆技术是一种先进的表面改性技术,可以在金属表面形成高质量的涂层,并具有良好的附着力和耐磨性。
该技术广泛应用于航空航天、汽车、电子、能源等领域。
激光等离子熔覆技术的基本原理是利用激光束在金属粉末表面产生高温等离子弧,在弧状状条件下,金属粉末熔化并与基底金属熔融形成涂层。
激光束的功率密度和熔融金属粉末的速度决定了涂层的质量和厚度。
激光等离子熔覆技术具有许多优点。
该技术可以在高温下完成,无需加热整个工件。
这大大减轻了工艺过程中的热应力和变形。
激光束的局部加热效应使得熔覆过程在非常短的时间内完成,减少了金属粉末的氧化和显微组织的变化。
最重要的是,激光等离子熔覆技术可以在一次加工中制备出复杂的结构和多层涂层,提高了涂层的性能。
激光等离子熔覆技术产生的涂层通常存在一定的缺陷,如裂纹、氧化和残余应力。
这些缺陷可能会影响涂层的性能和使用寿命。
为了提高涂层的质量和耐久性,需要采取一些措施。
一种常用的方法是优化激光等离子熔覆工艺参数。
通过调整激光束功率、扫描速度和金属粉末的喷射速度等参数,可以控制涂层的熔池形成和凝固速率,从而减少裂纹和残余应力的产生。
另一种方法是加入合适的合金元素。
合金元素可以改善涂层的结构和性能,增强激光等离子熔覆涂层的耐腐蚀性和耐磨性。
加入碳化钨粉末可以在涂层中形成均匀分布的碳化物颗粒,提高涂层的硬度和耐磨性。
在激光等离子熔覆技术中,原材料的再利用也是一个重要的问题。
废弃的金属粉末和涂层残渣可以通过回收再利用。
回收后的金属粉末可以继续用于激光等离子熔覆工艺中,减少了原材料的浪费和成本。
涂层残渣可以进行再处理和回收利用,以减少环境污染。
激光等离子熔覆技术是一种先进的表面改性技术,具有广泛的应用前景。
通过优化工艺参数和合金元素的添加,可以提高涂层的质量和耐久性。
再利用废弃原材料和涂层残渣也可以减少资源浪费和环境污染。
未来,随着技术的不断发展,激光等离子熔覆技术有望在各个领域发挥更大的作用。
第52卷第7期表面技术2023年7月SURFACE TECHNOLOGY·167·等离子熔覆Fe基/WC-10Co-4Cr涂层的组织与性能研究崔陈1,朱协彬1,程敬卿2,刘振华2,韩顺顺1(1.安徽工程大学 材料科学与工程学院,安徽 芜湖 241000;2.安徽鼎恒再制造产业技术研究院,安徽 芜湖 241000)摘要:目的制备高强度和高硬度的耐磨性涂层,用于已磨损的机械零件表面,以延长其使用寿命,避免机器因磨损而带来的各种故障。
方法采用等离子熔覆技术在40CrMnMo表面制备WC-10Co-4Cr/Fe300合金复合熔覆层,研究不同质量分数WC-10Co-4Cr对熔覆层组织和性能的影响。
利用金相显微镜、超景深光学显微镜、SEM、EDS、XRD对熔覆层的组织形貌进行表征和物相分析,借助数显显微硬度计和销盘式摩擦磨损试验机测试熔覆层的硬度和耐磨性。
结果 WC-10Co-4Cr/Fe300合金作为一种复合材料,与基材形成了冶金结合,结合区域无孔洞和裂纹。
熔覆层微观结构随着WC-10Co-4Cr含量的增加,逐渐由柱状晶向树枝晶过渡,它主要由Fe6W6C、(Cr、Fe)23C6和WC相组成。
熔覆层的平均硬度大致随着WC-10Co-4Cr含量的增加而提高,当WC-10Co-4Cr的质量分数达到20%时,熔覆层的硬度最高(518.5HV0.2),大约是基体硬度的1.7倍。
熔覆层的主要摩擦机理为磨粒磨损,随着WC-10Co-4Cr含量的增加,熔覆层的耐磨性得到显著改善。
当WC-10Co-4Cr的质量分数为30%时,其磨损量比基体的总磨损量少0.018 6 g,熔覆层的耐磨性最好。
结论加入的WC-10Co-4Cr粉末与Fe300合金粉末反应生成了Fe6W6C、(Cr、Fe)23C6强化相,显著提高了熔覆层的硬度和耐磨性。
关键词:等离子熔覆技术;WC-10Co-4Cr/Fe300合金;显微组织;硬度;耐磨性能中图分类号:TG455 文献标识码:A 文章编号:1001-3660(2023)07-0167-10DOI:10.16490/ki.issn.1001-3660.2023.07.014Microstructure and Properties of Fe-Based/WC-10Co-4CrCoatings by Plasma CladdingCUI Chen1, ZHU Xie-bin1, CHENG Jing-qing2, LIU Zhen-hua2, HAN Shun-shun1(1. School of Materials Science and Engineering, Anhui Polytechnic University, Anhui Wuhu 241000, China;2. Anhui Dingheng Remanufacturing Industrial Technology Research Institute, Anhui