2018届高三理科数学(新课标)二轮复习专题整合高频突破习题:专题六 直线、圆、圆锥曲线 专题能力训练18 W
- 格式:doc
- 大小:463.00 KB
- 文档页数:13
专题能力训练14直线与圆(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.若直线l通过两直线7x+5y-24=0和x-y=0的交点,且点(5,1)到l的距离为,则l的方程是()A.3x+y+4=0B.3x-y+4=0C.3x-y-4=0D.x-3y-4=02.若直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或123.(2017浙江宁波中学模拟)若过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为()A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=04.已知直线l:kx+y+4=0(k∈Z)是圆C:x2+y2+4x-4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()ABCD.25.已知直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()ABC.[-]D6.若圆C1:x2+y2-2ax+a2-9=0(a∈R)与圆C2:x2+y2+2by+b2-1=0(b∈R)内切,则ab的最大值为()AB.2C.4D.27.已知圆C:(x+2)2+y2=4,直线l:kx-y-2k=0(k∈R),若直线l与圆C恒有公共点,则实数k的最小值是()A.-B.-1C.1 D8.已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b 的取值范围是()A.(0,1)BCD二、填空题(本大题共6小题,每小题5分,共30分)9.(2017浙江金丽衢十二校二模)直线l:x+λy+2-3λ=0(λ∈R)恒过定点,P(1,1)到该直线的距离最大值为.10.经过点A(5,2),B(3,-2),且圆心在直线2x-y-3=0上的圆的方程为.11.已知圆O:x2+y2=r2与圆C:(x-2)2+y2=r2(r>0)在第一象限的一个公共点为P,过P作与x轴平行的直线分别交两圆于不同的两点A,B(异于点P),且OA⊥OB,则直线OP的斜率为,r= .12.已知从圆C:(x+1)2+(y-2)2=2外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,则当|PM|取得最小值时点P的坐标为.13.直线l过点(-2,2)且与x轴、y轴分别交于点(a,0),(0,b),若|a|=|b|,则l的方程为.14.已知A是射线x+y=0(x≤0)上的动点,B是x轴正半轴上的动点,若直线AB与圆x2+y2=1相切,则|AB|的最小值是.三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分15分)已知定点M(0,2),N(-2,0),直线l:kx-y-2k+2=0(k为常数).(1)若点M,N到直线l的距离相等,求实数k的值;(2)对于l上任意一点P,∠MPN恒为锐角,求实数k的取值范围.16.(本小题满分15分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围.参考答案专题能力训练14直线与圆1.C2.D解析由圆x2+y2-2x-2y+1=0,知圆心(1,1),半径为1,所以=1,解得b=2或b=12.3.B解析依题意知,点(3,1)在圆(x-1)2+y2=r2上,且为切点.因此圆心(1,0)与切点(3,1)连线的斜率为,切线的斜率k=-2.故圆的切线方程为y-1=-2(x-3),即2x+y-7=0.4.C解析由l:kx+y+4=0(k∈R)是圆C:x2+y2+4x-4y+6=0的一条对称轴知,其必过圆心(-2,2),因此k=3,则过点A(0,k)斜率为1的直线m的方程为y=x+3,圆心到其距离d=,所以弦长等于2=2.故选C.5.D解析由题意知圆心(2,3)到直线y=kx+3的距离为d==1,故当|MN|≥2时,d=≤1,解得k∈.故选D.6.B解析圆C1的方程x2+y2-2ax+a2-9=0(a∈R)可化为(x-a)2+y2=9,圆心坐标为(a,0),半径为3.圆C2的方程x2+y2+2by+b2-1=0(b∈R)可化为x2+(y+b)2=1,圆心坐标为(0,-b),半径为1.∵圆C1:x2+y2-2ax+a2-9=0(a∈R)与圆C2:x2+y2+2by+b2-1=0(b∈R)内切,∴=3-1,即a2+b2=4,ab≤(a2+b2)=2.∴ab的最大值为2.7.A解析由题意知圆心C(-2,0),半径r=2.又圆C与直线l恒有公共点,所以圆心C(-2,0)到直线l的距离d≤r.因此≤2,解得-≤k≤.所以实数k的最小值为-.8.B图1解析 (1)当直线y=ax+b与AB,BC相交时(如图1),由得y E=,又易知x D=-,∴|BD|=1+.由S△DBE=,得b=.图2(2)当直线y=ax+b与AC,BC相交时(如图2),由S△FCG=(x G-x F)·|CM|=,得b=1-(∵0<a<1),∵对于任意的a>0恒成立,∴b∈,即b∈.故选B.9.(-2,3)解析直线l:x+λy+2-3λ=0(λ∈R),即λ(y-3)+x+2=0,令解得x=-2, y=3.故直线l恒过定点(-2,3),P(1, 1)到该直线的距离最大值=.10.(x-2)2+(y-1)2=10解析∵圆过A(5,2),B(3,-2)两点,∴圆心一定在线段AB的垂直平分线上.易知线段AB的垂直平分线方程为y=-(x-4).设所求圆的圆心为C(a,b),则有解得a=2,且b=1.因此圆心坐标为(2,1),半径r=|AC|=.故所求圆的方程为(x-2)2+(y-1)2=10.11. 