第6章:杆件横截面上的应力分析
- 格式:ppt
- 大小:5.22 MB
- 文档页数:67
第六章杆件系统结构有限元法杆件系统是由几何特征为长度比横梁面的两个尺寸大很多的杆件连接而成的结构体系。
起重机械和运输机械的动臂、汽车的车架、钢结构等,都是由金属的杆件组成的。
杆件系统的有限元法在机械、建筑、航空、造船等各个工程领域得到了广泛的应用。
若杆件之间由铰相连,并且外载荷都作用在铰节点上,则该体系称为桁架。
有限元中将桁架的单元称为杆单元,即桁架是由仅承受轴向拉压的杆单元的集合。
如果杆件之间是由刚性连接,则该体系是刚架,刚架的单元称为梁单元。
梁单元可以承受轴力、弯矩、剪力及扭矩的作用。
第一节等截面梁单元平面刚架结构——所有杆件的轴线以及所有外力作用线都位于同一平面内,并且各杆件都能在此平面内产生平面弯曲,从而结构的各个节点位移都将发生在这个平面内。
一、结构离散化原则:杆件的交叉点、边界点、集中力作用点、位移约束点、分布力突变的位置都要布置成节点,而不同横截面的分界面和不同材料的分界面都要成为单元的分界面。
平面桁架对于桁架结构,因每个杆件都是一个二力杆,故每个杆件可设置成一个单元。
平面桁架结构每个节点有2个自由度,分别是u 和v ,每个单元有4个自由度。
最大半带宽B=(2+1)×2=6。
一维单元和二维单元的混合应用:左边部分是平面问题的二维板件结构(黑线部分),右面框架部分是一维杆件结构(红线部分)。
xy采用平面4节点四边形单元模拟二维板件,用平面杆单元单元模拟一维杆件结构。
离散化后,共有37个节点,32个单元,其中4节点四边形单元16个,杆单元单元16个。
因为平面4节点四边形单元和平面杆单元单元每个节点都有2个自由度,4节点四边形单元的刚度矩阵是8×8,平面杆单元的刚度矩阵是4×4。
整体刚度矩阵刚[]k 的维数是227474n n ⨯=⨯。
其中部分总刚子块为[](1)(2)(3)(4)777777777722k k k k k ⨯⎡⎤⎡⎤⎡⎤⎡⎤=+++⎣⎦⎣⎦⎣⎦⎣⎦(4)(6)(19)11,1111,1111,1111,1122k k k k ⨯⎡⎤⎡⎤⎡⎤⎡⎤=++⎣⎦⎣⎦⎣⎦⎣⎦最大半带宽B=[(8-2) +1]×2=14。
截面相同、轴力相同材料不同的两个受拉伸杆件、它们横截面上的应力关系在工程领域中,我们经常会面对到相同截面和轴力的两个杆件,在不同材料的情况下,它们的横截面应力关系也会存在差别。
为了更好地理解这一现象,我们需要了解一些相关的基础知识。
首先,我们需要了解的是“应力”的定义。
应力是材料单位面积内所受的力,通常表示为σ(希腊字母sigma)。
其中,单位面积的部分可以是两位杆件的横截面,而力则是由应用给杆件的拉力或压力。
因此,横截面上的应力就是横截面上的力和面积之比。
接下来,我们需要理解材料的“材料力学性质”,这些性质通常涉及到降伏强度、抗拉强度和弹性模量,这些性质将决定杆件受到拉力时的表现。
对于同一轴向力,不同材料的杆件将产生不同程度的形变,因此将产生不同程度的应力。
在相同截面和轴向力的条件下,不同材料的两个受拉伸杆件会产生不同的横截面应力关系,我们可以举一个例子来说明。
假设两个杆件截面积分别为1平方米,轴向力分别为1万牛顿,一个杆件由钢制而成,弹性模量为2 ×10^5千帕,抗拉强度为4 × 10^8牛顿/平方米;另一个杆件由铜制而成,弹性模量为1.5 × 10^5千帕,抗拉强度为2 × 10^8牛顿/平方米。
此时,我们可以计算出两个杆件的应力:钢制杆件的应力为1万牛顿/平方米,而铜制杆件的应力为6,666.67牛顿/平方米。
这个例子中可能过于简单,但是我们可以看到,在相同截面和轴向力的条件下,不同材料的杆件会产生不同程度的应力。
一般来说,如果两个杆件的截面积和轴向力相同,而材料的弹性模量或抗拉强度发生变化,那么两个杆件的横截面应力关系也将发生变化。
不仅如此,横截面应力还可能会受到其他因素的影响,例如材料的温度和湿度等。
当这些因素发生变化时,它们可能会影响到材料的材料力学性质,从而导致不同横截面应力关系的形成。
总的来说,在工程建设和设计的过程中,我们需要特别注意面对相同截面和轴向力的两个杆件时,它们的横截面应力关系可能会因为不同材料而产生不同程度的变化。
