漏磁检测
- 格式:pdf
- 大小:157.81 KB
- 文档页数:5
漏磁检测基本原理一、漏磁场检测(magnetic fluxleakage testing MFL)是指铁磁材料被磁化后,起表面和近表面缺陷在材料表面形成漏磁场,通过检测漏磁场以发现缺陷的无损检测技术。
当用磁饱和器磁化被测的铁磁材料时,若材料的材质连续、均匀的,则材料中的磁感应线将被约束在材料中,磁通是平行于材料的表面的,几乎没有磁感应线从表面穿出,被检表面没有磁场。
但当材料中存在着切割磁力线的缺陷时,材料表面的缺陷或组织状态变化会使磁导率发生变化,由于缺陷处的磁导率很小,磁阻很大,使得磁路中的磁通发生畸变,磁感应线会改变途径,除了一部分的磁通会直接通过缺陷或是在材料内部绕过缺陷外,还有部分磁通会离开材料的表面,通过空气绕过缺陷再重新进入材料,在材料表面缺陷处形成漏磁场。
我们则可以通过磁敏感传感器检测到漏磁场的分布及大小,从而达到无损检测的目的。
二、漏磁检测系统的磁化方法磁化方法在漏磁检测中起着重要的作用,它影响被检测对象的磁场信号。
从磁化的范围来看,可分为局部磁化和整体磁化;从磁化所用的励磁磁源来看,可分为交变磁场磁化方法、直流磁场磁化方法和永久磁铁磁化法。
交变磁场磁化方法以交流电激励电磁铁进行磁化,电流频率的增高,磁化的深度减小,磁化后铁磁性材料不会产生剩磁,不需要退磁;直流磁场磁化方法以直流电流激励电磁铁产生磁场进行磁化,磁化的强度可以通过控制电流来实现;永久磁铁磁化法以永久磁铁作为励磁磁源,其效果相当于固定直流磁化。
永久磁铁可以采用稀土永磁、铝镍钴永磁等,一般采用稀土永磁,它磁能高,体积小。
采用直流磁化和永久磁化都会产生剩磁,退磁与否根据具体要求而定,对检测速度参数没有特定的要求。
磁化强度的选择一般在于以确保检测灵敏度和减轻磁化器使缺陷或结构特征产生的磁场能够被检测到为目标。
由于漏磁场检测是用磁传感器检测缺陷,相对也磁粉、渗透等方法,有以下优点:1、漏磁检测主要是传感器获得信号,计算机进行处理判断,易于实现自动化。
漏磁检测实施细则1总则1.1目的为使漏磁检测工作规范化,保证检测结果的准确性和公正性,结合本公司检验管理体系,特制订本实施细则。
1.2适用范围适用于外径不小于38mm,壁厚不大于20mm的在用磁性无缝钢管、容器壳体母材等从外部进行的漏磁检测,也适用于容器从内部进行的漏磁检测。
2制订依据2.1 《承压设备无损检测第12部分:漏磁检测》NB/T47013.12-20152.2 《固定式压力容器安全技术监察规程》TSG 21-20162.3 《压力管道定期检验规则-工业管道》TSG D7005-2018 2.4 《无损检测常压金属储罐漏磁检测方法》JB/T10765-2007 3基本要求3.1检验人员资格凡从事漏磁检验工作的检验人员、无损检测人员、应按《特种设备无损检测人员考核规则》的要求进行考核,取得相应的资格证书,同时具备电磁学的基础知识,方可从事在允许范围内相应项目的检测工作。
3.2设备和器材3.2.1检测设备检测设备至少包括电源、磁化装置、探头、扫查装置、信号处理单元和记录单元等组成。
3.2.2磁化装置和探头按不同的被检工作的曲率选用合适的磁化装置和探头。
3.2.3通道仪器应具有足够的通道数且应给出每个通道的覆盖范围。
3.2.4扫查装置扫查装置应与被检工作曲率相匹配,采用手动或电动的方式进行扫查,最大扫查速度不应低于0.3m/s。
