高二期中考试试题
- 格式:doc
- 大小:93.50 KB
- 文档页数:12
四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题一、单选题1.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a = ,11A D b = ,1A A c =,则下列向量中与1B M相等的向量是().A .1122a b c-++B .1122++a b cC .1122-+ a b cD .1122--+ a b c2.若直线经过(1,0),A B 两点,则直线AB 的倾斜角是()A .135︒B .120︒C .60︒D .45︒3.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A B C .5-D 4.某年1月25日至2月12日某旅游景区A 及其里面的特色景点a 累计参观人次的折线图如图所示,则下列判断正确的是()A .1月29日景区A 累计参观人次中特色景点a 占比超过了13.B .2月4日至2月10日特色景点a 累计参观人次增加了9800人次.C .2月4日至2月6日特色景点a 的累计参观人次的增长率和2月6日至2月8日特色景点a 累计参观人次的增长率相等.D .2月8日至2月10日景区A 累计参观人次的增长率小于2月6日至2月8日的增长率.5.如图,修水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度.甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处,从A ,B 到直线(水库底面与水坝的交线)的距离AC 和B 分别为3m 和4m ,B 的长为2m ,则水库底面与水坝所成二面角的大小为().A .30︒B .60︒C .120︒D .150︒6.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵111ABC A B C -中AC BC ⊥.过A 点分别作1AE A B ⊥于点E ,1AF AC ⊥于点F .下列说法正确的是()A .四棱锥11C AB BA -为“阳马”B .四面体111A CC B 为“鳖臑”C .1EF AC ⊥D .1EF A B⊥7.阅读下面材料:在空间直角坐标系Oxyz 中,过点()000,,P x y z 且一个法向量为(),,m a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,过点()000,,P x y z 且方向向量为()()0n u v w uvw =≠ ,,的直线l 的方程为000.x x y y z z uvw---==根据上述材料,解决下面问题:直线l 是两个平面220x y -+=与210x z -+=的交线,则()是l 的一个方向向量.A .()2,1,4B .()1,3,5C .()1,2,0-D .()2,0,1-8.设直线系:cos sin 1m n M x y θθ+=(其中,,m n θ均为参数,{}02π,,1,2m n θ≤≤∈),则下列命题中是假命题...的是()A .当1m n ==时,存在一个点与直线系M 中所有直线的距离都相等.B .当2m n ==时,直线系M 中所有直线恒过定点,且不过第三象限.C .当m n =时,坐标原点到直线系M 中所有直线的距离最大值为1.D .当2,1m n ==时,若0a ≤,则点(),0A a 到直线系M 中所有直线的距离不小于1.二、多选题9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了40位居民某年的月均用水量(单位:吨),按照分组[)[)[)0,0.50.5,13,3.5 ,,,,制作了频率分布直方图,下列命题正确的有().A .设该市有60万居民,则全市居民中月均用水量不低于3吨的人数恰好有3万人.B .如果希望86%的居民每月的用水量不超出标准,则月均用水量a (吨)的最低标准的估计值为2.7.C .该市居民月均用水量的平均数的估计值为1.875吨.D .在该样本中月均用水量少于1吨的居民中随机抽取两人,其中两人月均用水量都不低于0.5吨的概率为0.4.10.以下四个命题为真命题的是()A .过点(10,10)-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B .已知直线10kx y --=和以(3,1)M -,(3,2)N 为端点的线段相交,则实数k 的取值范围为213k -≤≤C .直线10x y +-=与直线2210x y ++=D .点P 在直线:10l x y --=上运动,(2,3),(2,0)A B ,则||||PA PB -11.在棱长为2的正方体1111ABCD A B C D -中,M 为棱CD 的中点,N 为线段BM 上的动点(含端点),则下列选项正确的有()A .若直线1A M 与直线AN 所成角为α,则cos α的最大值为23.B .若点N 到平面11ABCD 的距离为d ,则d CN +的最小值为5.C .若在该正方体内放入一个半径为12的小球,则小球在正方体内不能达到的空间体积是π22-.D .点T 从B 点出发匀速朝1D 移动,点S 从A 点出发匀速朝1A 移动.现,S T 同时出发,当S 到达1A 时,T 恰好在1BD 的中点处.则在此过程中,,S T .三、填空题12.一条光线经过点(2,3)A 射到直线10x y ++=上,被反射后经过点(1,1)B ,则入射光线所在直线的一般式方程为.13.已知三棱锥P ABC -,如图所示,G 为ABC V 重心,点M ,F 为PG ,PC 中点,点D ,E 分别在PA ,PB 上,PD mPA= ,()0PE nPB mn =≠ ,若M D E F ,,,四点共面,则11m n+=.14.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下,其中编号为i 的方框表示第i 场比赛,方框中是进行该场比赛的两名棋手,第i 场比赛的胜者称为“i 的胜者”,负者称为“i 的负者”,第6场为决赛,获胜的人是冠军,已知甲每场比赛获胜的概率均为34,而乙、丙、丁相互之间胜负的可能性相同.则乙进入决赛,且乙与其决赛对手是第二次相遇的概率为.四、解答题15.如图,已知平行六面体1111—ABCD A B C D 的底面ABCD 是菱形,1AB =,且11C CB C CD BCD ∠=∠=∠.(1)证明:1C C BD ⊥;(2)若1CA ⊥平面1C BD ,求1CC 的长.16.班级新年晚会设置抽奖环节.不透明纸箱中有大小、质地相同的红球3个,黄球2个.(1)如下两种方案,哪种方案获得奖品的可能性更大?并说明理由.方案一:依次无放回地抽取2个球,若颜色相同,则获得奖品;方案二:依次有放回地抽取2个球,若颜色相同,则获得奖品.(2)还剩最后一个奖品时,甲乙两位同学都想获得.于是他们约定:轮流从纸箱中有放回地抽取一球,谁先抽到黄球,谁获得奖品;如果3轮之后都两人都没有抽到黄球,则后抽的同学获得奖品.如果甲先抽,求甲获得奖品的概率.17.已知,如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且13AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点,四面体P BCG -的体积为83.(1)求异面直线GE 与PC 所成角的余弦;(2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF GC ⊥,求PFFC的值.18.男子10米气步枪和女子10米气步枪在1984年被列为奥运会比赛项目.根据国际射联的要求,10米气步枪靶纸为总边长80毫米的正方形,直径最大的1环,直径为45.5mm ,而最高10.9环的靶心点,直径仅有0.5mm .为了了解某校射击选手甲的训练水平,甲按照比赛要求进行了15次射击训练,命中的环数如下:射击序号123456789101112131415命中环数9.49.510.29.19.28.910.19.39.49.69.39.310.19.5 5.0(1)如果命中10环及以上的环数,我们称之为“命中靶心”.①用以上数据估计甲每次射击“命中靶心”的概率;②现发现一架小型无人机悬停在训练区域的上空(训练区域禁止无人机飞行),甲准备将其击落.假设甲每次射击能击中该无人机的概率为①中所求其“命中靶心”的概率,每次射击互不影响.则甲至少需要进行几次射击,才能有90%以上的概率能击落该无人机(该无人机被击中一次即被击落)?(2)经计算得甲这次训练命中环数的平均数15119.2015i i x x ===∑,标准差1.18s =,其中i x 为第i 次射击命中的环数,1i =,2,L ,15.第15次射击时,由于甲受到了明显的干扰,导致结果偏差较大.为了数据分析更加客观准确,教练剔除了这次的成绩.求剔除数据后,甲命中环数的平均数和方差(精确到0.01).(参考数据lg20.3010=,lg30.4771=)19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点.(1)求证://NC 平面PAM ;(2)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(3)设P AM D --的大小为θ,若π(0,]2θ∈,求平面PAM 和平面PBC 夹角余弦值的最小值.。
江淮名校2024-2025年度高二上期中考试语文试题注意事项:1.本试卷满分150分,考试时间150分钟。
2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。
3.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:①《论语·学而》中写道:“人不知而不愠,不亦君子乎?”以此为起点,书中相继提出“不患人之不己知,患不知人”“不患莫己知,求为可知”等观点。
如果从现代心理学的角度对其加以审视会发现,《论语》围绕自我了解与自我实现等问题,进行了关于自我认同的一系列建构。
②《论语》中认为不怨恨是面对负面评价时的正确态度。
《论语·学而》中写道:“人不知而不愠,不亦君子乎?”不因他人的不了解而怨恨,这可以看作是孔子面临认同危机时所采取的基本态度。
孔子真正受到无限的敬仰和尊崇是从汉代开始,而在其所处的春秋时期,孔子也会遭遇负面评价。
如《论语·子罕》中记载:“达巷党人曰:‘大哉孔子!博学而无所成名。
’”该评价颇有讽刺意味,博学与一无所成的鲜明对比,几乎要让人对孔子的博学都有所质疑。
而孔子面对质疑真正做到了“不愠”。
③同时,孔子并不一味屈从他人的评价。
如《论语·八佾》中记载:“子入太庙,每事问。
或曰:‘孰谓郓人之子知礼乎?入太庙,每事问。
’子闻之曰:‘是礼也。
’”孔子当时已经以知礼而闻名乡里,但他入太庙助祭时却凡事都要问清楚,因而便有人质疑他不知礼。
对此,孔子并未急于辩解自己是否知礼,而是从礼的内涵出发来回应对方:凡事都问仔细才真正符合礼的要求。
这样,对方的质疑便不攻自破。
④当面临认同危机时,孔子在态度上展现出的君子之风,从根本上源自思维上“内自省”的归因方式。
2024-2025学年湖北省“金太阳联考”高二(上)期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.(8+i)(1−i)=( )A. 7−9iB. 9−9iC. 7−7iD. 9−7i2.已知角α的终边不在坐标轴上,且2sin 2α=sin α,则cos 2α=( )A. −78B. 78C. −78或1D. −15163.一艘轮船北偏西65∘方向上有一灯塔,此时二者之间的距离为16海里,该轮船以20海里/时的速度沿南偏西55∘的方向直线航行,行驶半小时后,轮船与灯塔之间的距离为( )A. 18海里B. 16海里C. 14海里D. 12海里4.已知某圆台的上、下底面半径分别为2和5,母线长为5,则该圆台的体积为( )A. 63πB. 39πC. 52πD. 42π5.设函数f(x)={ax−2,x⩽1ln x,x >1.若f(x)在R 上单调递增,则a 的取值范围为( )A. (0,+∞)B. (0,2]C. (−∞,2]D. (0,3]6.已知点P(2,1),Q(1,0),H 在直线x−y +1=0上,则|HP|+|HQ|的最小值为( )A. 2 3B. 11C. 10D. 37.金秋十月,某校举行运动会,甲、乙两名同学均从跳高、跳远、100米跑和200米跑这四个项目中选择两个项目参加.设事件A =“甲、乙两人所选项目恰有一个相同”,事件B =“甲、乙两人所选项目完全不同”,事件C =“甲、乙两人所选项目完全相同”,事件D =“甲、乙两人均未选择100米跑项目”,则( )A. A 与C 是对立事件B. C 与D 相互独立C. A 与D 相互独立D. B 与D 不互斥8.已知A(2,0),B(10,0),若直线tx−4y +2=0上存在点P ,使得PA ⋅PB =0,则t 的取值范围为( )A. [−3,215]B. [−215.3]C. (−∞,−215]∪[3,+∞) D. (−∞,−7]∪[95,+∞)二、多选题:本题共3小题,共18分。
