《线段垂直平分线》中一道习题的变式
- 格式:doc
- 大小:46.00 KB
- 文档页数:4
线段的垂直平分线与角平分线综合压轴题五种模型全攻略【考点导航】目录【典型例题】【考点一利用线段垂直平分线的性质求解】【考点二线段垂直平分线的判定】【考点三利用角平分线的性质求解】【考点四角平分线的判定】【考点五线段的垂直平分线与角平分线的综合问题】【过关检测】【典型例题】【考点一利用线段垂直平分线的性质求解】1(2023春·江苏淮安·七年级校考阶段练习)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB、AC于E,D,连接EC,则∠BEC=.【变式训练】1(2023·江苏·八年级假期作业)三名同学分别站在一个三角形三个顶点的位置上,他们在玩抢凳子的游戏,要求在他们中间放一个凳子,抢到凳子者获胜,为使游戏公平,凳子应放的最适当的位置在三角形的()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点2(2023春·山东济南·七年级济南市章丘区第二实验中学校考阶段练习)如图,在△ABC中,BC=8,AB的中垂线交BC于E,AC的中垂线交BC于G,则△AGE的周长等于.3(2023春·广东深圳·七年级校考期末)如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=10cm,求△CMN的周长;(2)若∠MFN=65o,则∠MCN的度数为°.【考点二线段垂直平分线的判定】1(2023春·陕西西安·七年级校考阶段练习)如图,AD为三角形ABC的角平分线,DE⊥AB于点E,DF ⊥AC于点F,连接EF交AD于点O.(1)若BE=DE,∠BAC=60°,求∠CDF的度数;(2)写出AD与EF的关系,并说明理由;【变式训练】1(2023秋·广西河池·八年级统考期末)如图,在△ABC中,边AB,BC的垂直平分线交于点P.(1)求证:PA=PB=PC;(2)求证:点P在线段AC的垂直平分线上.2(2023春·全国·八年级专题练习)如图,点D是等边△ABC外一点,∠BDC=120°,DB=DC,点E,F分别在AB,AC上,连接AD、DE、DF、EF.(1)求证:AD是BC的垂直平分线;(2)若ED平分∠BEF,BC=5,求△AEF的周长.【考点三利用角平分线的性质求解】1(2023春·山东威海·七年级统考期末)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,AB= 8,DE=4,AC=6,则S△ABC=()A.14B.26C.56D.28【变式训练】1(2023春·甘肃张掖·八年级校考期末)一块三角形的草坪,现要在草坪上建一个凉亭供大家休息,要使凉亭到草坪三边的距离相等,凉亭的位置应选在()A.三角形三条边的垂直平分线的交点B.三角形三条角平分线的交点C.三角形三条高所在直线的交点D.三角形三条中线的交点2(2023春·山西运城·七年级统考期末)如图,BD平分∠ABC,P是BD上一点,过点P作PQ⊥BC 于点Q,PQ=5,O是BA上任意一点,连接OP,则OP的最小值为.3(2023春·陕西榆林·七年级校考期末)如图,在四边形ABCD中,AD∥BC,∠D=90°,∠DAB的平分线与∠CBA的平分线相交于点P,且点P在线段CD上,∠CPB=30°.(1)求∠PAD的度数;(2)试说明PD=PC.【考点四角平分线的判定】1(2023·全国·八年级假期作业)如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.【变式训练】1(2023·广东惠州·校联考二模)如图,CB=CD,∠D+∠ABC=180°,CE⊥AD于E.(1)求证:AC平分∠DAB;(2)若AE=10,DE=4,求AB的长.2(2023·江苏·八年级假期作业)如图,DE⊥AB于点E,DF⊥AC于点F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)请猜想AB+AC与AE之间的数量关系,并给予证明.【考点五线段的垂直平分线与角平分线的综合问题】1(2023秋·河北保定·八年级统考期末)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.(1)求证:CF=EB.(2)连接CE,求证AD垂直平分CE.(3)若AB=10,AF=6,求CF的长.【变式训练】1(2023秋·河南洛阳·八年级统考期末)如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC 于点F,连接EF.(1)求证:点D在EF的垂直平分线上;(2)若AB+AC=16,S△ABC=24,则DE的长为2(2023春·全国·八年级专题练习)如图,D为△ABC外一点,DG为BC的垂直平分线,分别过点D 作DE⊥AB,DF⊥AC,垂足分别为点E,F,且BE=CF.(1)求证:AD为∠CAB的角平分线;(2)若AB=8,AC=6,求AE的长.3(2023春·全国·八年级开学考试)如图1,射线BD交△ABC的外角平分线CE于点P,已知∠A= 78°,∠BPC=39°,BC=7,AB=4.(1)求证:BD平分∠ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM⊥BC于点M,求MC的长度.【过关检测】一、选择题1(2023春·四川成都·八年级统考期末)如图,在△ABC中,DE是AC边的垂直平分线,分别交BC、AC于D、E两点,连接AD,∠BAD=25°,∠C=35°,则∠B的度数为()A.70°B.75°C.80°D.85°2(2023春·四川达州·八年级统考期末)如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论中,不正确的是()A.OM+ON的值不变B.∠PNM=∠POBC.MN的长不变D.四边形PMON的面积不变二、填空题3(2023春·山东青岛·七年级山东省青岛实验初级中学校考期末)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,AF是△ABC的中线,AB=16,AC=6,DE=5.则△ADF的面积为.4(2023春·湖南衡阳·七年级校联考期末)如图,在锐角三角形ABC中,AB=6,△ABC的面积为18,BD平分∠ABC,若E、F分别是BD、BC上的动点,则CE+EF的最小值为.三、解答题5(2023春·河南商丘·七年级统考阶段练习)如图,∠AOB=40°,OC平分∠AOB,点D,E在射线OA,OC上,点P是射线OB上的一个动点,连接DP交射线OC于点F,设∠ODP=x°.(1)如图1,若DE∥OB.①∠DEO的度数是°,当DP⊥OE时,x=;②若∠EDF=∠EFD,求x的值;(2)如图2,若DE⊥OA,是否存在这样的x的值,使得∠EFD=4∠EDF?若存在,求出x的值;若不存在,说明理由.6(2023春·黑龙江哈尔滨·七年级统考期末)在△ABC中,∠BAC=60°,线段BF、CE分别平分∠ABC、∠ACB交于点G.(1)如图1,求∠BGC的度数;(2)如图2,求证:EG=FG;(3)如图3,过点C作CD⊥EC交BF延长线于点D,连接AD,点N在BA延长线上,连接NG交AC于点M,使∠DAC=∠NGD,若EB:FC=1:2,CG=10,求线段MN的长.7(2023春·八年级课时练习)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF,ON于点B,点C,连接AB,PB.(1)如图1,请指出AB与PB的数量关系,并说明理由.(2)如图2,当P,Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由.8(2023春·浙江宁波·七年级校考期末)角平分线性质定理描述了角平分线上的点到角两边距离的关系,小储发现将角平分线放在三角形中,有一些新的发现,请完成下列探索过程:【知识回顾】(1)如图1,P是∠BOA的平分线上的一点,PE⊥OB于点E,作PD⊥OA于点D,试证:PE=PD【深入探究】(2)如图2,在△ABC中,BD为∠ABC的角平分线交于AC于D点,其中AB+BC=10,AD=2,CD=3,求AB.【应用迁移】(3)如图3,Rt△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P为CE中点,连接PF,若CP=4,S△BFP=20,则AB的长度为.9(2023·贵州遵义·校考三模)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.10(2023春·全国·八年级专题练习)【了解概念】如图1,已知A,B为直线MN同侧的两点,点P为直线MN的一点,连接AP,BP,若∠APM=∠BPN,则称点P为点A,B关于直线l的“等角点”.(1)【理解运用】如图2,在△ABC中,D为BC上一点,点D,E关于直线AB对称,连接EB并延长至点F,判断点B是否为点D,F关于直线AB的“等角点”,并说明理由;(2)【拓展提升】如图2,在(1)的条件下,若∠A=70°,AB=AC,点Q是射线EF上一点,且点D,Q关于直线AC的“等角点”为点C,请利用尺规在图2中确定点Q的位置,并求出∠BQC的度数;(3)【拓展提升】如图3,在△ABC中,∠ABC,∠BAC的平分线交于点O,点O到AC的距离为1,直线l垂直平分边BC,点P为点O,B关于直线l“等角点”,连接OP,BP,当∠ACB=60°时,OP+BP的值为.。
线段的垂直平分线第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为()A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是()A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为()A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.6.如图,AC=AD,BC=BD,则有()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第6题图第7题图7.如图,已知△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是()A.P是AC的垂直平分线与AB的交点B.P是BC的垂直平分线与AB的交点C.P是∠ACB的平分线与AB的交点D.P是以点B为圆心,AC长为半径的弧与边AB的交点8.如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D.求证:点D在AB的垂直平分线上.9.在△ABC中,AB=AC,边AB的垂直平分线与边AC所在的直线相交所得的锐角为50°,则∠C的度数为.10.下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB;②若PA=PB,EA=EB,则直线PE是线段AB的垂直平分线;③若EA=EB,则直线EP是线段AB的垂直平分线;④若PA=PB,则点P在线段AB的垂直平分线上.其中正确的有()A.1个B.2个C.3个D.4个11.如图,在△ABC中,DE是AC的垂直平分线,AC=6 cm,且△ABD的周长为13 cm,则△ABC的周长为()A.13 cm B.19 cmC.10 cm D.16 cm第11题图第12题图12.