八年级数学分式的运算6
- 格式:pdf
- 大小:1.03 MB
- 文档页数:8
八年级数学下册10道分式混合运算1.题目:计算以下分式的值:(1)3/5+1/4(2)7/8-3/10(3)2/3×5/6(4)4/5÷2/3(1)题目:计算以下分式的值:3/5+1/4解答:我们要计算的是两个分式的和:3/5+1/4。
首先,我们需要找到这两个分式的公共分母。
5和4的最小公倍数是20,所以我们可以将3/5和1/4分别转化为20作为分母的分式。
具体计算如下:3/5=(3×4)/(5×4)=12/201/4=(1×5)/(4×5)=5/20现在我们可以将这两个分式相加了:3/5+1/4=12/20+5/20=17/20所以,3/5+1/4的值为17/20。
(2)题目:计算以下分式的值:7/8-3/10解答:我们要计算的是两个分式的差:7/8-3/10。
同样地,我们需要找到这两个分式的公共分母。
8和10的最小公倍数是40,所以我们可以将7/8和3/10分别转化为40作为分母的分式。
具体计算如下:7/8=(7×5)/(8×5)=35/403/10=(3×4)/(10×4)=12/40现在我们可以将这两个分式相减了:7/8-3/10=35/40-12/40=23/40所以,7/8-3/10的值为23/40。
(3)题目:计算以下分式的值:2/3×5/6解答:我们要计算的是两个分式的乘积:2/3×5/6。
直接相乘即可:2/3×5/6=10/18但我们需要将这个分式化简到最简形式。
找到10和18的最大公约数是2,所以我们可以将分子和分母同时除以2:10/18=(10÷2)/(18÷2)=5/9所以,2/3×5/6的值为5/9。
(4)题目:计算以下分式的值:4/5÷2/3解答:我们要计算的是两个分式的除法:4/5÷2/3。
八年级上册数学分式和分式方程一、分式的概念。
1. 定义。
- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。
例如(x + 1)/(x),(2)/(x - 1)等都是分式。
- 整式和分式的区别在于分母是否含有字母,整式的分母不含有字母,而分式的分母含有字母。
2. 分式有意义、无意义和值为零的条件。
- 分式有意义的条件:分母不为零。
例如对于分式(1)/(x - 2),当x-2≠0,即x≠2时,分式有意义。
- 分式无意义的条件:分母为零。
如在分式(3)/(x + 1)中,当x + 1=0,即x=-1时,分式无意义。
- 分式值为零的条件:分子为零且分母不为零。
对于分式(x)/(x - 3),当x = 0且x-3≠0(即x≠3)时,分式的值为零。
二、分式的基本性质。
1. 基本性质。
- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
即(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。
例如(2)/(3)=(2×2)/(3×2)=(4)/(6),对于分式(x)/(x + 1),(x)/(x + 1)=(x×2)/((x + 1)×2)=(2x)/(2x + 2)。
2. 约分和通分。
- 约分:把一个分式的分子与分母的公因式约去,叫做分式的约分。
例如对于分式(6x^2y)/(9xy^2),分子分母的公因式是3xy,约分后得到(2x)/(3y)。
- 通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
例如将(1)/(x)和(1)/(x + 1)通分,先找最简公分母为x(x + 1),则(1)/(x)=(x+1)/(x(x + 1)),(1)/(x + 1)=(x)/(x(x + 1))。
三、分式的运算。
分式的运算适用年八年级级所需时课内3课时间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 《分式》是继“整式”之后研究的另一类代数式,引入了一种新的代数式,就要研究它的运算,《分式的运算》一单元是在学习了分式的概念,基本性质,以及通分约分之后要研究的一部分内容。
本单元分为三个专题:专题一分式的乘除,专题二分式的加减,专题三整数指数幂。
它们都是分式运算的重要组成部分,其中整数指数幂将指数的讨论范围从正整数扩大到全体正整数,给运算带来便利。
本单元学习的重点是讨论分式的四则运算法则,并进行分式的四则混合运算;难点是分式的混合运算。
本单元主要的学习方式是类比的方法,引领学生经历从特殊到一般,从具体到抽象的过程。
分式的四则运算法则是对分数的四则运算法则的抽象,两者本质不同,教学中可以从回顾分数运算法则的角度,引申到分式的运算法则,让学生温故而知新,体现由数到式的数、从具体到抽象的过程。
整数指数幂的学习,指数的范围被扩大,使原来的性质得到更广泛的应用,并且可以用科学计数法表示比1小的数。