3.2.5灵敏度对于小于等于8mm的壁厚,当涂层厚度小于6mm时,可探测到被检对象表面20%深度的人工缺陷;壁厚大于8mm 或涂层厚度大于6mm时,其检测灵敏度由用户与检测单位协商确定。
3.2.6信号显示采用屏幕方式显示缺陷的位置、深度当量或其他信息。
3.2.7系统校准每年应至少一次采用校准进行系统校准。
校准通过将检测系统在校准试件上检测人工缺陷来进行。
3.2.8系统功能核查应在检测实施前后,采用校准试件对设备进行系统功能核查。
在系统遇到故障或者修理后,需进行系统功能核查。
漏磁检测原理漏磁检测是一种常用的无损检测方法,它可以用来检测金属材料中的表面和近表面裂纹、疲劳损伤、应力腐蚀裂纹等缺陷。
漏磁检测原理是基于材料在磁场中的磁化特性和缺陷对磁场的影响来实现的。
首先,我们来了解一下磁化的基本原理。
当金属材料处于外加磁场中时,会产生磁化现象,即在材料内部和周围形成磁场。
而当材料中存在缺陷时,比如裂纹、疲劳损伤等,这些缺陷会破坏材料的磁化状态,导致磁场发生变化。
漏磁检测正是利用了这一原理。
漏磁检测的设备通常由磁化源、传感器和信号处理系统组成。
磁化源可以是永磁体或者电磁铁,用来在被检测材料表面产生磁场。
传感器用于检测被检测材料表面的磁场变化,并将信号传输给信号处理系统进行分析和判断。
在进行漏磁检测时,首先需要对被检测材料进行磁化处理,使其表面形成磁场。
然后,传感器沿着被检测材料表面移动,实时检测表面的磁场变化。
如果表面有缺陷存在,比如裂纹,那么这些缺陷会破坏磁场的均匀性,导致传感器检测到的磁场信号发生变化。
通过信号处理系统的分析,可以判断出被检测材料表面是否存在缺陷。
漏磁检测的原理简单易懂,同时具有高效、快速的特点。
它可以对各种形状和尺寸的金属材料进行检测,无需接触被检测材料表面,不会对被检测材料造成损伤,因此在工业生产中得到了广泛的应用。
需要注意的是,漏磁检测虽然能够有效地检测出金属材料表面和近表面的缺陷,但对于深层缺陷的检测能力相对较弱。
因此,在实际应用中,需要结合其他无损检测方法,如超声波检测、X射线检测等,以全面、准确地评估金属材料的质量。
总的来说,漏磁检测原理是基于材料在磁场中的磁化特性和缺陷对磁场的影响来实现的。
通过对被检测材料表面磁场变化的检测和分析,可以判断出材料表面是否存在缺陷,具有高效、快速的特点,是一种广泛应用于工业生产中的无损检测方法。
漏磁缺陷量化
漏磁缺陷量化是指对于材料或构件中存在的漏磁缺陷进行定量评估和测量的过程。
漏磁缺陷是指在磁场作用下,材料中存在的磁场不均匀或磁感应强度减小的区域,可能是由于材料中的磁性不均匀、裂纹、气泡、疏松等导致的。
以下是一些常用的漏磁缺陷量化方法:
1. 磁粉检测法(Magnetic Particle Testing):该方法通过在材料表面施加磁场,然后在表面上撒布磁粉或磁性液体,当有漏磁缺陷存在时,磁粉或磁性液体会在缺陷处形成可见的磁粉堆积或液体聚集,从而可以通过观察和检测来定量评估漏磁缺陷的大小和形状。
2. 磁通密度法(Magnetic Flux Leakage):该方法利用传感器或磁场探头测量材料表面的磁通密度分布,通过分析磁通密度的变化来检测和定量评估漏磁缺陷。
漏磁缺陷会导致磁通密度分布的不均匀,通过对磁通密度的测量和分析可以确定漏磁缺陷的位置和大小。
3. 磁化曲线法(Magnetization Curve):该方法通过在材料中施加磁场,测量材料的磁化曲线,通过分析磁化曲线的特征来判断和量化漏磁缺陷。