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=.13.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.第13题图第14题图14.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=39°,则∠AOC=.15.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,DE交AC于点F.求证:点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在()A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是()A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD .过点P 作直线AB 的垂线6.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l 为线段FG 的垂直平分线.下列说法正确的是( )A .l 是线段EH 的垂直平分线B .l 是线段EQ 的垂直平分线C .l 是线段FH 的垂直平分线D .EH 是l 的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE = ;(2)AE EC ;(填“=”“>”或“<”)(3)当AB =3,AC =5时,△ABE 的周长等于 .8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.A 村 ·B 村 ·C 村·9.在平面内,到三点A,B,C距离相等的点()A.只有一个B.有两个C.有三个或三个以上D.有一个或没有10.如图,在△ABC中,∠BAC=90°,AB>AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则()A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.参考答案:第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为(D)A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是(B)A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为(B)A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为30°.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.证明:∵DE是AB的垂直平分线,∴EA=EB.∴∠EAB=∠B.∵∠C=90°,∴∠CAB+∠B=90°.又∵∠AED+∠EAB=90°,∴∠CAB=∠AED.6.如图,AC=AD,BC=BD,则有(A)A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第6题图第7题图7.如图,已知△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是(B)A.P是AC的垂直平分线与AB的交点B .P 是BC 的垂直平分线与AB 的交点 C .P 是∠ACB 的平分线与AB 的交点D .P 是以点B 为圆心,AC 长为半径的弧与边AB 的交点8.如图,在△ABC 中,∠C =90°,∠A =30°,BD 平分∠ABC 交AC 于点D.求证:点D 在AB 的垂直平分线上.证明:∵∠C =90°,∠A =30°, ∴∠ABC =90°-30°=60°. ∵BD 平分∠ABC , ∴∠ABD =12∠ABC =30°.∴∠A =∠ABD. ∴DA =DB.∴点D 在AB 的垂直平分线上.9.在△ABC 中,AB =AC ,边AB 的垂直平分线与边AC 所在的直线相交所得的锐角为50°,则∠C 的度数为20°或70°.10.下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ;②若PA =PB ,EA =EB ,则直线PE 是线段AB 的垂直平分线;③若EA =EB ,则直线EP 是线段AB 的垂直平分线;④若PA =PB ,则点P 在线段AB 的垂直平分线上.其中正确的有(C)A .1个B .2个C .3个D .4个11.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6 cm ,且△ABD 的周长为13 cm ,则△ABC 的周长为(B)A .13 cmB .19 cmC .10 cmD .16 cm第11题图 第12题图12.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,将AB 边沿AD 折叠,发现B 点的对应点E 正好在AC 的垂直平分线上,则∠C =30°.13.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为76.第13题图 第14题图14.(2020·南京)如图,线段AB ,BC 的垂直平分线l 1,l 2相交于点O.若∠1=39°,则∠AOC =78°.15.如图,在△ABC 中,∠ACB =90°,D 是BC 延长线上一点,E 是BD 的垂直平分线与AB 的交点,DE 交AC 于点F.求证:点E 在AF 的垂直平分线上.证明:∵E 是BD 的垂直平分线上的一点, ∴EB =ED. ∴∠B =∠D. ∵∠ACB =90°,∴∠A=90°-∠B,∠CFD=90°-∠D.∴∠CFD=∠A.又∵∠AFE=∠CFD,∴∠AFE=∠A.∴EF=EA.∴点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.解:(1)证明:∵AB=AC,∴点A在线段BC的垂直平分线上.∵DB=DC,∴点D在线段BC的垂直平分线上.∴AD垂直平分BC.(2)选择A,证明:由(1),得AD⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠CAF=∠ADE.∴∠BAF=∠ADE.∴DE=AE.选择B,线段DE,AC,BE之间的等量关系为DE=BE+AC.证明:由(1),得AF⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠EDA=∠CAF.∴∠BAF=∠EDA.∴AE=DE.∵AE=EB+AB,AB=AC,∴DE=BE+AC.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定(D)A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形(C)A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是(D) A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在(A)A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是(D)A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD.过点P作直线AB的垂线6.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是(A)A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE =90°;(2)AE =EC ;(填“=”“>”或“<”) (3)当AB =3,AC =5时,△ABE 的周长等于7.8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.解:已知:A ,B ,C 三点不在同一直线上. 求作:作一点P ,使PA =PB =PC. 如图所示,点P 即为所求的点.9.在平面内,到三点A ,B ,C 距离相等的点(D) A .只有一个B .有两个C .有三个或三个以上D .有一个或没有10.如图,在△ABC 中,∠BAC =90°,AB >AC.按下列步骤作图:①分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是(C)A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则(B)A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案③.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).解:作法:(1)作线段AD=a;(2)过点D作直线MN⊥AD于点D;(3)以点A为圆心,b为半径画弧,交MN于B,C两点,连接AB,AC,△ABC即为所求,如图所示.14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.解:(1)∵DM,EN分别垂直平分AC和BC,∴AM=CM,CN=BN.∴∠A=∠ACM,∠B=∠BCN.∴∠MCN=180°-(∠CMN+∠CNM)=180°-(2∠A+2∠B)=180°-2(180°-∠ACB)=60°.(2)∵AM=CM,BN=CN,∴△CMN的周长为CM+MN+CN=AM+MN+BN=AB.∵△CMN的周长为15 cm,∴AB=15 cm.(3)∵∠MFN=70°,∴∠MNF+∠NMF=180°-70°=110°.∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠NMF+∠MNF=110°.∴∠A+∠B=90°-∠AMD+90°-∠BNE=70°.又∵∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°-2(∠A+∠B)=40°.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.解:(1)设∠PAQ=x,∠CAP=y,∠BAQ=z,∵MP和NQ分别垂直平分AB和AC,∴AP=PB,AQ=CQ.∴∠B=∠BAP=x+z,∠C=∠CAQ=x+y.∵∠BAC=80°,∴∠B+∠C=100°,即x+y+z=80°,x+z+x+y=100°.∴x=20°.∴∠PAQ=20°.(2)∵△APQ周长为12,∴AQ+PQ+AP=12.∵AQ=CQ,AP=PB,∴CQ+PQ+PB=12,即BC+2PQ=12.∵BC=8,∴PQ=2.21。
北师大版8年级下册第1章第3节线段的垂直平分线(1)教案一、教学目标:1.能够运用公理和所学过的定理证明线段的垂直平分线的性质定理和判定定理.2.能够利用尺规作已知线段的垂直平分线.3.经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.二、教学过程:<一>创设情境,引入新课师:(课件演示)如图,A、B表示两个仓库,要在一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?生:作线段AB的垂直平分线,码头应建在线段AB的垂直平分线与河岸边的交点上.师:语言非常准确.这节课我们就来研究线段的垂直平分线.(板书课题——线段的垂直平分线)师:刚才这位同学说码头应建在线段AB的垂直平分线与河岸边的交点上,谁能说出这样做的道理吗?生:线段垂直平分线上的点到这条线段的两个端点的距离相等.师:非常好,这是我们七年级时学过的一句话。