第六章 弯曲变形分析梁是机械与工程结构中最常见的构件。
本章内容包括梁的内力、平面弯曲中横截面上的正应力和切应力分布规律,以及梁的变形计算。
6.1 梁的内力● 梁的概念当杆件受到矢量方向垂直于轴线的外力或外力偶作用时,其轴线将由直线变为曲线,如图6–1(a)。
以轴线变弯为主要特征的变形形式称为弯曲,凡是以弯曲变形为主的杆件,工程上称为梁,如车辆的轮轴、房屋的梁及桥梁等。
在分析计算中,通常用梁的轴线代表梁,如图6–1(b)。
在工程实际中,大多数梁都具有一个纵向对称面;而外力也作用在该对称面内。
在这种情况下,梁的变形对称于纵向对称面,且变形后的轴线也在对称图6–1 梁 图6–2 对称弯曲图6–3 梁的约束 图6–4 三类静定梁面内,即所谓的对称弯曲,如图6–2。
它是弯曲问题中最基本、最常见的情况。
本章只讨论梁的对称弯曲。
图6–3表示了梁的三种常见约束形式及相应的约束力:可动铰支座(图6–3(a)),固定铰支座(图6–3(b))和(平面)固定端约束(图6–3(c))。
在以上三种约束方式下,有三种常见的梁形式,如图6–4所示。
图6–4(a)为简支梁,两端分别为固定铰支座和活动铰支座;图6–4(b)为悬臂梁,一端固定端约束,一端自由;图6–4(b)为外伸梁,它是具有一个或两个外伸部分的简支梁。
这三种梁都是静定梁。
作用在梁上的外载荷,常见的有集中力偶M (图6–5(a))、分布载荷q (图6–5(b))和集中力F (图6–5(c))。
在实际问题中,q 为常数的均布载荷较为常见。
● 梁的剪力与弯矩在4.2中已经介绍了求杆件内力的通用方法,即截面法。
具体到梁,其内力分量为剪力和弯矩,规定当剪力相对于横截面的转向为顺时针为正,使杆件发生上凹下凸的弯矩为正,如图4–5(b)和(c)。
例6–1:如图6–6所示悬臂梁,受均布载荷q ,在B 点处受矩为2qa M =的力偶作用,试绘梁的剪力图与弯矩图。
解:设固定端的约束力和约束力偶为C R 和C M ,则由平衡方程00=-=∑qa R F C y ,qa R C =05.102=--⋅=∑C C M qa qa a m ,221qa M C = 以杆件左端为坐标原点,以B 为分界面,将梁分为AB 和BC 两段。
杆件横截面正应力计算公式在工程领域中,杆件的设计和计算是非常重要的。
杆件在受力作用下会产生正应力,而正应力的计算对于杆件的安全性和稳定性具有重要意义。
本文将介绍杆件横截面正应力的计算公式及其应用。
杆件横截面正应力计算公式如下:σ = P/A。
其中,σ为杆件横截面上的正应力,P为作用在杆件上的力,A为杆件的横截面积。
在实际工程中,杆件通常会受到拉伸、压缩、弯曲等不同形式的受力。
对于不同形式的受力,杆件横截面正应力的计算公式也会有所不同。
首先,我们来看一下杆件受拉伸力作用下的正应力计算。
当杆件受到拉伸力P 作用时,横截面上的正应力可以通过上述公式计算得到。
在这种情况下,横截面上的正应力与拉伸力P成正比,横截面积A越大,正应力σ越小,杆件的承载能力也就越大。
接下来,我们来看一下杆件受压缩力作用下的正应力计算。
当杆件受到压缩力P作用时,横截面上的正应力同样可以通过上述公式计算得到。
在这种情况下,横截面上的正应力也与压缩力P成正比,横截面积A越大,正应力σ越小,杆件的承载能力也就越大。
此外,杆件在受力作用下还会产生弯曲。
在弯曲情况下,杆件横截面上的正应力计算公式为:σ = Mc/I。
其中,σ为杆件横截面上的正应力,M为弯矩,c为横截面上的某一点到中性轴的距离,I为横截面的惯性矩。
在弯曲情况下,横截面上的正应力与弯矩M成正比,c越大,正应力σ越小,杆件的承载能力也就越大。
而横截面的惯性矩I则反映了杆件抵抗弯曲变形的能力,I越大,杆件的抗弯能力越强。
综上所述,杆件横截面正应力的计算公式为σ = P/A,对于不同形式的受力,计算公式也会有所不同。
在实际工程中,我们需要根据杆件受力情况选择合适的计算公式,并结合材料的力学性能参数进行计算,以保证杆件的安全性和稳定性。
同时,合理设计杆件的横截面形状和尺寸,也可以有效地提高杆件的承载能力和使用寿命。