漏磁缺陷会导致磁化曲线的形状和特征发生变化,通过对磁化曲线的测量和比较可以定量评估漏磁缺陷的程度。
4. 磁阻抗法(Magnetic Impedance):该方法利用磁阻抗传感器或探头测量材料中的磁阻抗变化,通过分析磁阻抗的变化来检测和评估漏磁缺陷。
漏磁缺陷会导致磁阻抗的变化,通过对磁阻抗的测量和分析可以定量评估漏磁缺陷的大小和形状。
1/ 1。
漏磁检测原理漏磁检测是一种常用的无损检测方法,它可以用来检测金属材料中的表面和近表面缺陷,如裂纹、夹杂、疲劳等。
漏磁检测原理基于磁场的变化来发现缺陷,下面将详细介绍漏磁检测的原理及其应用。
首先,漏磁检测利用磁场的变化来检测金属材料中的缺陷。
当金属材料中存在缺陷时,磁场会发生变化,这种变化可以通过传感器来检测。
传感器通常是一种专门设计的探头,它可以感知磁场的变化并将其转化为电信号。
这些电信号经过放大和处理后,可以显示在仪器的屏幕上,从而实现对金属材料中缺陷的检测和分析。
其次,漏磁检测原理基于磁场的涡流效应。
当金属材料表面存在缺陷时,磁场会在缺陷周围产生涡流。
这些涡流会改变磁场的分布,从而形成磁场的漏磁现象。
通过检测漏磁现象,可以确定金属材料中的缺陷位置、大小和形状。
漏磁检测原理还可以通过磁粉检测来实现。
磁粉检测是一种常用的表面缺陷检测方法,它利用磁粉在磁场作用下在缺陷处产生磁粉聚集的现象来发现缺陷。
通过观察磁粉的分布情况,可以确定金属材料中的缺陷位置和形状。
除了上述原理,漏磁检测还可以通过磁记忆检测来实现。
磁记忆检测是一种新型的无损检测方法,它利用材料本身的磁性来检测缺陷。
当金属材料中存在缺陷时,磁性会发生变化,这种变化可以通过磁传感器来检测。
通过分析磁性的变化,可以确定金属材料中的缺陷位置和严重程度。
总的来说,漏磁检测原理是基于磁场的变化来实现对金属材料中缺陷的检测。
通过检测磁场的变化,可以确定金属材料中的缺陷位置、大小和形状,从而为后续的修复和加工提供重要参考。
漏磁检测在航空航天、汽车制造、铁路运输等领域有着广泛的应用,它为保障工程结构的安全性和可靠性起到了至关重要的作用。
希望本文对漏磁检测原理有所帮助,谢谢阅读!。
当物件需要漏磁检测时,我们通常需要运用到漏磁探伤检测仪。
那漏磁检测具体是什么呢?通过怎样的工作原理进行检测?漏磁检测的优点又有什么?关于漏磁检测,我们会产生一系列的问题,下面就一一为大家解答。
漏磁检测是指铁磁材料被磁化后,因试件表面或近表面的缺陷而在其表面形成漏磁场,人们可以通过检测漏磁场的变化进而发现缺陷。
漏磁场就是,当材料存在切割磁力线的缺陷时,材料表面的缺陷或组织状态变化会使磁导率发生变化,由于缺陷的磁导率很小,磁阻很大,使磁路中的磁通发生畸变,磁感应线流向会发生变化,除了部分磁通会直接通过缺陷或材料内部来绕过缺陷,还有部分磁通会泄漏到材料表面上空,通过空气绕过缺陷再进入材料,于是就在材料表面形成了漏磁场。
漏磁检测是十分重要的无损检测方法,应用十分广泛。
当它与其它方法结合使用时能对铁磁性材料的工件提供快捷且廉价的评定。
随着技术的进步,人们越来越注重检测过程的自动化。
这不仅可以降低检测工作的劳动强度,还可提高检测结果的可靠性,减少人为因素的影响。
基本原理:将被测铁磁材料磁化后,若材料内部材质连续、均匀,材料中的磁感应线会被约束在材料中,磁通平行于材料表面,被检材料表面几乎没有磁场;如果被磁化材料有缺陷,其磁导率很小、磁阻很大,使磁路中的磁通发生畸变,其感应线会发生变化,部分磁通直接通过缺陷或从材料内部绕过缺陷,还有部分磁通会泄露到材料表面的空间中,从而在材料表面缺陷处形成漏磁场。