还记得当时我们是怎样得到的吗?生:不记得了.师:那我来帮大家回忆一下。
(教师通过演示折纸过程,验证线段垂直平分线的性质)师:七年级时我们用折纸的方法得到了“线段垂直平分线上的点到这条线段的两个端点的距离相等”.同学们知道这是不够的,还必须利用公理及已学过的定理、推论证明它.这节课我们一起用所学的公理、定理来证明线段的垂直平分线的性质定理.教师板书:定理线段垂直平分线上的点到线段两个端点的距离相等.<二>、自主探究,感受新知1.线段垂直平分线性质定理的证明师:现在就请同学们自己思考证明的思路和方法,并尝试写出证明过程.(学生画图,写出已知、求证. 证明方法和过程对于学生来说不是很困难的,可以找程度比较差的同学回答)生:口答已知、求证、证明.师:课件演示.已知:如图,直线MN ⊥AB ,垂足是C ,且AC =BC ,P 是MN 上的点.求证:PA =PB .N A PB CM证明:∵MN ⊥AB , ∴∠PCA =∠PCB =90°.∵AC =BC ,PC =PC , ∴△PCA ≌PCB(SAS).∴PA =PB (全等三角形的对应边相等).师:若直线MN 上还有一点Q ,根据线段垂直平分线性质定理,能得出什么结论?生:QA =QB.(教师在图形中找出几个不同位置的点P ,学生分别说出结论,就是为了让学生熟悉图形,能熟练应用垂直平分线性质定理找出相等的线段)师:从图形中,你还能找出哪些相等的线段、相等的角呢?生:∠ A =∠B ,∠CPA =∠CPB .(挖掘基本图形中其它的等量关系,使学生认识到学习知识不要局限于定理,为以后应用线段垂直平分线的性质定理进行证明、计算打下基础.)2.线段垂直平分线判定定理的证明师:你能写出上面这个定理的逆命题吗?生: 思考.师:这个命题不是“如果……那么……”的形式,要写出它的逆命题,可以先将原命题写成“如果……那么……”的形式,逆命题就容易写出.谁来分析一下原命题的条件和结论?生:原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点到线段两个端点的距离相等”. 师:有了这位同学的精彩分析,逆命题就很容易写出来.生:如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.师:谁能把它描述得更简捷?生:到线段两个端点的距离相等的点在这条线段的垂直平分线上.师:当我们写出逆命题时,就应想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明,这个命题是真还是假呢?生:真命题.师:要证明这一定理,先要写出已知、求证。
线段的垂直平分线---知识讲解(提高)【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题. 【要点梳理】要点一、线段的垂直平分线 1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线. 要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了. (2)线段的垂直平分线的实质是一条直线. 要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理 线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合. 要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心. 要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1.如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20【思路点拨】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ ABC的周长.【答案】C;【解析】∵在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.【总结升华】此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.举一反三:【变式】阅读“作线段的垂直平分线”的作法,完成填空及证明.已知:线段AB,要作线段AB的垂直平分线.作法:(1)分别以A 、B 为圆心,大于12AB 的同样长为半径作弧,两弧分别交于点C 、D ; (2)作直线CD .直线CD 即为所求作的线段AB 的垂直平分线. 根据上述作法和图形,先填空,再证明.已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=___=___. 求证:CD ⊥AB ,CD 平分AB . 证明:【答案】已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=BC=BD . 求证:CD ⊥AB ,CD 平分AB . 证明:CD 与AB 交于点E . ∵在△ACD 和△BCD 中,,AC BC AD BD CD CD =⎧⎪=⎨⎪=⎩∴△ACD ≌△BCD (SSS ). ∴∠1=∠2. ∵AC=BC ,∴△ACB 是等腰三角形. ∴CE ⊥AB ,AE=BE .即 CD ⊥AB ,CD 平分AB .2.(2015秋•和县期中)如图,在△ABC 中,AB 边的垂直平分线l 1交BC 于点D ,AC 边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC 的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.【思路点拨】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.【答案与解析】解:(1)∵l1是AB边的垂直平分线,∴DA=DB,∵l2是AC边的垂直平分线,∴EA=EC,BC=BD+DE+EC=DA+DE+EA=6cm;(2)∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=16cm,∴OA=0B=OC=5cm;(3)∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=60°.【总结升华】本题考查的是线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.举一反三:【变式】如图,在△ABC中,已知BC=7,AC=16,AB的垂直平分线交AB于点D,交AC于点E,求△BEC的周长.【答案】∵DE是AB的垂直平分线,∴BE=AE,∴BE+EC=AE+EC=AC.∴△BEC的周长=BE+EC+BC=AC+BC=23.要点二、线段的垂直平分线的逆定理3.(2016春•鄄城县期中)如图,在△ABC中,AD是高,在线段DC上取一点E,使DE=BD,已知AB+BD=DC.求证:E点在线段AC的垂直平分线上.【思路点拨】根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.【答案与解析】证明:∵AD是高,∴AD⊥BC,又∵BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又∵AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.【总结升华】本题考查了线段的垂直平分线的应用,掌握线段垂直平分线的性质和判定定理是解题的关键.类型三、线段的垂直平分线定理与逆定理的综合应用4.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.【思路点拨】应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB 三种情况,根据三角形的性质计算即可得解.【答案与解析】应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=33DB=36AB,与已知PD=12AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=12AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,2222534AC BC AB∴=-=-=①若PB=PC,设PA=x,则x2+32=(4-x)2,∴x=78,即PA=78,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或78.【总结升华】考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.举一反三:【变式】在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠BAC=110°,则∠EAG=________.【答案】40°;解:∠B=x,∠c=y,则,∠B+∠C=180°-∠BAC,即x+y=70°①,∵DE、GF分别是AB、AC的垂直平分线,∴BE=AE,AG=CG,∴∠BAE=∠B=x,∠CAG=∠C=y,∵∠BAE+∠EAG+∠GAC=∠BAC,∴x+y+∠EAG=110°②,联立①②得,∠EAG=110°-70°=40°.故答案为:40°.要点四、尺规作图5.如图,每个格的单位长度是1,△ABC的外心坐标是 (_____________).【思路点拨】可分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC 的外心,继而可求得答案.【答案与解析】分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC的外心,∴△ABC的外心坐标是(-2,-1).故答案为:(-2,-1).【总结升华】考察尺规作图的能力和三角形的外心的定义.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)【答案】解:如图,点P就是要找的点.。
常州市中天实验学校八年级数学学案 NO.7 线段垂直平分线的性质与判定复习 班级: 姓名: 一.学习目标 复习回顾线段垂直平分线的性质与判定,并能应用性质与判定解决相关问题; 二.自学指导 看书P51-53页,回答下列问题: 1. 线段是 图形,线段的 是它的对称轴; 2. ①线段的垂直平分线概念:经过某一条线段的中点, 并且垂直于这条线段的直线,叫做这条线段的垂直平分线, 简称“中垂线” . ②线段垂直平分线的性质: 线段垂直平分线上的点到 的距离相等. ∵直线l是线段AB的垂直平分线,点P在l上 ∴
③线段垂直平分线的判定: 到 距离相等的点在线段垂直平分线上; ∵PA=PB ∴点 在线段AB的 上
三.自学检测 1.如图,已知在△ABC中AB的垂直平分线DM交BC于点D,点E为CD中点,∠CAE=25°,∠ACB=65°,若BD=3,CE=1,则AC= ,若连接AD,△CAD的周长为 .
