加减法的速算与巧算
- 格式:docx
- 大小:37.40 KB
- 文档页数:3
加减法速算与巧算讲解1.计算:〔 1〕24+44+56〔2〕53+36+47解:〔 1〕24+44+56=24+〔44+56〕=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2〕53+36+47=53+47+36=〔53+47〕+36=100+36=136这样想:因为 53+47=100是个整百的数,所以先把 +47 带着符号搬家,搬到+36 前面;然后再把 53+47 的和算出来 .2.计算:〔 1〕96+15(2〕52+69解:〔 1〕96+15=96+〔4+11〕=〔96+4〕+11=100+11=111这样想:把 15 分拆成 15=4+11,这是因为 96+4=100,可凑整先算 .(2〕52+69=〔21+31〕+69=21+〔31+69〕=21+100=121这样想:因为 69+31=100,所以把 52 分拆成 21 与 31 之和,再把 31+69=100 凑整先算 .3.计算:〔 1〕63+18+19(2〕28+28+28解:〔 1〕63+18+19=60+2+1+18+19=60+〔2+18〕+〔 1+19〕=60+20+20=100这样想:将 63 分拆成 63=60+2+1就是因为 2+18 和 1+19 可以凑整先算 .(2〕28+28+28=〔28+2〕+〔28+2〕+〔28+2〕-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个 2 减去 .二、改变运算顺序:在只有“+、〞“-〞号的混合算式中,运算顺序可改变计算:〔 1〕45-18+19(2〕45+18-19解:〔 1〕45-18+19=45+19-18=45+〔19-18〕=45+1=46这样想:把 +19 带着符号搬家,搬到 -18 的前面 .然后先算 19-18=1.(2〕45+18-19=45+〔18-19〕=45-1=44这样想:加 18 减 19 的结果就等于减 1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20 等等都是等差连续数 .1.等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1〕计算: 1+2+3+4+5+6+7+8+9=5×9中间数是 5=45 共 9 个数(2〕计算: 1+3+5+7+9=5×5中间数是 5=25 共有 5 个数(3〕计算: 2+4+6+8+10=6×5中间数是 6=30 共有 5 个数(4〕计算: 3+6+9+12+15=9×5中间数是 9=45 共有 5 个数(5〕计算: 4+8+12+16+20=12×5中间数是 12=60 共有 5 个数2.等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:〔 1〕计算:1+2+3+4+5+6+7+8+9+10=〔1+10〕× 5=11× 5=55共 10 个数,个数的一半是5,首数是 1,末数是 10.〔 2〕计算:3+5+7+9+11+13+15+17=〔3+17〕× 4=20× 4=80共 8 个数,个数的一半是4,首数是 3,末数是 17.〔 3〕计算:2+4+6+8+10+12+14+16+18+20=〔2+20〕× 5=110共 10 个数,个数的一半是5,首数是 2,末数是 20.四、基准数法(1〕计算: 23+20+19+22+18+21解:仔细观察,各个加数的大小都接近 20,所以可以把每个加数先按 20 相加,然后再把少算的加上,把多算的减去 .23+20+19+22+18+21=20× 6+3+0-1+2-2+1=120+3=1236 个加数都按 20 相加,其和 =20×按 20 计算就少加了“ 3,〞所以再加上“3;〞19 按 20 计算多加了“1,〞所以再减去“1,〞以此类推 .(2〕计算: 102+100+99+101+98解:方法 1:仔细观察,可知各个加数都接近 100,所以选 100 为基准数,采用基准数法进行巧算 .102+100+99+101+98=100× 5+2+0-1+1-2=500方法 2:仔细观察,可将 5 个数重新排列如下:〔实际上就是把有的加数带有符号搬家〕102+100+99+101+98=98+99+100+101+102=100× 5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是 5.习题一1.计算:〔 1〕18+28+72(2〕87+15+13(3〕43+56+17+24(4〕28+44+39+62+56+212.计算:〔 1〕98+67(2〕43+28(3〕75+263.计算:〔 1〕82-49+18(2〕82-50+49(3〕41-64+294.计算:〔 1〕99+98+97+96+95(2〕9+99+9995.计算:〔 1〕5+6+7+8+9(2〕5+10+15+20+25+30+35(3〕9+18+27+36+45+54(4〕12+14+16+18+20+22+24+266.计算:〔 1〕53+49+51+48+52+50(2〕87+74+85+83+75+77+80+78+81+847.计算: 1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5。