天津市2024-2025学年度第一学期期中学情调研高二年级英语学科本试卷分共100分,考试时间为100分钟。
答卷前,请务必将自己的姓名、考号、座位号填写在答题卡上相应位置。
答卷时,务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将答题卡和答题纸一并收回。
祝各位同学考试顺利!第Ⅰ卷 (共65分)第一部分:听力理解 (共15 小题;每小题0.5分,满分7.5分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the man want to know?A. Where the woman works out.B. How the woman stays fit.C. How to stay healthy.2. What is the man interested in?A. Whether people in China bargain everywhere.B. How to get a better price when doing the shopping in China.C. Where Chinese people usually go shopping.3. What's the most probable relationship between the two speakers?A. Old friends.B. Boss and secretary.C. Colleagues.4. What do we know about the woman?A. She is severely stressed.B. She is the man's doctor.C. She falls asleep easily.5. When was the woman scheduled to go to China at first?A. This Friday.B. This Saturday.C. This Sunday第二节听下面几段材料。
2024年下学期期中检测试题高二数学(答案在最后)时量:120分钟分值:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{}n a 满足6786a a a ++=,则7a 等于()A.1B.2C.4D.8【答案】B 【解析】【分析】利用等差数列的性质进行求解.【详解】 6787736,2a a a a a ++==∴=故选:B2.若圆224820x y x y m +-++=的半径为2,则实数m 的值为()A.-9B.-8C.9D.8【答案】D 【解析】【分析】由圆的一般方程配方得出其标准方程,由半径为2得出答案.【详解】由224820x y x y m +-++=,得22(2)(4)202x y m -++=-,所以2r ==,解得8m =.故选:D.3.若抛物线22(0)y px p =>的焦点与椭圆22195x y +=的一个焦点重合,则该抛物线的准线方程为()A.1x =-B.1x =C.2x =D.2x =-【答案】D 【解析】【分析】先求出椭圆的焦点坐标即是抛物线的焦点坐标,即可求出准线方程.【详解】∵椭圆22195x y +=的右焦点坐标为(2,0),∴抛物线的焦点坐标为(2,0),∴抛物线的准线方程为2x =-,故选:D.4.空气质量指数是评估空气质量状况的一组数字,空气质量指数划分为[)0,50、[)50,100、[)100,150、[)150,200、[)200,300和[]300,500六档,分别对应“优”、“良”、“轻度污染”、“中度污染”、“重度污染”和“严重污染”六个等级.如图是某市2月1日至14日连续14天的空气质量指数趋势图,则下面说法中正确的是().A.这14天中有5天空气质量为“中度污染”B.从2日到5日空气质量越来越好C.这14天中空气质量指数的中位数是214D.连续三天中空气质量指数方差最小是5日到7日【答案】B 【解析】【分析】根据折线图直接分析各选项.【详解】A 选项:这14天中空气质量为“中度污染”有4日,6日,9日,10日,共4天,A 选项错误;B 选项:从2日到5日空气质量指数逐渐降低,空气质量越来越好,B 选项正确;C 选项:这14天中空气质量指数的中位数是179214196.52+=,C 选项错误;D 选项:方差表示波动情况,根据折线图可知连续三天中波动最小的是9日到11日,所以方程最小的是9日到11日,D 选项错误;故选:B.5.已知双曲线C :22x a -22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为A.220x -25y =1B.25x -220y =1C.280x -220y =1D.220x -280y =1【答案】A 【解析】【详解】由题意得,双曲线的焦距为10,即22225a b c +==,又双曲线的渐近线方程为by x a=0bx ay ⇒-=,点1(2)P ,在C 的渐近线上,所以2a b =,联立方程组可得,所以双曲线的方程为22=1205x y -.考点:双曲线的标准方程及简单的几何性质.6.定义22⨯行列式12142334a a a a a a a a =-,若函数22cos sin ()πcos 22x xf x x -=⎛⎫+ ⎪⎝⎭,则下列表述正确的是()A.()f x 的图象关于点(π,0)中心对称B.()f x 的图象关于直线π2x =对称C.()f x 在区间π,06⎡⎤-⎢⎥⎣⎦上单调递增 D.()f x 是最小正周期为π的奇函数【答案】C 【解析】【分析】由行列式运算的定义,结合三角恒等变换,求出()f x 解析式,AB 选项关于函数图象的对称性,代入检验即可判断;整体代入验证单调性判断选项C ;公式法求最小正周期,检验函数奇偶性判断选项D.【详解】由题中所给定义可知,22ππ()cos sin 2cos 222cos 223f x x x x x x x ⎛⎫⎛⎫=--+=+=- ⎪ ⎪⎝⎭⎝⎭,π(π)2cos103f ==≠,点(π,0)不是()f x 图象的对称中心,故A 错误;ππ2cos 1223f ⎛⎫=-=-≠± ⎪⎝⎭,直线π2x =不是()f x 图象的对称轴,故B 错误;π,06x ⎡⎤∈-⎢⎥⎣⎦时,π2ππ2,333x ⎡⎤⎢⎥-⎣-∈⎦-,2ππ,33⎡⎤--⎢⎥⎣⎦是余弦函数的单调递增区间,所以()f x 在区间π,06⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确;()f x 的最小正周期2ππ2T ==,但(0)0f ≠,所以函数不是奇函数,故D 错误.故选:C7.已知ABC V 中,6AB =,4AC =,60BAC ∠=︒,D 为BC 的中点,则AD =()A.25B.19C.D.【答案】C 【解析】【分析】由题意可得:1()2AD AB AC =+,结合向量的数量积运算求模长.【详解】由题意可得:16,4,64122AB AC AB AC ==⋅=⨯⨯=uu u r uuu r uu u r uuu r ,因为D 为BC 的中点,则1()2AD AB AC =+,两边平方得,()22212194AD AB AC AB AC =++⋅=,即AD =uuu r .故选:C.8.已知椭圆:2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上一点,且2PF x ⊥轴,直线1PF 与椭圆C 的另一个交点为Q ,若11||4||PF F Q =,则椭圆C 的离心率为()A.255B.2C.155D.217【答案】D 【解析】【分析】由2PF x ⊥轴可得:22||b PF a=,不妨设点2(,)b P c a ,设0(Q x ,0)y ,由11||4||PF F Q =,解得0x 、0y ,代入椭圆方程化简即可求解.【详解】解:由2PF x ⊥轴可得:22||b PF a=,不妨设点2(,)b P c a ,设0(Q x ,0)y ,由11||4||PF F Q =,得032c x =-,204b y a =-,代入椭圆方程得:222291416c b a a+=,结合222a b c =+,化简上式可得:2237c a =,所以椭圆的离心率为7c e a ==,故选:D .二、多项选择题:本题共3小题,每小题6分,18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.设i 为虚数单位,下列关于复数z 的命题正确的有()A.2025i 1=-B.若1z ,2z 互为共轭复数,则12=z z C.若1z =,则z 的轨迹是以原点为圆心,半径为1的圆D.若复数1(1)i =++-z m m 为纯虚数,则1m =-【答案】BCD 【解析】【分析】A 选项,利用复数的乘方运算得到A 正确;B 选项,设1i z a b =+,2i z a b =-,则12=z z ;C 选项,由复数的几何意义得到C 正确;D 选项,根据纯虚数的定义得到方程,求出1m =-.【详解】对于A :()()1012101220252i i i 1i i =⋅=-⋅=,A 错;对于B :令1i z a b =+,2i,,R z a b a b =-∈,1z =,2z =所以12=z z ,故B 正确;对于C :1z =,故z 的轨迹是以原点为圆心,半径为1的圆,C 正确;对于D :若复数1(1)i =++-z m m 为纯虚数,则10,10m m +=-≠,即1m =-,故D 正确.故选:BCD10.如图,正方体1111ABCD A B C D -的棱长为1,E 是棱CD 上的动点(含端点).则下列结论正确的是()A.三棱锥11A B D E -的体积为定值B.11EB AD ⊥C.存在某个点E ,使直线1A E 与平面ABCD 所成角为60o D.二面角11E A B A --的平面角的大小为π4【答案】BD 【解析】【分析】A.根据等体积法的等高等底即可判断;B.结合正方体的性质,由垂影必垂斜即可判断;C.结合正方体的性质即可判断;D.根据二面角的平面角定义即可判断.【详解】对于选项A :三棱锥11E AB D -的底面积为定值,高变化,体积不为定值,故选项A 不正确;对于选项B :1,B E 两点在平面11ADD A 上的射影分别为1,A D ,即直线1B E 在平面11ADD A 上的射影为1A D ,而11A D AD ⊥,根据三垂线定理可得11EB AD ⊥.故选项B 正确;对于选项C :因为1A A ⊥平面ABCD ,直线1A E 与平面ABCD 所成角为1AEA ∠,当点E 和点D 重合时,1A E 在平面ABCD 射影最小,这时直线1A E 与平面ABCD 所成角θ最大值为π4,故选项C 不正确;对于选项D :二面角11E A B A --即二面角11D A B A --,因为111DA A B ⊥,111AA A B ⊥,1DA ⊂平面11E AB ,1AA ⊂平面11AA B ,所以1DA A ∠即为二面角11E A B A --的平面角,在正方形11ADD A 中,1π4DA A ∠=,所以二面角11E A B A --的大小为π4,故选项D 正确.故选:BD.11.数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物,曲线()32222:16C x y x y +=为四叶玫瑰线,下列结论正确的有()A.方程()()32222160x y x y xy +=<,表示的曲线在第二和第四象限;B.曲线C 上任一点到坐标原点O 的距离都不超过2;C.曲线C 构成的四叶玫瑰线面积大于4π;D.