2.利用以上网格图在其中找一点O, 使得AO=BO=CO.
MEDCB
A
CBA
OlP
BA
BA
P 3.如图,在△ABC中,边AB、AC的垂直平分线m,n相交于点O.求证:点O到△ABC三个顶点的距离相等.
变式:判断点O是否在BC的垂直平分线上并说明理由. 4.如图,在四边形ABCD中,AD∥BC,对角线AC的垂直平分线分别与AD、BC相交于点E、F,连接AF.求证:AE=AF.
如图,∠AOB内有一点P,分别作出点P关于OA、OB的对称点P1、P2, 连接P1P2,交OA于点M,交OB于点N,连接PM、PN, 当P1P2=12时,△PMN的周长为 .
拓展:如图,∠AOB内有一点P,分别在OA、OB上求作点E、F,使得△PEF的周长最小.
nm
CB
A
O
OED
CFBA
PAOB
NBO
AM
P2
P1
P 编号7 线段垂直平分线的性质与判定复习 2016.9.9 班级: 姓名: 1.到三角形的三个顶点距离相等的点是( ) A.三条角平分线的交点 B.三条中线的交点 C.三条高的交点 D.三条边的垂直平分线的交点 2.如图,在△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.则△AEG的周长为___________.
第04讲 线段的垂直平分线和角平分线(8类热点题型讲练)1.理解线段垂直平分线,角平分线的概念;2.掌握线段垂直平分线的性质定理及逆定理;3.能运用线段的垂直平分线的有关知识进行证明或计算;4.能够利用尺规作出三角形的垂直平分线和角平分线;5.会证明和运用“三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等”.角平分线的性质定理和判定定理的灵活运用.知识点01 线段的垂直平分线ìíî线段垂直平分线的:线段垂直平分线上的任意一点到这条线段两端点的距离相等;线段垂直平分线的:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上性质定理判.定定理知识点02 角的平分线ìïíïî角的平分线的:在角的平分线上的点到这个角两边的距离相等;角的平分线的:在一个角的内部(包括顶点)且到角两边距离相等的点,在这个角的平分线上.性质定理性质定理题型01 线段的垂直平分线的性质(1)求证:BE AC =(2)若35B Ð=°,则BAC Ð=【答案】(1)见解析(2)75°∵AD BC ^于点D ,且D 为线段∴AD 垂直平分CE ,∴AC AE =,∵EF 垂直平分AB ,∵AD BC ^,∴90ADB Ð=°,∴903555BAD Ð=°-°=°,∴553520EAD Ð=°-°=°,∵AC AE =,AD BC ^,∴20EAD CAD Ð=Ð=°,∴75BAC BAE EAD CAD Ð=Ð+Ð+Ð=°.故答案为:75°.【变式训练】1.(2023下·全国·八年级专题练习)如图,在ABC V 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若CMN V 的周长为15cm ,求AB 的长;(2)若70MFN Ð=°,求MCN Ð的度数.【答案】(1)15cmAB =(2)40MCN Ð=°【分析】此题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,解题的关键是熟练掌握以上知识的应用及整体思想的应用.(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM CM =,BN CN =,然后求出CMN V 的周长AB =;(2)根据三角形的内角和定理列式求出 MNF NMF Ð+Ð,再求出A B ÐÐ+,根据等边对等角可得A ACM Ð=Ð,B BCN Ð=Ð,然后利用三角形的内角和定理列式计算即可得解;【详解】(1)解:∵DM 、EN 分别垂直平分AC 和BC ,∴AM CM =,BN CN =,∴CMN V 的周长CM MN CN AM MN BN AB =++=++=,∵CMN V 的周长为15cm ,∴15cm AB =;(2)解:∵70MFN Ð=°,∴18070110MNF NMF Ð+Ð=°-°=°,∵AMD NMF Ð=Ð, BNE MNF Ð=Ð,∴110AMD BNE MNF NMF Ð+Ð=Ð+Ð=°,∴909018011070A B AMD BNE Ð+Ð=°-Ð+°-Ð=°-°=°,∵AM CM =,BN CN =,∴A ACM Ð=Ð,B BCN Ð=Ð,∴()180218027040MCN A B Ð=°-Ð+Ð=°-´°=°.2.(2023上·全国·八年级专题练习)如图,在ABC V 中,EF 垂直平分AC ,交AC 于点F ,AD BC ^于点D ,BD DE =,连接AE .(1)若AE 平分BAC Ð,求C Ð的度数;(2)若ABC V 的周长为13cm ,5cm AC =,求CD 的长.【答案】(1)36°(2)4cm【分析】本题主要考查了等腰三角形的性质、角平分线、线段垂直平分线、三角形内角和定理等,解答本题的关键在于熟练掌握垂直平分线上的点到线段两端的距离相等及等腰三角形的性质本题即可求解.【详解】(1)解:AD BC BD DE ^Q ,=,EF 垂直平分AC ,∴AB AE EC ==,C CAE \ÐÐ=,∵AE 平分BAC Ð,∴BAE EAC ÐÐ=,∵AD BC ^于点D ,B D =D E ,∴AB AE =,∴2B AEB C EAC C ÐÐÐ+ÐÐ===,根据三角形内角和等于180°可得,180B AEB BAE Ð+Ð+а=,22180C C C \Ð+Ð+а=,36C \а=.(2)ABC QV 周长13cm ,5cm AC =,∴8cm AB BC +=,∴8cm AB BE EC ++=,即,228cm DE EC +=,∴4cm DE EC +=,∴4cm DC DE EC +==.题型02 线段的垂直平分线的判定(1)求证:AD (2)已知ABC Ð【详解】(1)证明:∴点A 在BC AD \垂直平分(2)解:V 【变式训练】1.如图,ABC V 为等边三角形,AD AB ^,4AD DC ==,AC BD ,相交于点E .(1)求证:BD 垂直平分AC ;(2)求BE 的长;(3)若点F 为BC 的中点,点P 在BD 上,则PC PF +的最小值为______.(直接写出结果).【详解】(1)证明:∵ABC V 是等边三角形,∴AB BC =;∵,,AB BC AD CD BD BD ===,∴()ABD CBD SSS V V ≌,∴ADB CDB Ð=Ð,∵,,AD DC ADB CDB DE DE =Ð=Ð=,∴()ADE CDE SAS V V ≌,∴,90AE EC AED DEC =Ð=Ð=°,∴BD 垂直平分AC ;(2)解:∵DB AC ^,∴BE 平分ABC Ð,∵60ABC BAC Ð=Ð=°,∴30ABD Ð=°,∵90BAD Ð=°,∴30DAE Ð=°,∵4=AD ,∴8,2BD DE ==,∴6BE BD DE =-=;(3)解:连接AF 交BD 于点P ,连接PC ,∵BD 是AC 的垂直平分线,∴A 、C 关于BD 对称,(1)求证:DB DE=;(2)过点A作AF BC∥,交ED延长线于点F,交①若12EM=,则BD= .题型03 线段的垂直平分线的实际应用【例题】如图,地面上有三个洞口A 、B 、C ,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A 、B 、C 三个点的距离相等),尽快抓到老鼠,应该蹲守在( )A .ABC V 三边垂直平分线的交点B .ABC V 三条角平分线的交点C .ABC V 三条高所在直线的交点D .ABC V 三条中线的交点【答案】A 【详解】解:∵猫所在的位置到A 、B 、C 三个点的距离相等,∴猫应该蹲守在ABC V 三边垂直平分线的交点处;故选A .【变式训练】1.如图,某一个城市在一块空地新建了三个居民小区,它们分别为、、A B C ,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等.这所中学应建在( )A .ABC V 的三条中线的交点B .ABC V 三边的垂直平分线的交点C .ABC V 三条角平分线的交点D .ABC V 三条高所在直线的交点【答案】B 【详解】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则学校应建在ABC V 三条边的垂直平分线的交点处.