加减法中的速算与巧算知识储备1、加法的运算律加法交换律:a+b=b+a加法结合律:a+b+c=(a+b)+c=a+(b+c)2、加、减法运算的性质:a-b-c=a-c-b=a-(b+c)a+b-c=a-c+b=a+(b-c)3、在加法、减法和加减混合运算中,常常利用改变运算顺序或添加括号的方法进行巧算。
4、加减法的速算与巧算常用到的方法还有以下两种:①借数凑数法巧算;②利用平均数进行巧算。
思维引导例1、巧算:76+35+48+14+45+52跟踪练习:巧算:89+123+109+11+77+181例2、巧算:500-99-1-98-2-97-3跟踪练习:巧算6728-116-202-551-67-1098-133例3、巧算:548-136+17-64+35跟踪练习:巧算1000-2+3-4+6-6+9-8+12-10+15例4、计算:①567-76+74 ②567-74+76跟踪练习:简便计算:①476-47+37 ②359+58-60例5、简便计算:432-(154-68)跟踪练习:①783-(583+16)②489-(342-11)例6、计算:999+99+9跟踪练习:计算:19+199+1999+19999例7、计算:(1)728+598 (2)436—103跟踪练习:计算:(1)288—199;(2)576+189例8、用简便方法计算下面各题跟踪练习:计算例9、巧算:599996+59997+3998+407+89跟踪练习:巧算:700012+6009+41008+59001例10、1966+1976+1986+1996+2006这五个数的总和是多少?跟踪练习:巧算:2010+2005+2004+2003+1998例11、计算:100+99-98+97-96+…+3-2+1跟踪练习:计算:98+97-96-95+94+93-92-91+90+89-…-4-3+2+1能力对接1、在正确的算式前的圈圈里打“√”,错的打“×”。
⼀年级上册数学加减法速算与巧算 给孩⼦总结⼀些学习的技巧,也能够有效提⾼孩⼦的学习成绩与学习兴趣,对于数学学习也是如此,为了帮助孩⼦们更好的学习数学⼩编整理了⼀年级上册数学加减法算法,希望能帮助到您。
加法的神奇速算法 ⼀、加⼤减差法 1、⼝诀 前⾯加数加上后⾯加数的整数,减去后⾯加数与整数的差等于和。
2、例题 1376+98=1474 计算⽅法:1376+100-2 3586+898=4484 计算⽅法:3586+1000-102 5768+9897=15665 计算⽅法:5768+10000-103 ⼆、求只是数字位置颠倒两个两位数的和 1、⼝诀 ⼀个数的⼗位数加上它的个位数乘以11等于和 2、例题 47+74=121 计算⽅法:(4+7)x 11=121 68+86=154 计算⽅法:(6+8)x 11=154 58+85=143 计算⽅法:(5+8)x 11=143 三、⼀⽬三⾏加法 1、⼝诀 提前虚进⼀,中间弃9,末位弃10 2、例题 365427158 644785963 +742334452 ——————— 1752547573 ⽅法:从左到右,提前虚进1;第1列:中间弃9(3和6)直接写7;第2列:6+4-9+4=5 以此类推...最后1列:末位弃10(8和2)直接写3 注意:中间不够9的⽤分段法,直接相加,并要提前虚进1;中间数字和⼤于19的,弃19,前边多进1,末位数字和⼤于19的,弃20,前边多进1 减法的神奇速算法 ⼀、减⼤加差法 1、例题 321-98=223 计算⽅法:减100,加2 8135-878=7257 计算⽅法:减1000,加122 91321-8987= 82334 计算⽅法:减10000,加1013 2、总结 被减数减去减数的整数,再加上减数与整数的差,等于差。
⼆、求只是数字位置颠倒两个两位数的差 1、例题 74-47=27 计算⽅法:(7-4)x9=27 83-38=45 计算⽅法:(8-3)x9=45 92-29=63 计算⽅法:(9-2)x9=63 2、总结 被减数的⼗位数减去它的个位数乘以9,等于差。
运算定律:加减法速算与巧算加、减法的速算与巧算( 基础)1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第⼀个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运⽤加法结合律时,要注意把结合的两个数⽤括号括起来。
)连加的简便计算⽅法:①使⽤加法交换律、结合律凑整(把和是整⼗、整百、整千的数先交换再结合在⼀起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③⼗位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60165+93+3565+28+35+722、连减的性质:☆⼀个数连续减去⼏个数等于这个数减去这⼏个数的和。
即:a –b –c = a –(b + c)注:连减的性质逆⽤:a –(b + c) = a –b –c = a –c –b ☆⼀个数连续减去两个数,可以⽤这个数先减去后⼀个数再减去前⼀个数。
即:a-b-c=a—c-b连减的简便计算⽅法:①连续减去⼏个数就等于减去这⼏个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后⼀个数再减去前⼀个数。
如:226-58-26=226-26-58③减去⼏个数的和就等于连续减去这⼏个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)3、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