利用磁感应传感器(如霍尔传感器)获取漏磁场信号,然后送入计算机进行信号处理,对漏磁场磁通密度分量进行分析能进一步了解相应缺陷特征比如宽度、深度。
漏磁检测是用磁传感器检测缺陷,相对于渗透、磁粉等方法,有以下几个优点:1、容易实现自动化。
由传感器接收信号,软件判断有无缺陷,适合于组成自动检测系统。
2、有较高的可靠性。
从传感器到计算机处理,降低了人为因素影响引起的误差,具有较高的检测可靠性。
3、可以实现缺陷的初步量化。
这个量化不仅可实现缺陷的有无判断,还可以对缺陷的危害程度进行初步评估。
漏磁检测法的主要特点:(l)对各种损伤均具有较高的检测速度;(2)对铁磁性材料表面、近表面、内部裂纹以及锈蚀等均可获得满意的检测效果;(3)探头装置结构简单、易于实现、成本低且操作简单;(4)由于磁性的变化易于非接触测量和实现在线实时检测,磁场信号不受被测材料表面污染状态的影响,进行检测时被测材料表面就不需清洗,因此将大大提高检测的效率,减小工作量;(5)可以实现全自动化检测,非常适合在流水线上进行质量检测和生产过程控制。
从漏磁检测技术在工程中的应用来看,最为重要的便是对检测信号和数据的处理以及对缺陷的智能识别。
漏磁检测信号是检测线圈切割或者霍尔元件直接感应漏磁通的法向分量或切向分量而获得。
在缺陷漏磁信号的特征提取和分类方面,Jun-Youl Lee[40]等人基于分层规则对信号的分类进行了研究,该研究比较了BP神经网络和多层感知神经网络(HMLP)对漏磁信号的分类效果,证明HMLP网络可以减小在缺陷分类中的误差。
K.Hwang, S.Mukhopadhyay和R.Perrazo[116]等人用不同的方法研究了漏磁信号的特征提取问题。
K.Hwang采用小波神经网络训练了一种多分辨率、分层小波函数神经网络用于提取缺陷漏磁信号的三维特征。
S.Mukhopadyay[117]通过大量实验研究了离散小波变换用于漏磁信号的去噪和特征提取,并讨论了缺陷信号的分类问题。
R.Perrazo[121]等人在177mm长的钢管上加工出30 种不同形状的缺陷,让测量传感器以0.2m/s的相对速度和不同的磁化电流测量实验数据,然后采用神经网络分析方法提取缺陷特征。
在缺陷漏磁信号的计算和处理等方面,EduardoAltschuler[137]等人综合磁场、饱和磁通密度等因素建立了钢管缺陷漏磁信号的非线性数学模型,并用该模型讨论了缺陷信号对于钢管壁厚、缺陷深度、宽度和磁场强度的依赖性。
K.Mandal和D.L.Atherton[98]研究了管道压力对缺陷漏磁信号的影响,分析讨论了几种现有数学模型,最终采用Zatepin-Shcherbinin和Edwards-Palmer两种模型拟合了轴向和径向漏磁信号。
1.什么叫漏磁场?
当用磁化器磁化被测铁磁材料时,若材料的材质是连续、均匀的,则材料中的磁感应线将被约束在材料中,磁通是平行于材料表面的(如下图所示),几乎没有磁感应线从表面穿出,被检工件表面没有磁场。
但是,当材料中存在着切割磁力线的缺陷时,材料表面的缺陷或组织状态变化会使磁导率发生变化,由于缺陷的磁导率很小,磁阻很大,使磁路中的磁通发生畸变,磁感应线流向会发生变化,除了部分磁通直接通过缺陷或通过材料内部来绕过缺陷外,还有部分的磁通会泄漏到材料表面上空,通过空气绕过缺陷再度重新进入材料,从而在材料表面缺陷处形成漏磁场(如下图所示)。
2.什么叫漏磁场检测?