通过本单元的学习,学生可以熟练地掌握分式的四则运算法则并能进行简单的分式加、减、乘、除运算.将指数的范围从正整数扩大到全体整数,了解整数指数幂的运算性质;能用科学记数法表示小于1的正数.主题单元规划思维导图主题单元学习目标知识与技能:1.历届并掌握分式的加、减、乘、除运算,会进行简单的分式的加、减、乘、除运算.2.会运用法则解决一些与分式有关的实际问题,具有一定的代数化归能力.3.会用同底数幂的除法性质进行运算,理解整数指数幂与负整数指数幂的意义并熟练的运用其进行计算,会用科学记数法表示绝对值小于1的数.过程与方法:1.经历探索分式的乘、除运算法则的过程,体会因式分解在分式乘除运算中的作用,发挥有条理的思考与语言表达能力.2.经历探索分式的加减运算法则的过程,进一步运用类比的数学思想学习分式的加减法法则,理解其算理.3.在进一步体会幂的意义的过程中,发展学生的推理能力和表达能力,能熟练灵活的运用法则进行同底数幂的除法运算,培养学生的抽象思维能力.情感态度与价值观:1.渗透类比转化的的思想,培养学生的观察、类比、归纳能力和小组交流合作的情感,进一步体会数学的实际价值.2.在活动中培养学生乐于探究、合作学习的良好学习习惯,培养学生“用数学”的意识和能力.3.渗透公式正向运用与逆向运用的辩证统一的数学思维观点,通过由特殊到一般,再由一般到特殊的认识活动,对学生渗透辩证唯物主义观点,感受数学的应用价值,体会数学与社会生活的联系,提高数学素养.对应课标(说明:学科课程标准对本单元学习的要求)知识与技能:类比分数的学习,探究分式的四则运算法则,掌握四则运算法则,并能进行简单的加、减、乘、除混合运算,能解决一些与分式有关的简单的实际问题。
16.2.1分式的乘除一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点1.重点:会用分式乘除的法则进行运算. 2.难点:灵活运用分式乘除的法则进行运算 . 三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是nmab v ⋅,大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1.这一点要给学生讲清楚,才能分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小)四、课堂引入1.出示P13本节的引入的问题1求容积的高nmab v ⋅,问题2求大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍.[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1.P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则? 类似分数的乘除法法则得到分式的乘除法法则的结论. 五、例题讲解P14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P15例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是15002-a 、()21500-a ,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1,可得出“丰收2号”单位面积产量高. 六、随堂练习计算(1)ab c 2c b a 22⋅ (2)322542n m m n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy x y 52÷ (5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y -÷++- 七、课后练习计算(1)⎪⎪⎭⎫ ⎝⎛-⋅y xy x 132 (2)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352(3)()yx a xy 28512-÷(4)ba ab ab b a 234222-⋅- (5))4(12x x x x -÷-- (6)3222)(35)(42x y x xy x --⋅-八、答案:六、(1)ab (2)nm 52- (3)14y -(4)-20x 2 (5))2)(1()2)(1(+--+a a a a (6)23+-y y七、(1)x 1- (2)227c b-(3)ax 103-(4)bb a 32+ (5)x x -1 (6)2)(5)(6y x y x x -+课后反思:。
⼋年级数学下册第⼗六章《分式》单元计算题⼤全新课标⼈教版(6)⼋年级数学下册第⼗六章《分式》单元计算题⼤全新课标⼈教版1. 计算:(1)11123x x x ++(2)3xy 2÷x y 262.2223189218a a a a a +-÷-+-+, 2221()2444x x xx x x x x+----+- 3. 计算题⑴22124a aa +-- ⑵22233mn mn n p p ÷ ?⑶112---x x x ⑷2222x y xy y x x x ??--÷-⑸ 121200523-??-+ ?⑹()()23323a b ab ----?(结果只含正整数指数幂)a cb ac ÷÷(4)42232)()()(abc ab c c b a ÷-?- (5)22233)()()3(x y x y y x y x a +-÷-?