曲线C 上有5个整点(横、纵坐标均为整数的点).【答案】AB 【解析】【分析】本题首先可以根据0xy <判断出A 正确,然后根据基本不等式将()3222216x y x y +=转化为224x y +≤,即可判断出B 正确,再然后根据曲线C 构成的面积小于以O 为圆心、2为半径的圆O 的面积判断出C 错误,最后根据曲线C 上任一点到坐标原点O 的距离都不超过2以及曲线C 的对称性即可判断出D 错误.【详解】A 项:因为0xy <,所以x 、y 异号,在第二和第四象限,故A 正确;B 项:因为222x y xy +≥,当且仅当x y =时等号成立,所以222x yxy ≤+,()()22232222222161642x y x y x y x y ⎛⎫++=≤=+ ⎪⎝⎭,即224x y +≤2£,故B 正确;C 项:以O 为圆心、2为半径的圆O 的面积为4π,显然曲线C 构成的四叶玫瑰线面积小于圆O 的面积,故C 错误;D 项:可以先讨论第一象限内的图像上是否有整点,因为曲线C 上任一点到坐标原点O 的距离都不超过2,所以可将()0,0、()2,0、()1,0、()1,1、()0,1、()0,2代入曲线C 的方程中,通过验证可知,仅有点()0,0在曲线C 上,故结合曲线C 的对称性可知,曲线C 仅经过整点()0,0,故D 错误,故选:AB.【点睛】本题是创新题,考查学生从题目中获取信息的能力,考查基本不等式的应用,考查数形结合思想,体现了综合性,是中档题.三、填空题:本题共4小题,每小题5分,共20分.12.圆22250x y x +--=与圆222440x y x y ++--=的交点为A ,B ,则公共弦AB 所在的直线的方程是________.【答案】4410x y -+=【解析】【分析】两圆相减得到公共弦所在的直线的方程.【详解】由题意可知圆22250x y x +--=与圆222440x y x y ++--=相交,两圆方程相减得,2222244441025x x y x y x x y y ++=--+--+--=-,故公共弦AB 所在的直线的方程是4410x y -+=.故答案为:4410x y -+=13.若数列{}n a 满足111n nd a a +-=(*n ∈N ,d 为常数),则称数列{}n a 为“调和数列”,已知正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,且12202220220b b b +++= ,则12022b b 的最大值是________.【答案】100【解析】【分析】根据题设易知正项数列{}n b 为等差数列,公差为d ,应用等差数列前n 项和公式得1202220b b +=,应用基本不等式求12022b b 最大值.【详解】由题意,正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,则1n n d b b +=-(d 为常数),所以正项数列{}n b 为等差数列,公差为d ,则()120221220222022202202b b b b b +++==⨯+ ,则1202220b b +=,则2212022120222010022b b b b +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭(当且仅当0122110b b ==时等号成立),所以12022b b 的最大值是100.故答案为:10014.如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =,设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为____________.【答案】643π.【解析】【分析】根据题意有=B AN MN N MN BM ≥++,动点M 恰为PD 的中点即4BP BD ==,及可求出PO =,则可求出外接球的半径,方可求出其表面积.【详解】由题意知=B AN MN N MN BM ≥++当BM PD ⊥时BM 最小,因为M 为PD 的中点,故而为PD 的中点,即=4BP BD =,2BO =PO ∴=,设外接球的半径为r ,则22)4r r =+.解得433r =.故外接球的表面积为26443r ππ=.【点睛】本题考查锥体的外接球表面积,求出其外接球的半径,即可得出答案,属于中档题.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,84a =,1122S =-.(1)求数列{}n a 的通项公式;(2)求n S 的最小值.【答案】(1)320n a n =-(2)-57【解析】【分析】根据等差数列的通项公式和前n 项和公式列方程组求出117,3,a d =-⎧⎨=⎩即可得,(2)由通项公式可求得当6n ≤时,0n a <,从而可得当6n =时,n S 取到最小值,进而可求出其最小值【小问1详解】设数列 的公差为d ,则8111174115522a a d S a d =+=⎧⎨=+=-⎩,解得1173a d =-⎧⎨=⎩,所以1(1)320n a a n d n =+-=-.【小问2详解】令3200n a n =->,解得203n >,所以当6n ≤时,0n a <.故当6n =时,n S 取到最小值,为6161557S a d =+=-.16.已知公差不为零的等差数列{}n a 的前n 项和为n S ,若10110S =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若3n an n b a =+,求数列{}n b 的前n 项和.【答案】(1)2n a n=(2)199(1)8n n n +-++【解析】【分析】(1)设出公差,利用题意得到方程组,求出首项和公差,得到通项公式;(2)29nn b n =+,利用分组求和,结合等差数列和等比数列求和公式得到答案.【小问1详解】根据{}n a 为等差数列,设公差为0d ≠.10110S =,即11101045a d =+①,1a ,2a ,4a 成等比数列∴2214a a a =⋅,()()21113∴+=+a d a a d ②,由①②解得:122a d =⎧⎨=⎩,∴数列{}n a 的通项公式为2n a n =.【小问2详解】由232329n a n n n n b a n n =+=+=+,数列{}n b 的前n 项和()()122212999nn n T b b b n =++⋯+=⨯+++++++ ()1919(1)992(1)2198n n n n n n +-+-=⨯+=++-.17.在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,AD AB ⊥,侧面PAB ⊥底面ABCD ,122PA PB AD BC ====,且E ,F 分别为PC ,CD 的中点,(1)证明://DE 平面PAB ;(2)若直线PF 与平面PAB 所成的角为60︒,求平面PAB 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)55【解析】【分析】(1)取PB 中点M ,连接AM ,EM ,通过证明四边形ADEM 为平行四边形,即可证明结论;(2)由直线PF 与平面PAB 所成的角为60︒,可得,,,,GF PG AG BG AB ,建立以G 为原点的空间直角坐标系,利用向量方法可得答案.【小问1详解】取PB 中点M ,连接AM ,EM ,E 为PC 的中点,//ME BC ∴,12ME BC =,又AD //BC ,12AD BC =,//ME AD ∴,ME AD =,∴四边形ADEM 为平行四边形,//DE AM ∴,DE ⊄ 平面PAB ,AM ⊂平面PAB ,//DE ∴平面PAB ;【小问2详解】平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB BC =⊂平面ABCD ,,BC AB BC ⊥∴⊥平面PAB ,取AB 中点G ,连接FG ,则//,FG BC FG ∴⊥平面PAB ,()160,32GPF GF AD BC ∴∠=︒=+=,3tan60,PG PG∴︒=∴=2,1,2PA PB AG GB AB ==∴===,如图以G 为坐标原点,GB 为x 轴,GF 为y 轴,GP 为z轴建立空间直角坐标系,(()(),1,4,0,1,2,0P C D ∴-,(()1,4,,2,2,0PC CD ∴==-- ,设平面PCD 的一个法向量,()1,,n x y z = ,则1140220n PC x y n CD x y ⎧⋅=+-=⎪⎨⋅=--=⎪⎩ ,取1y =,则(1n =- ,平面PAB 的一个法向量可取()20,1,0n = ,设平面PAB 与平面PCD 所成锐二面角为θ,1212cos5n nn nθ⋅∴==,所以平面PAB与平面PCD 所成锐二面角的余弦值55.18.已知抛物线2:2(0)C x py p=>上一点(,6)P m到焦点F的距离为9.(1)求抛物线C的方程;(2)过点F且倾斜角为5π6的直线l与抛物线C交于A,B两点,点M为抛物线C准线上一点,且MA MB⊥,求MAB△的面积.(3)过点(2,0)Q的动直线l与抛物线相交于C,D两点,是否存在定点T,使得TC TD⋅为常数?若存在,求出点T的坐标及该常数;若不存在,说明理由.【答案】(1)212x y=(2)(3)存在定点191,93T⎛⎫⎪⎝⎭,TC TD⋅为常数37081.【解析】【分析】(1)利用抛物线的定义得02pPF y=+,计算出p得抛物线方程;(2)直线方程与抛物线方程联立方程组,求出,A B两点坐标,利用0MA MB⋅=求出M点坐标,求出M 点到直线l的距离和弦长AB,可求MAB△的面积;(3)设()00,T x y,()33,C x y,()44,D x y,过点Q的直线为(2)y k x=-,与抛物线方程联立方程组,利用韦达定理表示出TC TD⋅,求出算式的值与k无关的条件,可得TC TD⋅为定值的常数.【小问1详解】由拋物线的定义得02pPF y=+,解得692p+=,6p=.∴抛物线的方程为212x y=.【小问2详解】设()11,A x y,()22,B x y,由(1)知点(0,3)F,∴直线l的方程为0x +-=.由20,12,x x y ⎧+-=⎪⎨=⎪⎩可得21090y y -+=,则1210y y +=,129y y =,12121061622p p AB AF BF y y y y p ⎛⎫⎛⎫∴=+=+++=++=+= ⎪ ⎪⎝⎭⎝⎭,则不妨取11y =,29y =,则点A ,B的坐标分别为,(-.设点M 的坐标为(,3)t -,则,4)MA t =-uuu r,(,12)MB t =--uuu r ,则)()4120MA MB t t ⋅=--+⨯= ,解得t =-.即(3)M --,又点M 到直线l的距离d =d =,故MAB △的面积12S d AB =⋅=;【小问3详解】设()00,T x y ,()33,C x y ,()44,D x y ,过点Q 的直线为(2)y k x =-,2(2)12y k x x y =-⎧⎨=⎩联立消去y 得:212240x kx k -+=,0∆>时,3412x x k +=,3424x x k =,联立消去x 得:()22241240y k k y k +-+=,234124y y k k +=-,2344y y k =,()()()()30403040TC TD x x x x y y y y ⋅=--+-- ()()22340343403400x x x x x y y y y y x y =-++-+++()2222000024124124k x k k y k k x y =-⋅+--++()()2220000024124412x y k y k x y =-++-++要使()()2220000024124412x y k y k x y -++-++与k 无关,则00241240x y -+=且04120y -=,0199x ∴=,013y =,存在191,93T ⎛⎫ ⎪⎝⎭此时TC TD ⋅ 为定值37081.19.“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学内容,例如:用一张纸片,按如下步骤折纸:步骤1:在纸上画一个圆A ,并在圆外取一定点B ;步骤2:把纸片折叠,使得点B 折叠后与圆A 上某一点重合;步骤3:把纸片展开,并得到一条折痕;步骤4:不断重复步骤2和3,得到越来越多的折痕.