漏磁场检测(magnetic fluxleakage testing MFL)是指铁磁材料被磁化后,因试件表面或近表面的缺陷而在其表面形成漏磁场,人们可通过检测漏磁场的变化发现缺陷。
3.简述铁磁性构件的磁化。
在磁性无损检测中磁化是实现检测的第一步,决定着能否产生出漏磁场信号,同时也影响着检测信号的性能特性和检测装置的结构特性。
与磁粉探伤一样,磁化由磁化器实现,包括磁源和磁路两大部分。
随被测构件的结构不同,磁源和磁路均会改变。
4. 磁化方式可分为哪几类?
磁化方式通常可分为五类,分别是交流磁化方式、直流磁化方式、永磁磁化方式、复合磁化方式和综合磁化法。
5.漏磁检测中应如何选择磁化强度?
在漏磁检测中,通常要求铁磁性构件中的磁感应强度达到0.7特斯拉以上,或者按5安匝/mm2计算线圈磁化的能力。
在磁性检测中,检测装置的体积和重量主要集中于磁化器上,
而这些又决定了检测装置的现场使用性能,因此,强度的选择应在确保检测灵敏度的同时以减轻磁化器的重量为主要目标。
6.漏磁检测技术有哪些特点?
由于漏磁场检测是用磁传感器检测缺陷,相对于磁粉、渗透等方法,有以下优点:
①易于实现自动化。
②较高的检测可靠性由计算机根据检测到的信号判断缺陷的存在与否,可以从根本上解决在磁粉,渗透方法中人为因素的影响,而具有较高的检测可靠性。
③可以实现缺陷的初步量化。
④在管道的检测中在厚度达到30mm的壁厚范围内,可同时检测内外壁缺陷。
⑤高效、无污染自动化的检测可以获得很高的检测效率。
7.简述漏磁检测方法的其局限性。
漏磁检测方法的其局限性有:
①只适用于铁磁材料。
②检测灵敏度低。
③缺陷的量化粗略。
④受被检测工件的形状限制由于采用传感器检测漏磁通,漏磁场方法不适合检测形形状复杂的试件。
⑤漏磁探伤不适合开裂很窄的裂纹,尤其是闭合型裂纹。
实验上发现,开裂很窄的疲劳裂纹,疲劳裂纹,磁粉探伤和漏磁探伤都没能产生伤显示和伤信号。
8.简述漏磁检测技术的应用范围
①漏磁检测在钢铁行业的应用在钢厂主要用于对钢结构件、钢坯、圆钢.棒材、钢管、焊缝、钢缆作检验以确证成品的完好。
在许多场合,使用者将不接收未经钢厂和第三方检验的钢制产品。
使用者在制造前常使用漏磁探伤,这可确保制造商对产品技术方面的要求,此类检验常由独立的检测公司或使用者的质保部门进行。
②漏磁检测在石化行业的应用对已安装的输油气管道(包括埋地管道)、储油罐底板,或对回收的油田钢管进行检测。
③其它应用对用过的钢缆、钢丝绳、链条进行定期的在役探伤。
9.在漏磁检测中,为什么磁化的强度需大于材料最大磁导率点对应的磁场强度?
从有利于缺陷信号检测来看,当磁化强度大于最大磁导率点对应的磁场强度时,在缺陷附近的局部区域中,通过该区域横截面(垂直于磁化场方向)上的磁通量几乎不变化,因裂纹中的空气隙磁导远小于材料磁导,一部分磁场将会绕过裂纹从其附近的材料中通过,致使它们中的磁场强度升高,磁导率下降,从而通过裂纹口空气隙外泄的漏磁通量相对增大。
相反,随裂纹附近的材料中的磁场的增强,磁导率将增大,这样,裂纹口附近空气隙外泄的漏磁通量相对减小。
10.构件中磁化强度的如何测定?有哪些方法?