故选:B .题型04 线段的垂直平分线的尺规作图【例题】如图,已知在ABC V 中,7AC =.(1)用尺规作BC 边的垂直平分线;(保留作图痕迹,不写作法)(2)BC 边的垂直平分线分别交AC BC 、于点D 、E ,连接BD ,若ABD △的周长是10,求AB .【详解】(1)解:如图,DE 即为所求;;(2)解:∵DE 是BC 边的垂直平分线,∴BD DC =,∵7AC =,∴7AD DC AD BD +=+=,∵ABD △的周长是10,∴10AB BD AD ++=.∴3AB =.【变式训练】1.某公司招收职工的试卷中有道题:如图,有三条两两相交的公路,为便于及时进行监控,防止违章,这个监控仪器应安装在什么位置可以使离三个路口的交叉点的距离相等你能找到这个监控安装的位置吗?(尺规作图,不写过程,保留作图痕迹)【详解】解:如图,点P 这个监控安装的位置..2.如图,已知点A 、点B 以及直线L .(1)用尺规作图的方法在直线L 上求作一点P ,使PA PB =.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,连接AP BP ,,若90APB Ð=°,过点A 作AM L ^于点M ,过点B 作BN L ^于点N .求证:MN AM BN=+【详解】(1)解:点P 如图所示,;(2)解:∵AM L ^,BN L ^,90APB Ð=°,∴90MAP APM NPB Ð=°-Ð=Ð,∵PA PB =,∴()AAS MAP NPB ≌△△,∴AM PN =,PM BN =,∴MN PN PM AM BN =+=+.题型05 角平分线的性质定理【例题】(2023上·江苏连云港·八年级校考阶段练习)已知:如图AC 平分BAD Ð,CE AB CF AD ^^,,垂足分别为E 、F ,且BC CD =.(1)求证:BCE DCF △≌△;(2)若106AD BE ==,,求AB 的长.【答案】(1)见解析(2)22【分析】本题考查了角平分线的性质,全等三角形的判定与性质,本题中求证BCE DCF △≌△和Rt Rt ACF ACE @△△是解题的关键.(1)先证明CE CF =,再根据HL 即可证明BCE DCF △≌△;(2)先求出6DF BE ==,再根据HL 即可证明Rt Rt ACF ACE ≌△△,进而可求出AB 的长.【详解】(1)AC Q 平分BAD Ð,CE AB ^于E ,CF AD ^于F ,90CFD \Ð=°,90CEB Ð=°,CE CF =,在Rt BCE V 和Rt DCF V 中,CE CF BC CD =ìí=î,Rt Rt (HL)BCE DCF \△≌△;(2)∵BCE DCF △≌△,6BE =,∴6DF BE ==.∵10AD =,∴10616AF =+=.在Rt ACF V 和Rt ACE V 中,CF CE AC AC=ìí=î,Rt Rt (HL)ACF ACE \△≌△,∴16AE AF ==,∴16622AB =+=.【变式训练】1)求证:AE 是DAB Ð2)已知4AE =,DE 【答案】(1)见解析2)12【分析】本题主要考查了三角形全等的判定和性质,角平分线的性质定理;(1)根据角平分线的性质得出∵90C Ð=°,∴EF AD ^,∵AE 是DAB Ð的平分线,∴EF EC =,(1)求证:BE CF =;(2)若67AF BC ==,,则ABC V 【答案】(1)证明见解析(2)19可.【详解】(1)证明:连接CD BD ,,∵D 在BC 的中垂线上,∴BD CD =,∵DE AB ^,DF AC ^,AD 平分BAC Ð,∴DE DF =,90BED CFD Ð=Ð=°,∴()Rt Rt HL BDE CDF V V ≌,∴BE CF =;(2)解:∵AD 平分BAC Ð,∴∠∠E A D FA D =,∵DE AB ^,DF AC ^,∴90AED AFD Ð=Ð=°,又∵AD AD =,∴()AAS AED AFD V V ≌,∴AE AF 6==,由(1)可知BE CF =,∴ABC V 的周长为:66719AC AB BC AF CF AE BE BC AF AE BC ++=-+++=++=++=,故答案为:19.题型06 角平分线的判定定理【例题】如图,A ,B 两点分别在射线OM ,ON 上,点C 在MON Ð的内部且CA CB =,CD OM ^,CE ON ^,垂足分别为D ,E ,且AD BE =.(1)求证:OC 平分MON Ð;(2)如果12AO =,4BO =,求OD 的长.【详解】(1)证明:由题意得:CD OM ^,CE ON ^,\90CDA CEB Ð=Ð=°,在Rt ACD △和Rt BCE V 中,AC BC AD BE=ìí=î,\()Rt Rt HL ACD BCE V V ≌,\CD CE =,Q CD OM ^,CE ON ^,\OC 平分MON Ð.(2)在Rt ODC △和Rt OEC △中,CD CE OC OC =ìí=î,\()L Rt Rt H ODC OEC ≌V V ,\OD OE =,设BE x =,Q 4BO =,\4OE OD x ==+,Q AD BE x ==,\4212AO OD AD x =+=+=,\4x =,\448OD =+=.【变式训练】1.如图,DE AB ^于E ,DF AC ^于F ,若,BD CD BE CF ==.(1)求证:AD 平分BAC Ð;(2)写出+AB AC 与AE 之间的等量关系,并说明理由.【详解】(1)证明:∵DE AB ^∴90E DFC Ð=Ð=°,(1)求证:OC 是AOB Ð的平分线;(2)若30AOB Ð=°,23PF =,PF 【详解】(1)证明:在Rt PDF V 和题型07 角平分线性质的实际应用【例题】三条公路将、、A B C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )A .三条高的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点【答案】C 【详解】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在A B C ÐÐÐ、、的角平分线的交点处,故选:C .【变式训练】1.如图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有( )A .3个B .4个C .5个D .1个【答案】B 【详解】解:如图所示,分别作直线交点处的角平分线,根据角平分线的性质,可得点1234,,,P P P P 共4个点,故选:B .题型08 作角平分线(尺规作图)【例题】已知:如图,在ABC V 中,AB AC =,2B A Ð=Ð.(1)求作ABC Ð的平分线,交AC 于点P .(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求ABP Ð的角度?【详解】(1)解:以点B 为圆心,适当长为半径画弧交BA ,BC 于两点,再分别以两点为圆心,适当长为半径画弧交于一点,连接点B 与该点所在直线交AC 于点P ,如图所示:BP 即为所求;(2)解:∵AB AC =,1.如图所示,某县计划在张村、李村之间建一座定点医疗站P,张、李两村坐落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定点P的位置.【详解】解:如图所示,点P即为所要求作的点.一、单选题A.4cm B.5cm【答案】C【分析】本题考查的知识点是垂直平分线的性质、等腰三角形的性质、含Q是AB的垂直平分线,DEAD DB cm\==,12\Ð=Ð=°,15DAE BA .3B .4C .5D .6【答案】A 【分析】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.过点D 作DE OB ^于E ,根据角平分线上的点到角的两边距离相等可得DP DE =,再根据垂线段最短解答.【详解】解:如图,过点D 作DE OB ^于E ,OC Q 是AOB Ð的角平分线,DP OA ^,DP DE \=,由垂线段最短可得DQ DE ³,4DP =Q ,4DQ \³.故选:A .3.(2023上·江苏无锡·八年级校考阶段练习)在联合会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC V 的( )A .