+5. 计算:x x x x -+--+11211 21211+++-+x x x xx x x x x x 13632+-+--)2122()41223(2+--÷-+-a a a aaa a a a a -?+--4)22( 6. 计算(1)3223322a b a c cd d a÷? ?-7. 计算:??+--- ++11111212x x x x x x 8. 22326123()()y y xy x x÷-.22234()()()x y y y x x ÷-, 9. 22222a b ab b a a ab a ?? -+÷+ ?-??10. 计算:()2222x 2xy+y x yxy+x xy x++÷-÷a a a 2122+-12.6532----x x x x x ; 211a a a +-+ 42()a a a a+-÷; 13. 计算:22()x y- 22)2(4yx y x -÷ 14. 计算(1)168422+--x x x x (2)mn nn m m m n n m -+-+--2 15. 计算:(1)232223(4)(2)x y z xy z -?- ;(2)9323496222-?+-÷-+-a a b a ba a .(3)2221()244x x x x x -+÷+--(4) 44()()xy xy x y x y x y x y -++--+16.化简:1441312-+-÷?--+x x x x x17. 22a b b a b a b a b a b --??÷ ?+-+??-18.2121()2a bca bc ---÷ 221()()x x x x ---÷- 30(0.25)(0.25)--+-332p mn p n n m ÷???? ??? ⑵2)22444(22-÷+-++--x xx x x x x (3)11141+-???? ??-+-a a a a a (4)()1632125.00 2+--?-?-π20. 计算:(1)222x y xy x y x y +--- (2)???? ??-÷??? ?-y x x y 1121. 22[()]33x y x yx y x x y x x +----÷+ 222212111a a a a a a a a --÷++++; 22.??-÷x y y x 346342;-y x x y x y x 22426438; 23. 化简:232224a a aa a a ??-÷ ?+--??. 24. 计算:(1)130)21()2()21(----÷- ;(2)329122---m m . 25.xy x xz xy x z y x y xy x z y x y x --+?--++÷---2222222222)(2)(; () yy y x xy xy -+?+-33212.27. 计算:)12()23()344(222222---÷++-?+--x x x x x x x x 28.215()()x xy x y x x x y x --+-÷- 42321()()x y x y y--÷29.(1+1m)÷22121m m m --+30. 计算⑴2332)2(2ab c d a cd b a ?÷-)((2)2228224a a a a a a +-??+÷ ?--??(3)44()()xy xy x y x y x y x y-++--+ (4)2233x y x y x y x x y x x ??+-??---÷ +? 31. 计算:()()()()()() c a a b b ca b b c b c c a c a a b ---++------32.222()111a aa a a ++÷++- 33.1)111(2-÷-+x x x34. 计算:(1))141)(141(+-+-+-a a a a a a (2) 1211111222+-+-÷??? ??---x x x x x 35. 计算:32)(y x y x --? 32232)()2(b a c ab ---÷)102.3()104(36- 2125)103()103(--?÷?36.624)373(+-÷+--a a a a 37. 计算下列各式:(1)22 33222)(b a ab ba b a b a ba -+--+÷(2)a a a a a a a a 444122)(22-+---+÷-38.计算(1)ab c 2cb a 22?(2)322542n m m n- (3)-÷x x y 27(4)-8xy xy 52÷ (5)39. 化简(1)2232129x y x y (2)222x x y xy -- (3)222221x x x --+ (4) 22 39m m m-- (5)()()2222x y z x y z --+-40. 计算: ()3322232n m n m --? 41.计算:33xx 1x 1+++ ⑵.计算:223x 1x 36x 6x x +-?-+ 42. 计算⑴5331111x x x x+---- ⑵22y xy x y y x -+- ⑶()432562b ab a ÷- (4)()113423-??