你会发现,当折痕足够密时,这些折痕会呈现出一个双曲线的轮廓.若取一张足够大的纸,画一个半径为2的圆A ,并在圆外取一定点,4B AB =,按照上述方法折纸,点B 折叠后与圆A 上的点T 重合,折痕与直线TA 交于点,P P 的轨迹为曲线C .(1)以AB 所在直线为x 轴建立适当的坐标系,求C 的方程;(2)设AB 的中点为O ,若存在一个定圆O ,使得当C 的弦PQ 与圆O 相切时,C 上存在异于,P Q 的点,M N 使得//PM QN ,且直线,PM QN 均与圆O 相切.(i )求证:OP OQ ⊥;(ii )求四边形PQNM 面积的取值范围.【答案】(1)2213y x -=;(2)(i )证明见解析;(ii )[)6,+∞.【解析】【分析】(1)建立平面直角坐标系,根据双曲线定义可得双曲线方程;(2)假设存在符合条件的圆,依据条件,可得四边形PQNM 为菱形,设直线,OP OQ 的斜率分别为1,k k -,将直线,OP OQ 分别与双曲线方程联立求得||,||OP OQ ,通过计算O 到直线PQ 的距离可得定圆的方程.【小问1详解】以AB 所在直线为x 轴,以AB 的中点为坐标原点建立如图所示的平面直角坐标系.则()()2,0,2,0A B -.由折纸方法可知:PB PT =,所以2PB PA PT PA TA AB -=-==<.根据双曲线的定义,C 是以A ,B 为焦点,实轴长为2的双曲线,设其方程为()222210,0,x y a b a b-=>>则1,2a c ===,所以221,3a b ==.故C 的方程为2213y x -=.【小问2详解】(i )假设存在符合条件的圆O ,如图所示:由//PM QN 可得180MPQ NQP ∠+∠=︒,根据切线的性质可知,,MPO OPQ NQO OQP ∠=∠∠=∠,所以90OPQ OQP ∠+∠=︒,即OP OQ ⊥.(ii )分别作,P Q 关于原点O 的对称点,N M '',则,N M ''均在C 上,且四边形PQN M ''为菱形,所以,PM QN ''均与O 相切,所以M '与M 重合,N '与N 重合,所以四边形PQNM 为菱形.显然,直线,OP OQ 的斜率均存在且不为0.设直线,OP OQ 的斜率分别为1,k k-,则直线OP 的方程为y kx =,直线OQ 的方程为1=-y x k .设()()1122,,,P x y Q x y ,则由22,13y kx y x =⎧⎪⎨-=⎪⎩,得()2233k x -=,所以230k ->,且21233x k =-,所以203k <<,且1||OP ==.同理可得:213k >,且||OQ =所以四边形PQNM 的面积2||||S OP OQ =⋅=.设241,43t k t =+<<,故S ==.设1=u t ,则1344u <<,所以S =因为216163y u u =-+-在11,42⎛⎫ ⎪⎝⎭单调递增,在13,24⎛⎫ ⎪⎝⎭单调递减,所以(]0,1y ∈.所以[)6,S ∈+∞.所以四边形PQNM 的面积的取值范围是[)6,+∞.。
2024~2025学年第一学期高二期中检测数学(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第一册第一章~第二章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,2,4a =,()1,0,2b =-r,则a b ⋅的值为()A.()1,0,8- B.9C.-7D.7【答案】D 【解析】【分析】根据空间向量数量积坐标运算法则进行计算.【详解】()()1,1,2,00874,21a b ⋅⋅=-=-++=.故选:D2.直线+1=0x 的倾斜角为()A.34π B.4π C.2π D.不存在【答案】C 【解析】【分析】根据倾斜角的定义可得结果【详解】因为直线+1=0x 即直线1x =-垂直于轴,根据倾斜角的定义可知该直线的倾斜角为2π,故选:C.3.与直线20x y +=垂直,且在x 轴上的截距为-2的直线方程为().A.220x y -+=B.220x y --= C.220x y -+= D.220x y --=【答案】A 【解析】【分析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为12,∴所求直线方程为10(2)2y x -=+,整理为220x y -+=.故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).4.如图所示,在平行六面体1111ABCD A B C D -中,点E 为上底面对角线11A C 的中点,若1BE AA x AB y AD =++,则()A.11,22x y =-=B.11,22x y ==-C.11,22x y =-=-D.11,22x y ==【答案】A 【解析】【分析】根据空间向量的线性运算即可求解.【详解】根据题意,得;11()2BE BB BA BC =++11122AA BA BC=++111,22AA AB AD =-+ 1BE AA xAB y AD =++ 又11,,22x y =-=∴故选:A5.已知向量()0,0,2a = ,()1,1,1b =- ,向量a b + 在向量a上的投影向量为().A.()0,0,3 B.()0,0,6C.()3,3,9- D.()3,3,9--【答案】A 【解析】【分析】根据空间向量的坐标运算及投影向量的公式计算即可.【详解】由题意可知()1,13a b +=-,,()6,2a b a a +⋅== ,所以向量a b + 在向量a上的投影向量为()()()60,0,20,0,322a b a a a a +⋅⋅=⨯=⋅ .故选:A6.若圆()()2213425O x y -+-=:和圆()()()222228510O x y r r +++=<<:相切,则r 等于A.6B.7C.8D.9【答案】C 【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得r 的值并验证510r <<即可得结果.【详解】圆()()2213425O x y -+-=:的圆心()13,4O ,半径为5;圆()()2222:28O x y r +++=的圆心()22,8O --,半径为r.=|r-5|,求得r=18或-8,不满足5<r<10.=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,R r ,两圆心间的距离为d ,比较d 与R r -及d 与R r +的大小,即可得到两圆的位置关系.7.在空间直角坐标系Oxyz 中,已知点()2,1,0D ,向量()4,1,2,m m =⊥平面DEF ,则点O 到平面DEF 的距离为()A.21B.7C.21D.21【答案】B 【解析】【分析】根据空间向量的坐标运算直接计算点O 到平面DEF 的距离.【详解】因为()2,1,0D ,所以()2,1,0OD = ,又向量()4,1,2,m m =⊥平面DEF ,所以()4,1,2m =是平面DEF 的一个法向量所以点O 到平面DEF的距离为7OD m d m ⋅===.故答案为:7.8.已知直线l :x -my +4m -3=0(m ∈R ),点P 在圆221x y +=上,则点P 到直线l 的距离的最大值为()A.3B.4C.5D.6【答案】D 【解析】【分析】先求得直线过的定点的坐标,再由圆心到定点的距离加半径求解.【详解】解:直线l :x -my +4m -3=0(m ∈R )即为()()340x y m -+-=,所以直线过定点()3,4Q ,所以点P 到直线l的距离的最大值为16OQ r +=+=,故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线2y x =与0x y a ++=交于点()1,P b ,则()A.3a =-B.2b =C.点P 到直线30ax by ++=的距离为13D.点P 到直线30ax by ++=的距离为13【答案】ABD 【解析】【分析】联立直线方程结合其交点坐标求参数a 、b ,进而应用点线距离公式求P 到直线30ax by ++=的距离即可.【详解】由题意,得:210b b a =⎧⎨++=⎩,解得3a =-,2b =,故A 、B 正确,∴()1,2到直线3230x y -++=的距离13d ==,故C 错误,D 正确.故选:ABD.10.已知空间向量()()3,1,2,3,3,1a b =--= ,则下列说法正确的是()A.()32//a b a+B.()57a a b⊥+C.a =D.b =【答案】BCD 【解析】【分析】根据题意,结合向量的坐标运算,以及向量的共线和垂直的坐标表示,准确计算,即可求解.【详解】因为向量()()3,1,2,3,3,1a b =--= ,可得214,10a a b =⋅=-,对于A 中,由()323,3,8a b +=-,设32a b a λ+= ,即()3,3,8(3,1,2)λ-=--,可得33382λλλ-=-⎧⎪=-⎨⎪=⎩,此时方程组无解,所以32a b + 与a 不平行,所以A 错误;对于B 中,由()257575147(10)0a a b a a b ⋅+=+⋅=⨯+⨯-=,所以()57a a b ⊥+,所以B 正确;对于C中,由a ==,所以C 正确;对于D中,由b == D 正确.故选:BCD.11.直线2y x m =+与曲线y =恰有两个交点,则实数m 的值可能是()A.4B.5C.3D.4110【答案】AD 【解析】【分析】做出函数图象,数形结合,求出m 的取值范围,再进行选择.【详解】做出函数2y x m =+与y =的草图.设2y x m =+与圆224x y +=2=⇒m =m =-(舍去).因为函数2y x m =+与y =有两个交点,所以4m ≤<.故选:AD三、填空题:本题共3小题,每小题5分,共15分.12.已知在空间直角坐标系xOy 中,点A 的坐标为(1,2,)3-,点B 的坐标为(0,1,4)--,点A 与点C 关于x 轴对称,则||BC =___________.【答案】【解析】【分析】首先根据对称求出点C 的坐标,然后根据两点间的距离公式求||BC 的值即可.【详解】因为点A 与点C 关于x 轴对称,所以点C 的坐标为()1,2,3-,又因为点B 的坐标为(0,1,4)--,所以BC ==.13.过点()2,4作圆224x y +=的切线,则切线方程为___________.【答案】2x =或34100x y -+=【解析】【分析】考虑直线斜率不存在和直线斜率存在两种情况,利用圆心到直线距离等于半径列出方程,求出切线方程.【详解】①直线的斜率不存在时2x =满足,②直线斜率存在时,设切线方程为()42y k x -=-,则324d k ==⇒=,所以切线方程为4y -=()324x -,即34100x y -+=.故答案为:2x =或34100x y -+=.14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________.【答案】【解析】【详解】22225325539OC OA OB OA 2OA OB OB44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos∠AOB=-35,过点O 作AB 的垂线交AB 于D,则cos∠AOB=2cos 2∠AOD-1=-35,得cos 2∠AOD=15.又圆心到直线的距离为OD==,所以cos 2∠AOD=15=22OD r=22r ,所以r 2.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.已知直线l 过点()2,1P -.(1)若直线l 与直线230x y ++=垂直,求直线l 的方程(2)若直线l 在两坐标轴的截距互为相反数,求直线l 的方程.【答案】(1)240x y --=;(2)20x y +=或30x y --=.【解析】【分析】(1)根据直线方程垂直设出方程求解未知数即可;(2)根据截距的概念分类讨论求方程即可.【小问1详解】因为直线l 与直线230x y ++=垂直,所以可设直线l 的方程为20x y m -+=,因为直线l 过点()2,1P -,所以()2210m -⨯-+=,解得4m =-,所以直线l 的方程为240x y --=【小问2详解】当直线l 过原点时,直线l 的方程是2xy =-,即20x y +=.