三边中线的交点B .三条角平分线的交点C .三边中垂线的交点D .三边上高的交点【答案】C【分析】本题考查线段垂直平分线的性质定理的逆定理,熟练掌握垂直平分线的性质是解题的关键,利用要使游戏公平,凳子就需要放在到A 、B 、C 三名选手距离相等的位置即可得到答案.【详解】解:由题可得:要使游戏公平,凳子就需要放在到A 、B 、C 三名选手距离相等的位置,则凳子所在的位置是ABC V 的外接圆圆心,A .16°B .26【答案】B 【分析】本题考查了线段垂直平分线的性质,直角三角形斜边上的中线等于斜边的一半,三角形内角和定理, 根据90ACB Ð=°,直线116BDC Ð=°,结合CDE ÐA .①②【答案】D∵DM 是BC 的垂直平分线,∴DB DC =,在Rt BED △和Rt CFD V DE DF BD DC=ìí=î,【答案】80°/80度【分析】本题主要考查了线段垂直平分线的性质,等腰三角形的性质.根据线段垂直平分线的性质可得CD BD =,从而得到BCD B Ð=Ð的性质可得50A ADC Ð=Ð=°,即可求解.【答案】3【分析】此题考查了角平分线的性质定理,作DH AB ^于点H ,先求出即可得到点D 到的距离.∵8BC =,5BD =,∴3CD BC BD =-=,∵90C Ð=°,∴DC AC ^,【答案】20【分析】本题考查垂直平分线画图及性质,三角形周长公式.根据题意可知利用垂直平分线可知AD 【详解】解:∵分别以点【答案】50【分析】本题考查了角的等分线计算,正确理解定义是解题的关键.设分线的性质,角的平分线的判定,三角形内角和定理计算即可.【详解】设3ABC x Ð=,Ð∵点M N 、是ABC Ð与Ð∵点M N 、是ABC Ð与ACB Ð∴BN 平分MBC Ð,CN 平分∴,NE NG NF NG ==,∴NE NF =,∴MN 平分BMC Ð,150BMN BMC Ð=Ð=°,【答案】 15° 6【分析】本题考查了角平分线的判定与性质、三角形全等的判定与性质、三角形内角和定理,熟练掌握以上知识点,证明三角形全等是解此题的关键.(1)先证明Rt Rt BDE △≌△11.(2023上·河南南阳·八年级校考阶段练习)如图,在ABC V 中,AC 边的垂直平分线分别交BC AC 、于点E 、F ,连接AE ,作AD BC ^于点D ,且D 为BE 的中点.(1)试说明:AB CE =;(2)若32C Ð=°,求BAC Ð的度数.【答案】(1)见解析(2)84°【分析】本题主要考查的是三角形内角和定理,三角形外角的性质,线段垂直平分线的性质.(1)根据等腰三角形的判定得出AB AE =,根据垂直平分线的性质得出AE CE =,等量代换即可得出结论;(2)根据等边对等角得出32C EAC Ð=Ð=°,再根据三角形的外角的性质得出64AEB C EAC Ð=Ð+Ð=°,再根据等边对等角得出64B AEB Ð=Ð=°,根据三角形内角和定理得出52BAE Ð=°,进而得出答案.【详解】(1)∵D 为BE 的中点,∴BD DE =,∵AD BC ^,∴AB AE =,∵EF 是AC 的垂直平分线,∴AE CE =,∴AB CE =;(2)∵32C AE CE Ð=°=,,∴32C EAC Ð=Ð=°,∴64AEB C EAC Ð=Ð+Ð=°,∵AB AE =,∴64B AEB Ð=Ð=°,∴180180646452BAE B AEB Ð=°-Ð-Ð=°-°-°=°,∴523284BAC BAE EAC Ð=Ð+Ð=°+°=°.12.(2023上·河南周口·八年级校联考阶段练习)如图,已知ABC V 中,90C Ð=°,按下列要求作图(尺规作图,保留作图痕迹,不必写作法).(1)作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ;(2)连接CF ;(3)作BFC Ð的平分线,交BC 于点G .【答案】(1)见解析(2)见解析(3)见解析【分析】本题考查了作线段的垂直平分线,作角平分线,掌握基本作图是解题的关键.根据题意作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ,连结CF ,作BFC Ð的平分线,交BC 于G .【详解】(1)解:如图,(2)解:如图,(3)解:如图,13.(2023上·河南信阳·八年级统考期中)如图,在ABC V 中,D 是BC 上一点,DF AC ^于点F ,连接EF ,AD 垂直平分EF .(1)求证:AD 是BAC Ð的平分线;(2)若ABC V 的周长为18,ABC V 的面积为24,6BC =,求DE 的长.【答案】(1)见解析(2)4【分析】本题主要考查了垂直平分线的性质,角平分线的判定定理,熟知垂直平分线的性质是解题的关键.(1)根据垂直平分线的性质得到DE DF =,然后利用角平分线的判定定理即可证明结论;(2)首先求出12AB AC +=,然后根据等面积法进行求解即可.【详解】(1)证明:∵AD 垂直平分EF ,(1)试问:BF 与CG 的大小如何?证明你的结论.(2)若104AB AC ==,,试求【答案】(1)BF CG =,证明见解析(2)7【分析】本题考查角平分线的性质,垂直平分线的性质,全等三角形的判定和性质:Q AE 平分BAC Ð,EF AB ^\EF EG =,Q D 为BC 的中点,DE BC ^\DE 垂直平分BC ,\EB EC =,在Rt BFE △和Rt CGE △中,∵AB AC =,∴()111809022B A A Ð=°-Ð=°-Ð∵MN 为AB 的垂直平分线,∴90BNM Ð=°,(1)若120ACB Ð=°,则MCN Ð的度数为 (2)若MCN a Ð=,则MFN Ð的度数为 ;(用含(3)连接FA FB FC 、、,CMN V 的周长为6cm 【答案】(1)60°(2)1902a °-Q DM EN ,分别垂直平分AC 和BC ,MA MC \=,NB NC =,Q CMN V 的周长为6cm ,6cm MC NC MN \++=,6cm MA NB MN \++=,即6cm AB =,Q FAB V 的周长为14cm ,14cm FA FB AB \++=,8cm FA FB \+=,Q DF EF ,分别垂直平分AC 和BC ,FA FC \=,FB FC =,28cm FC \=,4cm FC \=.17.(2023上·湖南衡阳·八年级校考期末)如图,90BAC Ð=°,CD 平分ACB Ð交AB 于D ,CM CD ^,点M 在AB 的垂直平分线上,AM 交BC 于O ,MG AC ^于点G ,MF BC ^于点F .(1)求证:BCM GCM Ð=Ð;(2)若2CG =,求BC AG -的长;(3)若点D 在BC 的垂直平分线上,试判断ABM V 的形状,并说明理由.【答案】(1)见解析;(2)2;(3)ABM V 是等边三角形,理由见解析.【分析】(1)由角平分线的性质可得ACD BCD Ð=Ð,由余角的性质可得结论;(2)由“AAS ”可证FCM GCM ≌V V ,可得MF MG =,2CF CG ==,由“HL ”可证Rt Rt BFM AGM ≌V V ,可得BF AG =,即可求解;(3)由线段垂直平分线的性质可求30DBC DCB ACD Ð=Ð=Ð=°,由等腰三角形的性质可求30MAG Ð=°,由三角形内角和定理可求解.【详解】(1)证明:∵CD 平分ACB Ð,∴ACD BCD Ð=Ð,∵CM CD ^,∴90DCM Ð=°,∴90ACD MCG Ð+Ð=°,90DCB BCM Ð+Ð=°,∴BCM GCM Ð=Ð;(2)∵BCM GCM Ð=Ð,90MFC MGC Ð=Ð=°,CM CM =,∴()AAS FCM GCM ≌V V ,∴MF MG =,2CF CG ==,∵点M 在AB 的垂直平分线上,∴AM BM =,且FM MG =,∴()Rt Rt HL BFM AGM ≌V V ,∴BF AG =,CBM MAG Ð=Ð,∴2BC AG BC BF CF -=-==;(3)∵点D 在BC 的垂直平分线上,∴BD CD =,∴DBC DCB Ð=Ð,且ACD DCB Ð=Ð,90DBC DCB ACD Ð+Ð+Ð=°,∴30DBC DCB ACD Ð=Ð=Ð=°,∵AM BM =,∴30MAB MBA ABC CBM CBM Ð=Ð=Ð+Ð=°+Ð,∵CBM MAG Ð=Ð,∴30MAB MAG Ð=°+Ð,∵90MAB MAG BAC Ð+Ð=Ð=°,∴30MAG Ð=°,∴60MAB MBA Ð=Ð=°,∴60AMB Ð=°,∴ABM V 是等边三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,线段垂直平分线的性质等知识,证明全等三角形是本题的关键.18.