--+--(5)(1a x -)÷22x a x -43. 计算:23011)31(64)3()1(4-+--?-+-π计算:y x yx28712÷ 44. 计算2222444(1)(4);282a a a a a a a --+÷-+--(2)0)1(213=-+--x x x x 45. 计算:(3)96312-++a a (4) 96-22; 46. 22211()961313a a a a a a -÷++++ 13(1)224a a a --÷-- 47.223252224x x x x x +??+÷ ?-+-??48. 计算:(1);(2)()2442444222-+-?-÷++-a a a a a a a(3)a b a ab ab a b a b a b a -+÷--?-2232 (4)2216168m m m -++÷428m m -+·2 2m m -+(5)(2b a )2÷(b a -)·(-34b a)3(6)a b ab a b a b ab a b 2222121121-+---÷---++49. 化简:221211241x x x x x x --+÷++-- 2121a a a a a -+?-÷50. 计算:(1)22424422x x xx x x x ??--+÷ ?-++-??(2) 121a a a a a --??÷- ,(3)()2111211x x x ??+÷-- ?--?(4)232224xx x x x x ??-÷ ?-+-??,51. 计算:(1)423223423b a d c cd ab ? (2)m m m m m --?-+-3249622 (3).(xy -x 2)÷xy y x - (4).24244422223-+-÷+-+-x x x x x x x x (5).12--x x ÷(x +1-13-x )(6).x x x x 3922+++969(8)x y y x y x y x y y x ----+-+2. (9).232323194322---+--+x x x x x 52. 计算:)2(121y x x yx y x x --++- 53.2243312()()22a a b a b b -÷- 2221644168282m m m m m m m ---÷++++,54. 计算:cd b a c ab 4522223-÷ 411244222--?+-+-a a a a a am m m 7149122-÷- 228241681622+-?+-÷++-a a a a a a a 55.计算3223322a b a c cd d a÷? ?-56. 计算:24424441622++++-÷++-m m m m m m m 57.11)1111(-÷--+a a a 58. 计算:(1) ()()322322y x z xy ---÷ (2) x yx y x xy x y x x -÷211111222+-+-÷??? ??---x x x x x 59. 化简下列各式1. 212312+-÷??? ??+-x x x2.2111a a a a -++-3. 22(1)b a a b a b-÷+-4.352242a a a a -??÷-- ?--??5.)2422(4222+---÷--x x x x x x6. (x 2+4x -4)÷ x 2-4 x 2+2x7. 1-aa a a a 21122+-÷- 8. 2211(1).a a a a--÷+ 9. 2112()x x xx x x +++÷+ 10. 6931x x x x --÷- ? ??11. 21(1)1xx x x x ??-÷+ ?--??12.39631122-+÷+---+x xx x x x x 13. 432112--÷??? ??--a a a 14. 1224422++÷--a a a a15.22444()2x x x x x x -+÷-- 16. ,1 11122--+÷-x xx x x 17. 260. 计算: aa --+242 61. 计算与化简:(1)222)2222(x x x x x x x --+-+- (2) 1- aa a a a 21122+-÷- 62. 2301()20.1252005|1|2---?++- ()3 22514-++-÷13-, 63. 2141326a a a -??+÷--64.(112-+a a +1)? a a a 122+-65. 计算与化简:(1)222x y y x ?;(2)22211444a a a a a --÷-+-;(3)22142a a a ---;(4)211a a a ---;(5)()()222142y x x y xy x y x +-÷-.66.计算43222??? ?-÷ - -x y x y y x 67. 计算 1、y x axyx y x y 2211-+- 3、1111-÷??--x x x 4、22224421y xy x y x y x y x ++-÷+-- 5、2 2221106532xyx y y x ÷? 