即:a + b –c = a –c + b加、减混合的简便计算⽅法:在没有括号的加、减混合运算时,第⼀个数的位置不变,其余的例如:整⼗、整百数时,可以利⽤如下原则:多加了要减去;多减了要加上;少加了要加上;少减了要减去。
整数加减法速算与巧算教案目标本知点属于算板的部分,度并不大。
要求学生熟加减法运算和运算律,并在算中运用凑整的技巧。
知识点拨一、基本运算律及公式一、加法加法交律:两个数相加,交加数的位置,他的和不。
即:其中 a, b 各表示任意一数.例如,7+ 8=8+ 7= 15.a+ b=b+ a:多个数相加,任意交相加的次序,其和不.加法合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他的和不。
即: a+ b+ c=( a+ b)+ c= a+( b+ c)其中 a, b, c 各表示任意一数.例如,5+ 6+8=( 5+6)+ 8=5+ (6+ 8).:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不。
二、减法在减或者加减混合运算中,如果算式中没有括号,那么算要数字前面的运算符号“搬家”.例如:a- b- c= a- c- b, a- b+ c= a+c- b,其中 a, b,c 各表示一个数.在加减法混合运算中,去括号:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+” “-”,“-” “+”.如: a+( b- c)= a+ b-ca-( b+ c)= a- b- ca-( b- c)= a- b+ c在加、减法混合运算中,添括号:如果添加的括号前面是如果添加的括号前面是“-”,那么括号内的数的原运算符号如: a + b- c= a+( b- c)“+”,那么括号内的数的原运算符号不;“+” “-”,“-” “+”。
a- b+c= a-( b- c)a- b-c= a-( b+ c)二、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分凑整法.把几个互“ 数”的减数先加起来,再从被减数中减去,尾数的减数.“ 数”就是两个数相加,如果恰好凑成整十、整百、整千或先减去那些与被减数有相同⋯⋯ ,就把其中的一个数叫做1 / 12另一个数的“ 数”.2、加凑整法.有些算式中直接凑整不明,可“借数”或“拆数”凑整.3、数原理法.先把加在一起整十、整百、整千⋯⋯的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比接近于某一整数的数相加,个整数“基准数”(要注意把多加的数减去,把少加的数加上)例题精讲模块一:分组凑整【例 1 】算:(1)117+229+333+471+528+622(2)( 1350+ 249+ 468)+( 251+ 332+ 1650)(3) 756- 248- 352(4) 894- 89- 111- 95-105- 94【考点】分凑整【度】 1 星【型】算【解析】在个例中,主要学生掌握加、减法分凑整的方法。
分数加减法速算与巧算知识点拨一、基本运算律及公式一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)【例 1】 如果111207265009A +=,则A =________(4级) 【考点】分数约分 【难度】2星 【题型】计算 【关键词】希望杯,六年级,一试 【解析】 111112591207265009873773725125920082008+=+=⨯=⨯⨯⨯⨯,所以A =2008. 【答案】2008【例 2】 11410410042282082008+++=_____ 【考点】分数约分 【难度】1星 【题型】计算【关键词】希望杯,五年级,一试【解析】 原式=1111=22222+++ 【答案】2模块一:分组凑整思想【例 3】 1111222233318181923420345204520192020⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 【考点】分组凑整 【难度】3星 【题型】计算 【解析】 观察可知分母是2分子和为1分母是3分子和为12+;分母是4分子和为123++;……依次类推;分母是20子和为12319++++. 原式()1111(12)(123)1231923420=+⨯++⨯++++⨯++++ ()1111(12)22(13)3211919223420=+⨯+⨯÷+⨯+⨯÷++⨯+⨯÷ 12319952222=++++=【例 4】 11211232112199511222333331995199519951995+++++++++++++++ 【考点】分组凑整 【难度】3星 【题型】计算 【解析】 观察可知分母是1的和为1;分母是2的和为2;分母是3的和为3;……依次类推;分母是1995的和为1995.这样,此题简化成求1231995++++的和.11211232112199511222333331995199519951995+++++++++++++++ 12341995119951995299819951991010=+++++=+⨯÷=⨯=() 【答案】1991010例题精讲【考点】分组凑整 【难度】2星 【题型】计算【解析】 因为1996=2×2×499。