(2023上·新疆和田·八年级统考期末)数学活动:如图1,角的平分线的性质的几何模型,已知OP 平分AOB Ð,PA OA ^于点A ,PB OB ^于点B .(1)探究:如图2,点M 是OP 上任意一点(不与O 、P 重合),连接MA 、MB ,问题:请判断MA 与MB 的数量关系,并证明你的结论.(2)如图3,连接AB .问题:①OP 垂直平分AB 吗?请说明理由.②若30AOP Ð=°,6AB =,求AOB V 的周长.【答案】(1)MA MB =,证明见解析(2)①OP 垂直平分AB ,理由见解析;②18【分析】(1)证明()AAS OAP OBP V V ≌,则OA OB =,证明()SAS AOM BOM V V ≌,进而可得MA MB =.(2)①如图3,记AB 与OP 的交点为C ,由(1)可知()AAS OAP OBP V V ≌,则OA OB =,证明()AAS OAP OBP V V ≌,则AC BC =,90ACO BCO Ð=Ð=°,进而可得OP 垂直平分AB ;②由题意知60AOB Ð=°,可证AOB V 是等边三角形,则6OA OB AB ===,然后求AOB V 的周长即可.【详解】(1)解:MA MB =,证明如下:∵OP 平分AOB Ð,PA OA ^,PB OB ^,∴AOP BOP Ð=Ð,90OAP OBP Ð=Ð=°,又∵OP OP =,∴()AAS OAP OBP V V ≌,∴OA OB =,∵OM OM =,AOM BOM Ð=Ð,OA OB =,∴()SAS AOM BOM V V ≌,∴MA MB =.(2)①解:OP 垂直平分AB ,理由如下:如图3,记AB 与OP 的交点为C ,。
第04讲线段的垂直平分线和角平分线(8类热点题型讲练)1.理解线段垂直平分线,角平分线的概念;2.掌握线段垂直平分线的性质定理及逆定理;3.能运用线段的垂直平分线的有关知识进行证明或计算;4.能够利用尺规作出三角形的垂直平分线和角平分线;5.会证明和运用“三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等”.角平分线的性质定理和判定定理的灵活运用.知识点01线段的垂直平分线⎧⎨⎩线段垂直平分线的:线段垂直平分线上的任意一点到这条线段两端点的距离相等;线段垂直平分线的:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上性质定理判.定定理知识点02角的平分线⎧⎪⎨⎪⎩角的平分线的:在角的平分线上的点到这个角两边的距离相等;角的平分线的:在一个角的内部(包括顶点)且到角两边距离相等的点, 在这个角的平分线上.性质定理性质定理题型01线段的垂直平分线的性质【例题】(2023上·江苏常州·八年级校考阶段练习)如图,在ABC 中,EF 是AB 的垂直平分线,AD BC ⊥,D 为CE 的中点.(1)求证:BE AC =(2)若35B ∠=︒,则BAC ∠=【变式训练】1.(2023下·全国·八年级专题练习)如图,在ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若CMN 的周长为15cm ,求AB 的长;(2)若70MFN ∠=︒,求MCN ∠的度数.2.(2023上·全国·八年级专题练习)如图,在ABC 中,EF 垂直平分AC ,交AC 于点F ,AD BC ⊥于点D ,BD DE =,连接AE .(1)若AE 平分BAC ∠,求C ∠的度数;(2)若ABC 的周长为13cm ,5cm AC =,求CD 的长.题型02线段的垂直平分线的判定【例题】如图,ABC 中,AB AC =,连接AD E ,为是AD 上一点且BE CE =.(1)求证:AD 垂直平分BC .(2)已知753ABC AB ∠=︒=,,求ABC 的面积.【变式训练】1.如图,ABC 为等边三角形,AD AB ⊥,4AD DC ==,AC BD ,相交于点E .(1)求证:BD 垂直平分AC ;(2)求BE 的长;(3)若点F 为BC 的中点,点P 在BD 上,则PC PF +的最小值为______.(直接写出结果).2.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =.题型03线段的垂直平分线的实际应用【例题】如图,地面上有三个洞口A 、B 、C ,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A 、B 、C 三个点的距离相等),尽快抓到老鼠,应该蹲守在()A .ABC 三边垂直平分线的交点B .ABC 三条角平分线的交点C .ABC 三条高所在直线的交点D .ABC 三条中线的交点【变式训练】1.如图,某一个城市在一块空地新建了三个居民小区,它们分别为、、A B C ,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等.这所中学应建在()A .ABC 的三条中线的交点B .ABC 三边的垂直平分线的交点C .ABC 三条角平分线的交点D .ABC 三条高所在直线的交点题型04线段的垂直平分线的尺规作图【例题】如图,已知在ABC 中,7AC =.(1)用尺规作BC 边的垂直平分线;(保留作图痕迹,不写作法)(2)BC 边的垂直平分线分别交AC BC 、于点D 、E ,连接BD ,若ABD △的周长是10,求AB .1.某公司招收职工的试卷中有道题:如图,有三条两两相交的公路,为便于及时进行监控,防止违章,这个监控仪器应安装在什么位置可以使离三个路口的交叉点的距离相等你能找到这个监控安装的位置吗?(尺规作图,不写过程,保留作图痕迹)2.如图,已知点A 、点B 以及直线L .(1)用尺规作图的方法在直线L 上求作一点P ,使PA PB =.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,连接AP BP ,,若90APB ∠=︒,过点A 作AM L ⊥于点M ,过点B 作BN L ⊥于点N .求证:MN AM BN=+题型05角平分线的性质定理【例题】(2023上·江苏连云港·八年级校考阶段练习)已知:如图AC 平分BAD ∠,CE AB CF AD ⊥⊥,,垂足分别为E 、F ,且BC CD =.(1)求证:BCE DCF △≌△;(2)若106AD BE ==,,求AB 的长.1.(2023上·辽宁营口·八年级校考阶段练习)如图,90B C ∠=∠=︒,点E 是BC 的中点.DE 平分ADC ∠.(1)求证:AE 是DAB ∠的平分线;(2)已知4AE =,3DE =,求四边形ABCD 的面积.2.(2023上·江苏无锡·八年级校考阶段练习)如图,BAC ∠的角平分线与BC 的垂直平分线相交于点D ,DE AB ⊥,DF AC ⊥,,垂足分别为E 、F .(1)求证:BE CF =;(2)若67AF BC ==,,则ABC 的周长=______.题型06角平分线的判定定理【例题】如图,A ,B 两点分别在射线OM ,ON 上,点C 在MON ∠的内部且CA CB =,CD OM ⊥,CE ON ⊥,垂足分别为D ,E ,且AD BE =.(1)求证:OC 平分MON ∠;(2)如果12AO =,4BO =,求OD 的长.【变式训练】(1)求证:AD 平分BAC ∠;(2)写出+AB AC 与AE 之间的等量关系,并说明理由.(1)求证:OC 是AOB ∠的平分线;(2)若30AOB ∠=︒,23PF =,PF 题型07角平分线性质的实际应用【例题】三条公路将、、A B C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A .三条高的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点【变式训练】1.如图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A .3个B .4个C .5个D .1个题型08作角平分线(尺规作图)【例题】已知:如图,在ABC 中,AB AC =,2B A ∠=∠.(1)求作ABC ∠的平分线,交AC 于点P .