希望本文对杆件横截面正应力的计算有所帮助,谢谢阅读!。
§3-3机械零件的应力应变分析一、拉(压)杆应力应变分析(一)应力分析前面应用截面法,可以求得任意截面上内力的总和,现在进一步分析横截面上的应力情况,首先研究该截面上的内力分布规律,内力是由于杆受外力后产生变形而引起的,我们首先通过实验观察杆受力后的变形现象,并根据现象做出假设和推论;然后进行理论分析,得出截面上的内力分布规律,最后确定应力的大小和方向。
现取一等直杆,拉压变形前在其表面上画垂直于杆轴的直线和(图3-28)。
拉伸变形后,发现和仍为直线,且仍垂直于轴线,只是分别平行地移动至和。
于是,我们可以作出如下假设:直杆在轴向拉压时横截面仍保持为平面。
根据这个“平面假设”可知,杆件在它的任意两个横截面之间的伸长变形是均匀的。
又因材料是均匀连续的,所以杆件横截面上的内力是均匀分布的,即在横截面上各点处的正应力都相等。
若杆的轴力为,横截面积为,,于是得:???????????????????????? (3-2)这就是拉杆横截面上正应力的计算公式。
当为压力时,它同样可用于压应力计算。
规定拉应力为正,压应力为负。
例3-3? 图3-29(a)为一变截面拉压杆件,其受力情况如图示,试确定其危险截面。
解? 运用截面法求各段内力,作轴力图[图3-29(b)]:段:????????? 段:段:???????? 段:根据内力计算应力,则得:段:????????? 段:段:最大应力所在的截面称为危险截面。
由计算可知,段和段为危险截面。
(二)、拉(压)杆的变形杆件受轴向拉力时,纵向尺寸要伸长,而横向尺寸将缩小;当受轴向压力时,则纵向尺寸要缩短,而横向尺寸将增大。
设拉杆原长为,横截面面积为(图3-30)。
在轴向拉力P作用下,长度由变为,杆件在轴线方向的伸长为, 。
实验表明,工程上使用的大多数材料都有一个弹性阶段,在此阶段范围内,轴向拉压杆件的伸长或缩短量,与轴力和杆长成正比,与横截面积成反比。
即,引入比例常数则得到:??????????????????? (3-3)这就是计算拉伸(或压缩)变形的公式,称为胡克定律。
第6章弯曲应力教学目的:在本章的学习中要求熟练掌握梁纯弯曲时横截面上正应力计算公式的推导过程,理解推导过程中所作的假设。
掌握中性层、中性轴等基本概念和含义。
弯曲正应力和剪应力强度条件的建立和相应的计算。
理解横力弯曲正应力计算仍用纯弯曲公式的条件和近似程度。
从弯曲强度条件出发,掌握提高弯曲强度的若干措施。
教学重点:纯弯曲梁横截面上正应力公式的分析推导;横力弯曲横截面上正应力的计算,最大拉应力和最大压应力的计算;弯曲的强度计算;弯曲横截面上的剪应力。
教学难点:弯曲正应力、剪应力推导过程和结果以及弯曲中心的概念。
教具:多媒体。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
教学内容:梁纯弯曲和横力弯曲时横截面上的正应力;梁横力弯曲时横截面上的切应力;提高弯曲强度的若干措施。
教学学时:6学时。
教学提纲:6.1 梁的纯弯曲1、几个基本概念(1)平面弯曲和弯曲中心变形后梁轴线的位移方向沿着加载方向的弯曲情况,称为平面弯曲。
怎样加载才能产生平面弯曲?若梁的横截面有对称平面时,载荷必须作用在对称平面内,才能发生平面弯曲。
若梁的横截面没有对称平面时,载荷的作用线必须通过截面的弯曲中心。
什么叫弯曲中心?当载荷的作用线通过横截面上某一点特定点时,杆件只产生弯曲而无扭转。
这样的特定点称为弯曲中心。
关于弯曲中心位置的确定及工程上常见图形的弯曲中心位置。
①具有两个对称轴或反对称的截面,如工字形、圆形、圆环形、空心矩形截面等,弯曲中心与形心(两对称轴的交点)重合,如图(a),(b),(c)所示。
②具有一个对称轴的截面,如槽形和T形截面,弯曲中心必在对称轴上,如图(d)、(e)所示。
③如果截面是由中线相交于一点的几个狭长矩形所组成,如L形或T形截面,则此交点就是弯曲中心,如图(e)、(f)所示。
④不对称实心截面的弯曲中心靠近形心。
这种截面在荷载作用线通过形心时也将引起扭转,但由于这种截面的抗扭刚度很大,弯曲中心与形心又非常靠近,故通常不考虑它的扭转影响。