Wuhu 241000, China)ABSTRACT: The work aims to prepare wear-resistant coatings with high strength and hardness for the worn surface of mecha-收稿日期:2022–06–09;修订日期:2022–10–25Received:2022-06-09;Revised:2022-10-25基金项目:国家科技重点实验室基金(6142005180208)Fund:Foundation of Key Laboratory of National Defense Technology (6142005180208)作者简介:崔陈(1996—),男,硕士,主要研究方向为金属材料的再制造工艺。
等离子熔覆镍基合金及复合材料涂层的组织与性能研究发布时间:2023-06-02T03:49:23.873Z 来源:《科技潮》2023年8期作者:虞扬[导读] 熔覆层的组织及性能取决于所采用的熔覆材料。
目前常用的熔覆材料是与基体具有较好润湿性的Fe基、Ni基和Co基等自熔合金粉末。
河北省邯郸市永年区海翔机械厂 057150摘要:利用等离子表面熔覆工艺,在钢基表面获得了与基体呈冶金结合的镍基合金涂层、镍基+镍包碳化钨等涂层。
利用光学电镜、扫描电镜以及能谱分析了上述涂层的组织及成分;采用维氏硬度计测定了涂层的维氏硬度;并比较了上述几种涂层的磨损性能。
关键词:等离子熔覆;镍基合金;组织与性能;镍包碳化钨;等离子熔覆技术是以等离子弧为热源,采用同步送粉方式,在基体材料表面获得一层均匀致密、结合牢固的特殊保护涂层,实现涂层与金属基体的冶金结合,具有表面冶金层厚、呈冶金结合、成分可调范围大、不需要前处理、效率高、成本低、冶金层质量好等优点,适合于处理一些既耐冲击又需要耐磨耐腐蚀的金属零件,是一种极有发展前途的金属表面改性处理新技术。
本文利用等离子熔覆技术,在钢基表面等离子冶金镍基合金粉末以及镍基+镍包碳化钨,得到与基体呈冶金结合状态的表面冶金涂层,并对上述涂层进行组织、性能分析。
1熔覆层材料熔覆层的组织及性能取决于所采用的熔覆材料。
目前常用的熔覆材料是与基体具有较好润湿性的Fe基、Ni基和Co基等自熔合金粉末。
在冲击和磨粒磨损严重的工况条件下,自熔合金已不能满足使用要求,于是研究者采取在自熔性合金粉末中添加陶瓷材料,制备以陶瓷颗粒为增强相的金属基复合熔覆层及梯度涂层。
利用等离子弧的高温,通过熔覆材料中各元素或化合物之间的化学反应形成陶瓷增强相,可以获得“原位合成”陶瓷材料增强的金属熔覆层。
Fe基合金粉末综合性能良好、价格低廉,并且铁基熔覆层与大多数成形工件基体成分接近,具有良好的结合性。
熔覆层的组织由平面晶、胞状晶、树枝晶、等轴晶、共晶体、大块碳、硼化合物等组成,等离子熔覆层的主要相为M23C6、Fe2B、γ-Fe(Me)等,熔覆层的显微硬度是基体硬度的3~4倍。
激光等离子熔覆技术及再利用激光等离子熔覆技术是一种利用高能激光束对材料表面进行加热并迅速冷却,将粉末材料熔化并喷射到基体表面上的技术。
该技术具有加热速度快、热影响区小、精度高等优点,可以有效改善材料表面的性能,并提高其使用寿命。
激光等离子熔覆技术可以应用于金属材料的防腐、耐磨、耐高温等方面的处理,也可以用于塑料和陶瓷材料的表面改性。
通过精确控制激光参数和喷射材料,可以在不同工艺条件下实现不同的表面效果,满足不同领域的需求。
除了表面改性,激光等离子熔覆技术还可以用于材料的再利用。
在工业生产中,许多材料在使用过程中会产生磨损、腐蚀等问题,导致其使用寿命下降。
传统的修复方法往往需要大量的材料和人力成本,而且修复后的材料性能无法与原始材料相匹敌。
激光等离子熔覆技术的出现为材料的再利用提供了新的途径。
通过激光熔覆,可以将磨损、腐蚀等损坏的部分重新涂覆上新的材料,恢复其原有的性能。
这种方法不仅能够减少材料的浪费,而且修复后的材料性能优于传统的修复方法。
在激光等离子熔覆技术中,再利用材料的选择至关重要。
通常情况下,再利用材料需要与基体材料具有良好的相容性,以确保复合后的材料具有良好的结合性和性能。
再利用材料的性能也需要满足特定的要求,比如耐磨、耐腐蚀、导热性等。
在实际应用中,科研人员可以根据具体的需求选择合适的再利用材料,并通过调整激光参数和喷射材料的工艺条件,实现对基体材料的再利用,提高其使用寿命和降低成本。
除了金属材料的再利用,激光等离子熔覆技术还可以应用于塑料和陶瓷等非金属材料的再利用。
随着人们对石油资源的日益重视,塑料材料的再利用成为了一个备受关注的话题。
由于塑料材料的可塑性,传统的再利用方法往往难以实现对塑料材料的有效修复。
而激光等离子熔覆技术可以通过快速加热和冷却的方式,将塑料材料重新热熔并喷射到基体上,实现对塑料材料的再利用。
同样,陶瓷材料的再利用也可以通过激光等离子熔覆技术实现。