当直线l 不过原点时,设直线l 的方程为x y a -=,把点()2,1P -代入方程得3a =,所以直线l 的方程是30x y --=.综上,所求直线l 的方程为20x y +=或30x y --=16.已知向量()()1,1,,2,,a t t t b t t =--=.(1)若a b ⊥ ,求t 的值;(2)求b a -的最小值.【答案】(1)2(2)5【解析】【分析】(1)由空间向量垂直得到方程,求出答案;(2)计算出()1,21,0b a t t -=+-,利用模长公式得到b a -= ,求出最小值.【小问1详解】因为a b ⊥ ,所以0a b ⋅=,即()()22110t t t t -+-+=,解得2t=;【小问2详解】()1,21,0 b a t t-=+-所以b a-=.所以当15t=时,b a-取得最小值为5.17.如图,在四棱锥P ABCD-中,底面ABCD为直角梯形,//AD BC,AB BC⊥,AP⊥平面ABCD,Q为线段PD上的点,2DQ PQ=,1AB BC PA===,2AD=.(1)证明://BP平面ACQ;(2)求直线PC与平面ACQ所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)利用三角形相似得2MD MB=,结合2DQ PQ=,则有//MQ BP,利用线面平行的判定即可证明;(2)以A为坐标原点,建立合适的空间直角坐标系,求出平面ACQ的法向量,利用线面角的空间向量法即可得到答案.【小问1详解】如图,连接BD与AC相交于点M,连接MQ,∵//BC AD,2AD BC=,则AMD CMB,∴2MD ADMB CB==,2MD MB=,∵2DQ PQ=,∴//MQ BP,BP ⊄ 平面ACQ ,MQ Ì平面ACQ ,∴//BP 平面ACQ ;【小问2详解】AP ⊥ 平面ABCD ,,AB AD ⊂平面ABCD ,,AP AB AP AD ∴⊥⊥,因为底面AB BC ⊥,则AB ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示空间直角坐标系,各点坐标如下:()0,0,0A ,()1,1,0C ,()0,0,1P ,220,,33Q ⎛⎫⎪⎝⎭.设平面ACQ 的法向量为(),,m x y z =,由()1,1,0AC = ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,有02233AC m x y AQ m y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,1y =-,1z =,可得()1,1,1m =- ,由()1,1,1CP =-- ,有1CP m ⋅=,CP m ==,则1cos ,3CP m == .故直线PC 与平面ACQ 所成角的正弦值为13.18.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.【答案】(1)见解析(2)4242【解析】【分析】(1)以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,不妨令正方体的棱长为2,设()2,,0E a ,利用111cos ,B E BG B E BG B E BG⋅= ,解得1a =,即可证得;(2)分别求得平面1B EF 与平面11ABC D 的法向量m n ,,利用cos ,m n m n m n⋅=⋅ 求解即可.【小问1详解】证明:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -.不妨令正方体的棱长为2,则()0,0,0D ,()1,0,0G ,()2,2,0B ,()12,2,2B ,()0,2,1F ,设()2,,0E a ,则()10,2,2B E a =-- ,()1,2,0BG =-- ,所以()1121422cos ,5524B E BG a B E BG B E BG a ⋅-===-+ ,所以2430a a -+=,解得1a =(3a =舍去),即E 为AB 的中点.【小问2详解】由(1)可得()10,1,2B E =-- ,()2,1,1EF =- ,设(),,m x y z = 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ .令2z =,得()1,4,2m =-- .易得平面11ABC D 的一个法向量为()12,0,2n DA == ,所以cos ,42m n m n m n ⋅===⋅ .所以所求锐二面角的余弦值为42.19.已知圆C 过点(1,0)M -且与直线20x +-=相切于点1,22⎛⎫ ⎪ ⎪⎝⎭,直线:30l kx y k --+=与圆C 交于不同的两点A ,B .(1)求圆C 的方程;(2)若圆C 与x 轴的正半轴交于点P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +是定值.【答案】(1)221x y +=(2)证明见解析.【解析】【分析】(1)确定圆心和半径,可得圆C 的方程.(2)把直线方程与圆C 方程联立,得到12x x +,21x x ,再表示出12k k +,运算整理即可.【小问1详解】过点1,22⎛⎫ ⎪ ⎪⎝⎭且与直线20x +-=垂直的直线为:1022x y ⎛⎫⎫---= ⎪⎪ ⎪⎭⎝⎭0y -=.又线段MN,其中1,22N ⎛⎫ ⎪ ⎪⎝⎭的垂直平分线为:()222213122x y x y ⎛⎫⎛⎫++=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭0y +=.由00y y -=+=,得圆心()0,0C ,又221r CM ==.故圆C 的方程为:221x y +=.【小问2详解】将()3y kx k =+-代入221x y +=得:()2231x kx k ⎡⎤++-=⎣⎦,整理得:()()()222123310k x k k x k ++-+--=.由0∆>⇒()()()22224341310k k k k ⎡⎤--+-->⎣⎦⇒43k >.设1,1,2,2,则()122231k k x x k -+=+,()2122311k x x k --=+.又()1,0P ,所以()111111133111k x y k k x x x -+===+---,同理:2231k k x =+-.所以121233211k k k x x +=++--()()()121236211x x k x x +-=+--()()1212123621x x k x x x x +-=+-++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++18629k k --=+23=-.所以1223k k +=-为定值.。
2024-2025学年度上学期期中考试高二试题语文考试时间:150 分钟满分:150分一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1—5题。
材料一:对现实的关怀反思,对英雄的敬仰崇拜,对人道的追寻布施,对人性的完美塑造……儒家思想十分看重个人的修身养性、品格塑造。
孔子主张以道德治天下,他说:“【A】”要求以仁义之道作为个人生活乃至为政的准则。
但由于各人道德修养的不同、道德境界的差异,就有“君子”与“小人”的区分。
孔子认为,君子的修养有两个部分,一是学习“诗书六艺之文”,二是躬行实践。
“六艺”包含礼、乐、书、数、射、御,孔子尤其看重对“艺”的掌握,并指出仁人君子的成才之道:“兴于诗,立于礼,成于乐。
”君子在志道、据德、依仁之外还要“游于艺”,在游憩观赏娱乐中使身心获得全面自由。
这一思想是孔子对理想人格、自由人格的充分表述,主张人的全面发展,在驾驭客观世界的规律性的同时获得主体的全面解放。
人格是人的精神属性而非生理属性,是人的超动物属性而非动物属性。
只有在食、色之上另有追求,另有坚持,另有作为,才谈得上人格。
儒家提倡的“以仁为人”就是对超越生理需要的精神追求和人格力量的高度抽象。
孔子认为,真正的“君子”必须在“文”“质”之间配合得恰到好处。
他说:“质胜文则野,文胜质则史。
文质彬彬,然后君子。
”所谓“文”,指作为历史成果而保存的物质文明和精神文明,正如司马光说的:“古之所谓文者,乃诗书礼乐之文,升降进退之容,弦歌雅颂之声。
”所谓“质”,指人内在固有的和坚定的伦理品质。
“【B】”因此,孔子认为君子只有“质”还不行,还必须有“文”的形式教养,将外在形式与内在品质高度融合起来,才可能成为真正的“君子”。
孟子对先秦儒家“君子”理念做了进一步延伸,即注重内心修养,发展“仁”的内在机制。
他指出:“【C】”他认为,“君子”应时刻以仁与礼来“反求诸己”“为仁由己”,从精神上把“仁”化为自己的内驱力和社会实践。
2024-2025学年黑龙江省哈尔滨市高二上学期11月期中考试数学检测试题一、单选题(本大题共10小题)1.直三棱柱中,若,则( )111ABC A B C -1,,CA a CB b CC c === 1A B =A .B .a b c+-r r ra b c-+r r r C .D .a b c -++ a b c-+- 2.已知点,,若直线的斜率为,则( )()1,0A (),B n m AB 21n m -=A .B .C .D .22-1212-3.已知,则( )()()1,5,1,3,2,5a b =-=-a b -= A .B .C .D .()4,3,6--()4,3,6--()4,3,6-()4,3,64.已知焦点在轴上的椭圆的焦距为6,则实数等于( )x 2213x y m +=mA .B .C .12D .3421412-5.已知正方体的棱长为1,则( )1111ABCD A B C D -A .B .C .D .11ACB D ⊥1AC BC⊥1B D BC⊥1B D AC^6.已知圆,圆,则这两圆的位置关系为( 22:(2)(4)25E x y -+-=22:(2)(2)1F x y -+-=)A .内含B .相切C .相交D .外离7.设直线的方向向量为,平面的法向量为,若,则( )l a αb0a b ⋅= A .B .C .D .或//l αl α⊂l α⊥l α⊂//l α8.与平行,则( )1:10l ax y -+=2:2410l x y +-==aA .B .C .D .21212-2-9.经过点,斜率为的直线方程为( )(3,1)12A .B .210x y --=250x y +-=C .D .250x y --=270x y +-=10.已知,则该圆的圆心坐标和半径分别为( )221:202C x y x y ++-+=A .,B .,1,12⎛⎫- ⎪⎝⎭()1,2-C .,D .,1,12⎛⎫ ⎪⎝⎭()1,2-二、多选题(本大题共2小题)11.下列结论错误的是( )A .过点,的直线的倾斜角为()1,3A ()3,1B -30︒B .若直线与直线平行,则2360x y -+=20ax y ++=23a =-C .直线与直线之间的距离是240x y +-=2410x y ++=D .已知,,点在轴上,则的最小值是5()2,3A ()1,1B -P x PA PB+12.以A (1,1),B (3,-5)两点的线段为直径的圆,则下列结论正确的是()A .圆心的坐标为(2,2)B .圆心的坐标为(2,-2)C .圆心的坐标为(-2,2)D .圆的方程是()222)210x y ++-=(E .圆的方程是22(2)(2)10x y -++=三、填空题(本大题共4小题)13.已知平面的法向量是,平面的法向量是,若,则的α()2,3,1-β()4,,2λ-//αβλ值是.14.直线与圆的位置关系是.34120x y ++=()()22119-++=x y 15.三条直线与相交于一点,则的值为.280,4310ax y x y +-=+=210x y -=a16.在空间直角坐标系中,直线的一个方向向量为,平面的一个法向l ()1,0,3m =-α量为,则直线与平面所成的角为.()2n =l α四、解答题(本大题共3小题)17.求满足下列条件的直线方程(要求把直线的方程化为一般式):(1)已知,,,求的边上的中线所在的直线方程.(1,2)A (1,4)B -(5,2)C ABC V AB (2)直线经过点,倾斜角为直线的倾斜角的2倍,求的方程.l (2,1)B --12y x=l 18.如图,在棱长为2的正方体中,分别是的中点,G 在棱CD 上,且,E F 1,DD DB ,H 是的中点.