(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求ABP ∠的角度?【变式训练】1.如图所示,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村坐落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定点P 的位置.一、单选题1.(2023上·全国·八年级专题练习)如图,在ABC 中,90C ∠=︒,15B ∠=︒,AB 的垂直平分线交BC 于点D ,交AB 于点E .若12DB cm =,则AC =()A .4cmB .5cmC .6cmD .7cm2.(2023上·河南信阳·八年级统考期中)如图,射线OC 是AOB ∠的平分线,DP OA ⊥,4DP =,若点Q 是射线OB 上一动点,则线段DQ 的长度不可能是()A .3B .4C .5D .63.(2023上·江苏无锡·八年级校考阶段练习)在联合会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC 的()A .三边中线的交点B .三条角平分线的交点C .三边中垂线的交点D .三边上高的交点4.(2023上·山东·九年级专题练习)如图,在ABC 中,90ACB ∠=︒,32B =︒∠,直线DE 垂直平分AB ,分别交AB 于点D ,交BC 于点E ,连接CD ,则CDE ∠等于()A .16︒B .26︒C .32︒D .58︒5.(2023上·浙江金华·八年级统考阶段练习)如图,ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE AB ⊥交AB 的延长线于E ,DF AC ⊥于F ,下列结论:①DE DF =;A .①②二、填空题6.(2023上·江苏淮安,,25CD AC DC B =∠=7.(2023上·辽宁鞍山·八年级校考阶段练习)则点D 到AB 的距离是.8.(2023上·辽宁大连·八年级校考阶段练习)如图,在为半径画弧,两弧交于点则ABC 的周长为9.(2023上·浙江宁波·等的角,则这两条射线就叫这个角的三等分线.如图,线的交点,若60A ∠=10.(2023上·河北廊坊·八年级校联考期中)如图,已知在AE 上,DF AC ⊥于F ,(1)若60C ∠=︒,则BAD ∠(2)已知10AC =,BE =三、解答题11.(2023上·河南南阳·八年级校考阶段练习)如图,在ABC 中,AC 边的垂直平分线分别交BC AC 、于点E 、F ,连接AE ,作AD BC ⊥于点D ,且D 为BE 的中点.(1)试说明:AB CE =;(2)若32C ∠=︒,求BAC ∠的度数.12.(2023上·河南周口·八年级校联考阶段练习)如图,已知ABC 中,90C ∠=︒,按下列要求作图(尺规作图,保留作图痕迹,不必写作法).(1)作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ;(2)连接CF ;(3)作BFC ∠的平分线,交BC 于点G .13.(2023上·河南信阳·八年级统考期中)如图,在ABC 中,D 是BC 上一点,DF AC ⊥于点F ,连接EF ,AD 垂直平分EF .(1)求证:AD 是BAC ∠的平分线;(2)若ABC 的周长为18,ABC 的面积为24,6BC =,求DE 的长.14.(2023上·四川南充·八年级四川省南充高级中学校考阶段练习)如图,ABC 中,D 为BC 的中点,DE BC ⊥交BAC ∠的平分线于E ,EF AB ⊥,交AB 于F ,EG AC ⊥,交AC 的延长线于G .(1)试问:BF 与CG 的大小如何?证明你的结论.(2)若104AB AC ==,,试求AF 的长.15.(2023上·北京·八年级期末)在ABC 中,AB AC =,AB 的垂直平分线交AB 于N ,交BC 的延长线于(1)求M ∠的度数;(2)若将A ∠的度数改为80°,其余条件不变,再求(3)你发现了怎样的规律?试证明;(4)将(1)中的A ∠改为钝角,(1)若120ACB ∠=︒,则MCN ∠的度数为(2)若MCN α∠=,则MFN ∠的度数为;(用含(3)连接FA FB FC 、、,CMN 的周长为6cmM 在AB 的垂直平分线上,AM 交BC 于O ,MG AC ⊥于点G ,MF BC ⊥于点F .(1)求证:BCM GCM ∠=∠;(2)若2CG =,求BC AG -的长;(3)若点D 在BC 的垂直平分线上,试判断ABM 的形状,并说明理由.18.(2023上·新疆和田·八年级统考期末)数学活动:如图1,角的平分线的性质的几何模型,已知OP 平分AOB ∠,PA OA ⊥于点A ,PB OB ⊥于点B .(1)探究:如图2,点M 是OP 上任意一点(不与O 、P 重合),连接MA 、MB ,问题:请判断MA 与MB 的数量关系,并证明你的结论.(2)如图3,连接AB .问题:①OP 垂直平分AB 吗?请说明理由.②若30AOP ∠=︒,6AB =,求AOB 的周长.。
《线段垂直平分线》中一道习题的变式
例1:如图1,在△ABC中,已知AC=27,AB的垂直平分
线交AB于点D,交AC于点E,△BCE的周长等于
50,求BC的长
.
点评:此题是△ABC中一边AB的垂直平分线AC相交;那么当AB的垂直平分线与
BC相交时,(如图2),对应的是△ACE的周长,它的周长也等于AC+BC.图形变化,但结论
不变.
变式1:如图1,在△ABC中, AB的垂直平分线交AB于点D,交AC
于点E,若∠BEC=70°,则∠A=?
.
点评:此题变式求角的计算方法,应用了两个定理.按照同样的方法,图2中也能得出
相应的结论:∠AEC=2∠B.
变式2:
如图3,在Rt△ABC中,AB的垂直平分线交BC边于点E。若BE=2,∠B =15°
求:AC的长。
点评:此题为图形变式,由一般三角形变为直角三角形,上面我们总结的结论不变,
B
C
A
E
D
图1
A
B
C
D
E
图2
A
E
D
C
B
图3
然后再应用直角三角形的有关性质。
[变式练习1]
如图4,在Rt△ABC中,AB的垂直平分线交BC边于点E.若BE=2,∠B =22.5°
求:AC的长.
例2: 如图5,在△ABC中,AB=AC, BC=12,∠BAC =120°,AB
的垂直平分线交BC边于点E, AC的垂直平分线交BC边于点N.
(1) 求△AEN的周长.
(2) 求∠EAN的度数.
(3) 判断△AEN的形状.
[变式练习2]:如图6,在△ABC中,AB=AC, BC=12,∠BAC =130°,AB的
垂直平分线交BC边于点E, AC的垂直平分线交BC边于点N.
(1) 求△AEN的周长.
(2) 求∠EAN的度数.
(3) 判断△AEN的形状.
A
E
D
C
B
图4
A
BC
D
EMN
图5
A
B
C
D
E
M
N
图6
[变式练习3]:如图7,在△ABC中, BC=12,∠BAC =100°,AB的垂直平
分线交BC边于点E, AC的垂直平分线交BC边于点N.
(1) 求△AEN的周长.
(2) 求∠EAN的度数.
.
点评:例2和它的两道变式练习题中发现:三个图形由特殊到一般,从顶角是120°
的等腰三角形到顶角是钝角的一般的等腰三角形到一般钝角三角形,△AEN的形状也不断
的变化,∠EAN的度数也变化,但△AEN的周长不变,因此得出结论:1)△AEN的周长=BC
长.2)△AEN的形状变化规律是由等边三角形到等腰三角形到一般三角形,与△ABC的形
状有关.3)∠EAN的度数与∠BAC的度数有关.因为∠EAN=180°-2∠B-2∠C=180°-2(∠
B+∠C)=180°-2(180°-∠BAC)=2∠BAC -180°.从等式中也得出∠BAC必须大于90°.
[变式练习4]
如
图8,△ABC中, ∠BAC =70°, BC=12,AB的垂直平分线
交BC边于点E, AC的垂直平分线交BC边于点N.
求:∠EAN的度数
.
点评:由上题的方法得出∠AEC+∠
BNA =2∠B+2∠C,由平角性质可得: ∠
AEB+∠CNA=360°-(2∠B+2∠C),由三角形
内角和定理得∠EAN=180°-2∠BAC
N
E
M
D
A
B
C
图7
N
EMDABC
图8
总评:从上述两道例题及变式题中得出无论是图形变化还是题条件变化,都和基本图形及
由基本图形得出的结论有关.因此同学们在以后的学习或解题中,善于在复杂图形中找出
基本图形,这样就会将图形简单化.应用由基本图形得出的相关结论,就会找出解题思路.