加减法速算与巧算在我们的日常生活和学习中,加减法的运算无处不在。
无论是在购物时计算价格,还是在考试中解决数学问题,快速而准确地进行加减法运算都能为我们节省时间,提高效率。
今天,就让我们一起来探索加减法速算与巧算的奇妙世界。
一、加法速算与巧算1、凑整法凑整法是加法速算中最常用的方法之一。
所谓凑整,就是将加数凑成整十、整百、整千等容易计算的数。
例如,计算 28 + 72 时,我们可以很快地得出结果为 100,因为 28 和 72 可以凑成 100。
再比如,计算 135 + 65 时,135 和 65 凑成 200,结果瞬间可得。
2、基准数法当多个相近的数相加时,可以选择一个基准数,先计算每个数与基准数的差值,然后将这些差值相加,最后再加上基准数与个数的乘积。
例如,计算 98 + 101 + 99 + 102 + 100 时,可以选择 100 作为基准数。
则 98 与基准数的差值为-2,101 的差值为 1,99 的差值为-1,102 的差值为 2,它们的差值之和为 0,所以结果就是 100×5 = 500。
3、交换律和结合律加法交换律:两个数相加,交换加数的位置,和不变。
例如 3 + 5 = 5 + 3 。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
例如(2 + 3)+ 5 = 2 +(3 + 5)。
利用交换律和结合律,可以将加数重新组合,使得计算更加简便。
比如计算 18 + 27 + 82 时,可以先计算 18 + 82 = 100,再加上 27,结果为 127 。
二、减法速算与巧算1、凑整法在减法中,同样可以使用凑整法。
例如,计算 100 38 时,可以将38 看作 40 2 ,那么 100 38 = 100 (40 2)= 100 40 + 2 = 62 。
2、减法的性质减法的性质:一个数连续减去两个数,等于这个数减去这两个数的和。
用字母表示为:a b c = a (b + c) 。
加减法的速算与巧算
在日常生活和学习中,加减法是我们经常会遇到的基本运算。
然而,有时候面对大量的计算题目,我们可能感到手忙脚乱,效率低下。
所以,了解一些速算和巧算的方法,将会帮助我们更加高效地完成这些
加减法题目。
本文将介绍一些常用的加减法速算和巧算技巧,希望对
大家有所帮助。
一、基本加减法的速算
1. 相同数位相加减法:当两个数位相同的数相加或相减时,我们只
需要将每位上的数相加或相减即可。
例如,计算345 + 376:
3 + 3 = 6;
4 + 7 = 11(将个位上的1留下,十位上的1进位);
5 +
6 = 11(同样留下个位上的1进位);
所以,345 + 376 = 711。
同理,计算574 - 228:
4 - 8 不够减,需要向十位上借位,借位后为14 - 8 = 6;
7 - 2 = 5;
5 - 2 = 3;
所以,574 - 228 = 346。
2. 九九乘法口诀:九九乘法口诀是我们学习初中时就要掌握的基础
技巧。
当进行乘法计算时,我们可以利用九九乘法口诀中的规律,快
速得到结果。
例如,计算6 × 8,我们可以利用九九乘法口诀中6和8的位置关系:8在前,6在后,所以结果的十位是5,个位是4,即48。
3. 九九加法口诀:九九加法口诀同样是一个好用的速算方法。
当进
行加法运算时,我们可以根据九九加法口诀中的规律,快速得到结果。
例如,计算7 + 9,我们可以将7和9交换位置,变为9 + 7,根据
九九加法口诀的规律得到结果是16。
二、巧算技巧
1. 调整数位计算次序:有时候我们可以调整数位的计算次序,使得
计算过程更加简便。
例如,计算234 + 567,我们可以将它变为:
(200 + 500)+ (30 + 60)+(4 + 7)= 700 + 90 + 11 = 801。
同样地,计算762 - 345,我们可以将它变为:
(700 - 300)+ (60 - 40)+(2 - 5)= 400 + 20 +(-3)= 417 - 3 = 414。
2. 利用数的分解与重组:我们可以将一个较大的数进行数的分解与
重组,将大数的计算转化为较小数的计算,从而简化计算过程。
例如,计算98 + 37,我们可以将98分解为90 + 8,37分解为30 + 7,然后进行分别相加,得到:90 + 30 + 8 + 7 = 135。
同样地,计算92 - 47,我们可以将92分解为90 + 2,47分解为40
+ 7,然后进行分别相减,得到:90 - 40 + 2 - 7 = 45。
3. 利用补数计算:在进行减法计算时,我们可以通过转化成加法运算,利用补数计算的方法简化计算步骤。
例如,计算56 - 29,我们可以将29补成30,即56 - 29 = 56 + 1 - 30,然后进行加法运算得到:56 + 1 - 30 = 27。
另外一个例子是计算76 - 48,我们可以将48补成50,即76 - 48 = 76 - 50 + 2,然后进行加法运算得到:76 - 50 + 2 = 28。
综上所述,加减法的速算与巧算技巧能够帮助我们在日常生活和学
习中更加高效地完成加减法计算。
通过掌握基本加减法的速算方法,
如同数位相加减法和九九乘法口诀,我们可以迅速计算出结果。
同时,巧用一些技巧,如调整数位计算次序和利用数的分解与重组,能够大
大简化复杂的计算过程,提高计算效率。
希望大家能够通过学习和实践,熟练掌握这些加减法的速算与巧算技巧,在日常的加减法运算中
能够事半功倍。