建立适当的空间直角坐标系,解决下列问题:13CG CD=1C G(1)求证:;1EF B C ⊥(2)求异面直线EF 与所成角的余弦值.1C G 19.已知圆C 经过坐标原点O 和点(4,0),且圆心在x 轴上(1)求圆C 的方程;(2)已知直线l :34110x y +-=与圆C 相交于A 、B 两点,求所得弦长的值.AB答案1.【正确答案】D【详解】.()11111A A B B a b B A B cCC C CB =+=-+=-+--+ 故选:D .2.【正确答案】C【详解】若直线的斜率为,则,AB 221mn =-所以,211n m -=故选:C.3.【正确答案】C【详解】向量,则.()()1,5,1,3,2,5a b =-=- (4,3,6)a b -=- 故选:C4.【正确答案】C【详解】由题意知,,3,3m a b c >==又,所以,222a b c =+3912m =+=即实数的值为12.m 故选:C5.【正确答案】D 【详解】以为原点,为单位正交基底建立空间直角坐标系,D {}1,,DA DC DD 则,,,,,,()0,0,0D A (1,0,0)1(1,0,1)A ()1,1,0B ()11,1,1B ()0,1,0C 所以,,,.()11,1,1A C =-- ()11,1,1B D =--- ()1,0,0BC =- ()1,1,0AC =-因为,所以.111111,1,1,0AC B D AC BC BC B D AC B D ⋅=⋅==⋅=⋅ 1B D AC ^故选:D.6.【正确答案】A【详解】圆的圆心为,半径;22:(2)(4)25E x y -+-=E (2,4)15r =圆的圆心为,半径,22:(2)(2)1F x y -+-=F (2,2)11r =,故,所以两圆内含;2=12EF r r <-故选:A7.【正确答案】D【详解】∵直线的方向向量为,平面的法向量为且,即,l a αb0a b ⋅= a b ⊥ ∴或.l α⊂//l α故选:D8.【正确答案】B【详解】由与平行,得,所以.1:10l ax y -+=2:2410l x y +-=11241a -=≠-12a =-故选:B9.【正确答案】A【详解】经过点,斜率为的直线方程为,即.(3,1)1211(3)2y x -=-210x y --=故选:A.10.【正确答案】A【详解】的标准方程为,故所求分别为221:202C x y x y ++-+= ()2213124x y ⎛⎫++-= ⎪⎝⎭,1,12⎛⎫- ⎪⎝⎭故选:A.11.【正确答案】AC 【详解】对于A ,,即,故A 错误;131tan 312AB k α-===--30α≠︒对于B ,直线与直线平行,所以,解得,故B 2360x y -+=20ax y ++=123a =-23a =-正确;对于C ,直线与直线(即)之间的距离为240x y +-=2410x y ++=1202x y ++=C 错误;d 对于D ,已知,,点在轴上,如图()2,3A ()1,1B -P x取关于轴的对称点,连接交轴于点,此时()1,1B -x ()1,1B '--AB 'x P,5=所以的最小值是5,故D 正确;PA PB+故选:AC.12.【正确答案】BE 【详解】AB 的中点坐标为,则圆心的坐标为()2,2-()2,2-=r =所以圆的方程是22(2)(2)10x y -++=故选:BE13.【正确答案】6【详解】∵,∴的法向量与的法向量也互相平行.//αβαβ∴,∴.23142λ-==-6λ=故6.14.【正确答案】相交【详解】圆的圆心为,半径为,()()22119x y -++=()1,1-3因为圆心到直线,()1,1-34120x y ++=1135<所以直线与圆相交.34120x y ++=()()22119x y -++=故相交15.【正确答案】3【详解】由,即三条直线交于,431042102x y x x y y +==⎧⎧⇒⎨⎨-==-⎩⎩(4,2)-代入,有.280ax y +-=44803a a --=⇒=故316.【正确答案】π6【分析】应用向量夹角的坐标表示求线面角的正弦值,即可得其大小.【详解】设直线与平面所成的角为,l απ20θθ⎛⎫≤≤ ⎪⎝⎭则,所以.1sin cos ,2m n m n m n θ⋅====π6θ=故π617.【正确答案】(1)x +5y ﹣15=0(2)4x ﹣3y +5=0【详解】(1)因为,则的中点,(1,2),(1,4)A B -AB (0,3)D 因为的边上的中线过点,ABC V AB (5,2),(0,3)C D 所以的方程为,即,CD 233050y x --=--()5150x y +-=故的边上的中线所在的直线方程为;ABC V AB 5150x y +-=(2)设直线的倾斜角为, 则,则所求直线的倾斜角为,12y x=απ0,4α⎛⎫∈ ⎪⎝⎭2α因为,所以,1tan 2α=22tan 4tan 21tan 3ααα==-又直线经过点,故所求直线方程为,即4x ﹣3y+5=0;(2,1)B --4123y x +=+()18.【正确答案】(1)证明见解析【详解】(1)证明:如图,以D 为原点,以射线DA 、DC 、分别为x 轴、y 轴、1DD z 轴的正半轴,建立空间直角坐标系,D xyz -则,,,,,()0,0,0D E (0,0,1)()1,1,0F ()0,2,0C ()10,2,2C ,,()12,2,2B 40,,03G ⎛⎫ ⎪⎝⎭所以,,()1,1,1EF =- ()12,0,2B C =--所以,()()()()()11,1,12,0,21210120EF B C ⋅=-⋅--=⨯-+⨯+-⨯-=所以,故.1EF B C ⊥1EF B C ⊥(2)因为,所以120,,23C G ⎛⎫=-- ⎪⎝⎭1C G =因为,EF =()12241,1,10,,22333EF C G ⎛⎫⋅=-⋅--=-+=⎪⎝⎭所以.1114cos ,3EF C G EF C G EF C G ⋅=====19.【正确答案】(1)()2224x y -+=(2)【分析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.(1)由题意可得,圆心为(2,0),半径为2.则圆的方程为()2224x y -+=;(2)由(1)可知:圆C 半径为2r =,设圆心(2,0)到l 的距离为d ,则61115d -==,由垂径定理得:AB ==。
四川省成都市蓉城联盟2024-2025学年高二上学期期中考试
数学试题
学校:___________姓名:___________班级:___________考号:___________
二、多选题
9.2024年2月29日,国家统计局发布了我国2023年国民经济和社会发展统计公报,全国居民人均可支配收入和消费支出均较上一年有所增长,结合图一、图二所示统计图,下列说法正确的是()
四、解答题
15.庚子新春,“新冠”肆虐,面对新冠肺炎的发生,某医疗小组提出了一种治疗的新方案.为测试该方案的治疗效果,此医疗小组选取了患病程度相同的12名病人志愿者,将他们随机分成两组,每组6人.第一组用新方案治疗,第二组用旧方案治疗.统计病人的痊愈时间(单位:天)如下表:
(1)求点C 到平面1
ABC 的距离(2)若1AC CC =,平面1ABC 1AM x AC =,11A N
y A B
=.①用x ,y 来表示线段MN 的长度
【点睛】关键点点睛:本题第(利用空间向量及题设进行求解。
2024~2025学年度第一学期高二年级期中考试语文考生注意:1.本试卷满分150分,考试时间150分钟。
2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。
3.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
4.本卷命题范围:人教版选择性必修上册第一至二单元、古诗词诵读。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成下面小题。
材料一:孔子是个言行一致的人,他不仅注重“言必信,行必果”(《子路》),而且强调“君子欲讷于言而敏于行”(《里仁》)、“君子耻其言而过其行”(《宪问》)。
《论语》虽非孔子亲笔著述,但从弟子记载其话语中,仍能明显感到他是落实自己重视文采主张的力行者。
比喻作为文学的常用修辞法,孔子一出手就技惊四方。
“为政以德,譬如北辰,居其所而众星共之”(《为政》),以“北辰”比“为政以德”的统治者,以“众星”比诸侯国和大夫,譬喻形象而意蕴丰赡。
“逝者如斯夫,不舍昼夜”(《子罕》)、“岁寒,然后知松柏之后凋也”(《子罕》),前者由感慨河水川流不息而提醒珍惜宝贵时光,后者以松柏后凋景象喻人要经得起严酷环境的考验,言简意赅而启人深思。
“知者乐水,仁者乐山;知者动,仁者静;知者乐,仁者寿”(《雍也》)。
孔子由水的川流灵动,想到智者敏锐聪慧,由山的沉稳安静,想到仁者厚重不迁,设喻奇妙,表意隽永,且气象博大。
孔子擅于比喻,也妙于夸张。
“朝闻道,夕可死矣”(《里仁》),不这样夸饰,怎能凸显他把“闻道”看得比性命还重要!“子在齐闻《韶》,三月不知肉味”(《述而》),这是以婉曲夸张法,将他在齐国痴迷韶乐而难以自拔的情景,传达得惟妙惟肖而意蕴悠长。
“不义而富且贵,于我如浮云”(《述而》),此处的“浮云”,既是比喻又是夸张,把他作为百世圣哲“谋道不谋食”“忧道不忧贫”的高尚情操和洒脱情怀,刻画得栩栩如生又感人至深。
互助民中2015---2016学年第一学期第二次月考高二英语试题第一部分:听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)请听下面5段对话,选出最佳选项。
1. What has the man lost?A. His penB. His tickets.C. His gloves.2. What does the man ask the woman to do tomorrow night?A. Do her work.B. Study at school.C. Stay at the party for a while.3. Who made the woman’s personal web page?A. She herself.B. Her friend.C. The man.4. When is the first train to London tomorrow morning?A. At5:00.B. At 5:15.C. At 6:00.5.What does the man mean?A. The man is very interesting.B. John always makes her laugh.C. Sh e doesn’t appreciate John’s humor.第二节(共15小题:每小题1.5分。
满分22.5分)请听第6段材料,回答第6、7、8题。
6. What shoes does the woman want?A. Nike Air.B. Reeboks Air.C. Adidas Air.7. How much will the woman pay?A.89 dollars.B. 69 dollars.C. 68 dollars.8. How will the woman pay for the shoes?A.In cashB. By cheque.C. By credit card请听第7段材料,回答第9至11题。
9. What is the relationship between the speakers?A. Father and daughterB. Husband and wifeC. Friends10. How does Adam feel about thrillers?A. FrightenedB. InterestedC.Excited11. What films does Sally like?A.Detective onesB. Adventure onesC. Historical ones请听第8段材料,回答第12至14题。