6、m n n n m m m n n m -+-+--2 7、4412222+----+x x x x x x 8、x x x x x x x x 4)44122(22-÷+----+ 9.xx x x x x x x 4)44122(22-÷+----+ 10.2144122++÷++-a a a a a 68. 化简下列分式(1)232123ab b a - (2)232213n m nm - (3))1(9)1(322m ab m b a ---(4))(12)(2222x y xy y x y x -- (5)22112mm m -+- (6)222963a ab b aba +-- 69. 计算:(1)b a ab a b --- (2)324332??x y y x (3)()1302341200431-??--+- - (4)()()222234a a a a -÷-70. 211()(3)31a a a a +---- 71.计算:22121124x x x x ++?72. 计算:221.111x x x x x ??-÷ ?-+-?? 73. 计算(1) 22)2(4y x y x -÷ (2) 432221??--ab a b b a(3)2222255343m n p q mnp pq mn q ?÷ (4)??÷ - -a bc ab c c b a 223274. 计算:(1)(2x y )2·(2y x )3÷(-y x )4;(2)(2b a )2÷(b a -)·(-34b a)375. 计算:①3333x x x x -+-+-;②212211933a a a +--+-;③2111111x x x ++-+-. 76. 计算:(4a a -)÷2a a+.77.233()()()24b b b a a a -÷- 22136932x x x x x x +-÷-+-+ 78. 计算:①2114()22x x x x --?-+;②22214()244x x x x x x x x+---÷--+;③11x x x -?-;④211(1)(1)11x x x +---+;⑤342n m n m n m ÷-? (2)2324222263ab a c c d b b ??-??÷? ? ?-?80.??--+÷--252423x x x x 23111x x x x -??÷+- ?--??81. 计算:(1)1111-÷??? ?--x x x (2)4214121111xx x x ++++++- 82. 计算:11)121(2+-÷+-x x x 83.化简:(1-44822+++a a a )÷aa a 2442+-84. 计算:(1)222x y xy x y x y +--- (2)-÷ -y x x y 11 (3).)1(1aa a a -÷- (4). )(22ab b a a ab a -÷- 85.21(1)(2)x x x++÷+86. 计算:(1)44223x y c ??-(2) mn a a n m 4322? (3) 222 324835154b a n n b a -?。
八年级数学《分式》知识点一、分式的概念形如 A/B(A、B 是整式,B 中含有字母且 B 不等于 0)的式子叫做分式。
其中 A 叫做分子,B 叫做分母。
理解分式的概念时,需要注意以下几点:1、分式的分母中必须含有字母。
例如:5/x 是分式,而 5/3 就不是分式,因为它的分母 3 是常数。
2、分母的值不能为 0。
如果分母 B 的值为 0,那么分式就没有意义。
3、分式是两个整式相除的商,其中分子是被除式,分母是除式。
4、整式和分式统称为有理式。
二、分式有意义的条件分式有意义的条件是分母不等于 0。
即:对于分式 A/B,当B≠0 时,分式有意义。
例如:对于分式 2/(x 1),要使其有意义,则x 1≠0,即x≠1。
三、分式的值为 0 的条件分式的值为 0 时,需要同时满足两个条件:1、分子等于 0,即 A = 0。
2、分母不等于 0,即B≠0。
例如:对于分式(x 2)/(x + 1),当 x 2 = 0 且 x +1≠0 时,分式的值为 0。
由 x 2 = 0 得 x = 2,又因为 x +1≠0,即x≠ 1,所以当 x = 2 时,该分式的值为 0。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不等于 0 的整式,分式的值不变。
即:A/B = A×M/B×M,A/B = A÷M/B÷M(M 为不等于 0 的整式)例如:将分式 2x/(3y)的分子分母同时乘以 2,得到 4x/(6y),分式的值不变。
利用分式的基本性质,可以进行分式的约分和通分。
五、约分把一个分式的分子和分母的公因式约去,叫做约分。
约分的关键是确定分子和分母的公因式。
确定公因式的方法:1、系数:取分子和分母系数的最大公约数。
例如:在分式 8x/12 中,8 和 12 的最大公约数是 4,所以分子分母同时除以 4 进行约分。
2、字母:取分子和分母相同字母的最低次幂。
例如:在分式 x²y/xy²中,相同字母是 x 和 y,x 的最低次幂是 1,y 的最低次幂是 1,所以公因式是 xy,约分后为 x/y。