铁磁构件中被磁化的程度只有通过测定的方法去核对。
然而,直接测量构件内部的磁场几乎不可能实现,所以,仅能采用间接测量的方法进行。
可以采用下列2种方法:
①试样测量法
由于测量的探头不能到达构件内部去测量各点的磁感应强度,采用剖分的试件去测量是必要的,例如,将钢棒或钢板或钢管等完全剖开,形成特斯拉计可以插入的测量缝隙,一般控制在2mm左右,让探头深入缝隙断面的各点,可以测量出断面上磁感应强度的最大值和平均值。
为了保证测量的间隙,可在间隙中垫非导磁材料,如铝、铜或非金属材料等。
②标准伤漏磁测量法
通常情况下,构件上伤产生的漏磁场强度随着构件中磁化强度的增大而增强,因而,标准伤(裂纹或孔洞)产生的漏磁感应强度可以反映出构件中的磁化强度。
采用标准孔或裂纹的漏磁场最大幅度去粗略估计铁磁性构件中的磁感应强度是可行的。
11.磁感应强度的国际标准单位是什么?用何仪器去计量?
磁感应强度的国际标准单位是特斯拉,用英文符号“T”表示,特斯拉的单位较大,一般用“mT”。
磁感应强度用特斯拉计也叫高斯计来计量测试。
按照所采用的测量原理可以分为磁共振特斯拉计和霍尔效应特斯拉计。
磁共振法又包括核磁共振、电子自旋共振、光泵共振等,这种方法的磁感应强度测试不确定度达到10-5-10-6数量级,准确度高,但设备成本高、操作复杂。
霍尔效应特斯拉计,其不确定度达10-2-10-3数量级,价格低廉,操作简单,在工业现场得到广泛的应用。
12.影响缺陷漏磁场的因素有哪些?
缺陷漏磁场的影响因素有:材料的磁特性,磁化强度,缺陷的性质、形状,如深度、宽度、长度、倾斜角度等。
13.非铁磁材料在外场磁化磁化下,表面裂纹能否产生漏磁场?为什么?
非铁磁材料在外场磁化磁化下不能产生漏磁场。
因为非铁磁材料的磁导率接近1,和真空或材料所处的环境的磁导率基本相同。
这样在外部磁场作用下,缺陷周围的磁场不会因为磁导率的不同而出现分布变化,缺陷也就不会产生漏磁场。
14.漏磁检测能够检测铁磁材料内部的缺陷吗?
严格上说,漏磁检测不能够检测铁磁材料内部的缺陷吗。
内部缺陷的检测问题主要取决于缺陷离表面的距离和磁化强度。
如果缺陷离表面的距离很大,如几十个毫米,缺陷周围的磁场畸变主要体现在缺陷周围,在工件表面可能无法产生漏磁场。
15.漏磁测量有哪些基本要求?
漏磁场是空间上的三维向量,单个磁敏元件或检测探头往往测量的是某一点、线或面上的磁场的分量或均值。
从实际应用来看,应综合考虑下述几方面的要求:①灵敏度;②空间分辨力;③信噪比;④覆盖范围;⑤稳定性;⑥可靠性。
16.何为霍尔效应?
在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压V H,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。
V H称为霍尔电压。
17.漏磁测量有哪些方法?
磁场的测量应根据被测对象特点和检测的目的选择最佳的测量方法,包括元器件的布置、安装、相对运动关系、信号处理方式等,根据检测目的和要求的不同,在磁场信号测量中可采用下述几种方法或其组合形式:(1) 单元件单点测量;(2) 多元件阵列多点测量;(3) 对管测量技术;(4) 差动测量技术;(5) 聚磁检测技术。
18.简述磁电信号预处理的主要过程。
为了达到各种检测性能和要求,信号处理的目的,是将由探头输出的检测信号不失真地进行放大、滤波等处理,提高检测信号的信噪比和抗干扰能力,进一步地进行信号的识别、分析、诊断、显示、存贮、打印、记录等,以显示出最明显的信号特征或检测结果。
19.直流信号和交流信号的放大处理有何不同?
在漏磁检测电信号的处理上,局部变化的信号可以采用交流放大技术,通过耦合或偏置调整消除信号中的低频或直流分量,一般来讲,这类放大电路结构较简单。
缓慢变化的信号则需要采用直流放大技术或调制解调技术,处理过程中的调零、温度补偿等将会增加电路的复杂性。
检测信号放大电路的设计,应根据测量元件特性(如感应线圈测量时的速度补偿等)、测量信号特点以及检测要求选择处理方法和元器件。
20.滤波器分为哪几个基本的类?
滤波器一般分为低通、高通、带通、带阻滤波器。