12. What are the speakers mainly talking about?A. A special wedding ceremonyB. A computer companyC. An extreme sport13. Where did Billy meet his girlfriend?A. In a companyB. At a sky diving clubC. At a scuba diving club14. What is the relationship between the speakers?A. Club membersB. Husband and wifeC. Boyfriend and girlfriend请听第9段材料,回答第15至17题。
15. Why did the woman call the man yesterday?A. To give him a reportB. To invite him to take a trip.C. To ask him to do business with her.16.Where will the woman go tomorrow?A. To AfricaB. To AmericaC. To Australia17. What does the man ask the woman to do?A. Contact him as soon as she comes backB. Send him the e-mail as soon as possibleC. Solve the problem when she comes back请听第10段材料,回答第18至20题。
18. What does the speaker like to have for breakfast?A. A piece of toastB. A sandwichC. Ham19. When does the speaker have her main meal of the day?A. In the morningB. At noonC. In the evening20. What do we know about the speaker?A. She likes orangesB. She is fond of meatC. She never eats ice-cream 第二部分阅读理解(共两节,满分40分)第一节(共15题;每小题2分,满分30分)AJustin Bieber used to be an ordinary Canadian boy, but his life totally changed in 2008. With his great musical talent, this seventeen-year-old boy has become a superstar in the music industry.Justin Drew Bieber was born in 1994 in Stratford, Ontario and was raised by his single mother. Bieber learned to play musical instruments when he was very young. In 2007, he took part in a local singing competition in his hometown, and he did it just for fun. He never took singing lessons before but surprisingly he placed second in the competition. Then, with the help of his mother, he uploaded (上传) videos of him singing on a website and they successfully attracted the attention of thousands of viewers. His videos got popular through word of mouth and some of them have received up to 10,000,000 views.Justin Bieber would have never gotten a career in the music business without his videos. Scooter Braun, a former marketing executive (主管) of So So Def Recordings, had watched Bieber’s videos and he was impressed by the boy’s talent. Braun then contacted Bieber and he flew the boy into Atlanta seven months after the first video was posted. Bieber showed his talent in singing as well as his ability in playing musical instruments. He then got a record deal.In 2009, Justin Bieber released (发行) his first single “One Time” while he was recording the debut album (首张专辑). The single “One Time” tells a story about love. This song had success not only in Canada and the US, but also in the international market. Then he released his debut album “My World 2.0” in 2010 and the song “Baby” became the lead single. This album successfully entered the Top Ten Charts in seven countries. In June 2010, he started his first world tour in Hartford, Connecticut. One month later, he started recording his second album.21. Justin Bieber’s career in music began to take off when _____.A. he met with Scooter BraunB. he released his debut albumC. he won second place in a competitionD. his singing videos were uploaded to a website22. It can be inferred from the text that Justin Bieber _____.A. owed his success to good luckB. showed a gift for music when he was youngC. is the youngest superstar ever in the music industryD. released his debut album with the help of Scooter Braun23. What do we learn about Justin Bieber’s “One Time” according to the text?A. It is about love and was released in 2010.B. It attracted the world’s attention after released.C. It successfully entered the Top Ten Charts in seven countries.D. It is the lead single of his debut album “My World 2.0”.24. What is the best title for the text?A. Justin Bieber’s journey to successB. Lucky boy — Justin BieberC. What made Justin Bieber a singer?D. Secrets of Justin Bieber’s successBElephants might be the most well-known and well-loved animal in African wildlife. But conservation (保护) of the African elephant faces special difficulties. While the elephant population is half of what it was 40 years ago, some areas of Africa have more e lephants than populated areas can support. That’s why AWF scientists are studying elephant behavior, protecting habitats and finding ways for humans to live peacefully with elephants in Africa.Years ago, overhunting and the ivory trade were the biggest t hreats to elephants’ survival. Luckily, ivory bans (禁令), hunting rules and protected areas protect elephants from these dangers today.The 21st century brings a different challenge to elephant conservation —land-use. Elephants walk across borders and outside parks and other protected areas. So they often destroy crops, causing conflicts (冲突) between local farmers and these big animals.Successful conservation strategies (策略) must allow elephants to walk freely in their natural habitats while reducing conflicts between elephants and local people.AWF researchers are searching for a way to give both elephants and people the space they need. The AWF is collecting information on elephant habitats and behavior. The information they gather will help to develop the widest possible space for elephants.The AWF is helping elephants by protecting their habitats. And they also work with local famers to improve their life in order to encourage them to protect rather than destroy elephants.25. The first paragraph of the text is mainly to tell readers _____.A. African elephants are endangered nowB. there remains a lot to do to protect African elephantsC. African elephants are popular animalsD. the number of African elephants has increased over the years26. What is the biggest difficulty in protecting African elephants now?A. They are still being killed.B. Their habitats are being destroyed.C. They don’t have enough food.D. They can’t live in peace with farmers.27. To protect elephants, the AWF does all the following EXCEPT _____.A. keeping elephantsB. protecting elephants’ habitatsC. doing research on elephantsD. helping farmers improve their life28. What is the best title for the text?A. African elephants conservationB. Living with African elephantsC. African elephants’ situationD. African elephants being endangeredCThe problem of global warming has caused a lot of people to try their best to protect the environment. Unluckily, there are still many people who think it is hard to go green. In fact, it is very easy to be green in our daily life.You can make a great start by learning to recycle (回收利用). While this looks really simple, there are many people who still throw glass bottles into their common garbage. Almost all cities offer a recycling bin (垃圾箱) for these items. If you put them in the recycling bin instead of throwing them away, you will be on the path to save the earth.One good thing to recycle is newspaper. But there are still some people who just put their newspaper in the garbage when they finish reading it. As we know, there are many other things we can do with an old newspaper. For example, we can use it to clean our windows.Another thing that could help you to start to live green is to begin walking a bit more. Many people think nothing of getting in their car and driving one mile to get drinks at the local store. If you walk to the store, not only can it take less time, because you won’t have to try to find a parking place, but you will be saving money on gas and helping to protect the environment. If you wish to save even more on gas, take the opportunity to car pool (拼车) each time you can, which has become popular in many countries.There really are many means by which people can start living green. They only have to make some changes in their lifestyle to improve our environment.29. What is the main purpose of the first paragraph?A. To tell readers that many people are living green.B. To express worries about global warming.C. To advise people to learn to live green.D. To show the importance of living green.30. According to the text, which of the following is NOT true?A. Many people can’t recycle glass bottles properly.B. Newspaper is being recycled by some people.C. Driving can cause trouble sometimes.D. Car pooling is not allowed in some countries.31. What is the best title for the text?A. Why do we need to live a green life?B. Going green is much simpler than we thinkC. Global warming is becoming worseD. What is causing global warming?DWhat do you think of 80s pop music? Do the names George Michael, Madonna and Michael Jackson sound familiar? Well, these are just some of the names that were well-known in the music scene of the 80s and early 90s. The 80s pop music scene was an important step to the popularity (普及) of present-day music. A new wave in the music scene was introduced, which made such music styles as punk rock, rap music and the MTV popular. Although it was an end to the old 60s and 70s styles, it was also the beginning of something big. The popularity of music videos meant that artists now replaced their guitar-based music with visual displays. A new wave of artists came on the scene and the entire industry developed quickly.The most famous 80s pop music video is Michael Jackson’s Thriller. Introduced in 1982, few people can forget the video not only because of its never-be-foreseen images, but also because of the popularity it received. Think too of how 80s pop music changed the lives of people who grew up in the 80s. Ask a young man today to tell you the names of the “New Kids on the Block” and he will start talking about the neighbor kids who just moved in. These are not the answers you might have heard in the 80s. Though today’s young men do not recognize how cool 80s pop music was, most people will always remember it for what it was and these are happy memories they will always love.Some of the 80s pop music legends (传奇人物) include Madonna, U2, AeroSmith and of course the King of Pop Michael Jackson. Let’s not forget Prince, Tina Turner, Phil Collins and Motown’s Lionel Ritchie. Some of these musicians played music that has stood the test of time. Undoubtedly, the 80s pop music scene will live on for many more years to come.32. What is the text mainly about?A. The characters of 80s pop music.B. The effects of 80s pop music.C. 80s pop music’s steps to popularity.D. What made 80s pop music popular.33. 80s pop music mainly includes the following styles EXCEPT ____.A. rap musicB. the MTVC. guitar-based musicD. punk rock34. Michael Jackson’s Thriller impressed people so deeply mainly because ____.A. it was made into a music videoB. he sang it in a special styleC. it changed the lives of peopleD. it left people with happy memories35. The purpose of the last paragraph is to tell readers that ____.A. 80s pop music is now out of dateB. 80s pop music has many faultsC. 80s pop music is and will remain popularD. we shouldn’t forget the great musicians of the 80s第二节(共5小题,每小题2分,共10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。