2解析由题意知,P(1,),A(-1,),B(3,),由OA⊥OB得=-1,所以r2=4,所以r=2,P(1,),k OP=.12. 解析如图所示,圆C:(x+1)2+(y-2)2=2,圆心C(-1,2),半径r=,因为|PM|=|PO|,所以|PO|2+r2=|PC|2,所以+2=(x1+1)2+(y1-2)2,即2x1-4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO垂直于直线2x-4y+3=0,即直线PO的方程为2x+y=0时,|PM|最小,此时P点即为两直线的交点,得P点坐标为.13.x+y=0或x-y+4=0解析若a=b=0,则直线l过点(0,0)与(-2,2),直线l的斜率k=-1,直线l的方程为y=-x,即x+y=0.若a≠0,b≠0,则直线l的方程为=1,由题意知解得此时,直线l的方程为x-y+4=0.综上,直线l的方程为x+y=0或x-y+4=0.14.2+2解析设A(-a,a),B(b,0)(a,b>0),则直线AB的方程是ax+(a+b)y-ab=0.因为要使直线AB与圆x2+y2=1相切,所以d==1,化简得2a2+b2+2ab=a2b2,利用基本不等式得a2b2=2a2+b2+2ab≥2ab+2ab,即ab≥2+2,从而得|AB|==ab≥2+2,当b=a,即a=,b=时,|AB|的最小值是2+2.15.解 (1)∵点M,N到直线l的距离相等,∴l∥MN或l过MN的中点(设其为点C).∵M(0,2),N(-2,0),∴直线MN的斜率k MN=1,MN的中点坐标为(-1,1).又∵直线l:kx-y-2k+2=0过定点(2,2)(设其为点D),∴当l∥MN时,k=k MN=1;当l过MN的中点时,k=k CD=.综上可知,k的值为1或.(2)∵对于l上任意一点P,∠MPN恒为锐角,∴l与以MN为直径的圆相离,即圆心(-1,1)到直线l的距离大于半径,∴d=,解得k<-或k>1.16.解圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d=.因为BC=OA==2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),,所以①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上, 从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点, 所以5-5≤≤5+5,解得2-2≤t≤2+2.因此,实数t的取值范围是[2-2,2+2].。
专题限时集训(六) 数列(对应学生用书第92页) (限时:120分钟)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填写在题中横线上.)1.(四川省凉山州2017届高中毕业班第一次诊断性检测)设数列{a n }满足a 1=a ,a n +1=a 2n -2a n +1(n ∈N *),若数列{a n }是常数列,则a =________.-2 [因为数列{a n }是常数列,所以a =a 2=a 21-2a 1+1=a 2-2a +1,即a (a +1)=a 2-2,解得a =-2.]2.(江苏省南京市、盐城市2017届高三第一次模拟)设{a n }是等差数列,若a 4+a 5+a 6=21,则S 9=________.63 [由a 4+a 5+a 6=21得a 5=7,所以S 9=a 1+a 92=9a 5=63.]3.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________.1 830 [当n =2k 时,a 2k +1+a 2k =4k -1; 当n =2k -1时,a 2k -a 2k -1=4k -3. 所以a 2k +1+a 2k -1=2,所以a 2k +1+a 2k +3=2, 所以a 2k -1=a 2k +3,所以a 1=a 5=…=a 61. 所以a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61) =3+7+11+…+(2×60-1) =30×3+1192=30×61=1 830.]4.(江苏省泰州中学2017届高三上学期第二次月考)等差数列{a n }的前n 项和S n ,若a 1=2,S 3=12,则a 6=________.12 [∵S 3=12,∴S 3=3a 1+3×22d =3a 1+3d =12.解得d =2, 则a 6=a 1+5d =2+2×5=12.]5.(2017·江苏省苏、锡、常、镇四市高考数学二模)已知等比数列{a n }的前n 项和为S n ,公比q =3,S 3+S 4=533,则a 3=________.3 [∵等比数列{a n }的前n 项和为S n ,公比q =3,S 3+S 4=533,∴a 13-3-1+a 14-3-1=533,解得a 1=13.则a 3=13×32=3.] 6.(2017·江苏省无锡市高考数学一模)设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列.且a 2+a 5=4,则a 8的值为________.2 [∵等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列.且a 2+a 5=4,∴⎩⎪⎨⎪⎧2×a 1-q 91-q =a 1-q 31-q +a 1-q61-q,a 1q +a 1q 4=4,解得a 1q =8,q 3=-12,∴a 8=a 1q 7=(a 1q )(q 3)2=8×14=2.]7.(2017·江苏省泰州市高考数学一模)《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为________升.1322[设最上面一节的容积为a 1, 由题设知⎩⎪⎨⎪⎧4a 1+4×32d =3,⎝ ⎛⎭⎪⎫9a 1+9×82d -⎝ ⎛⎭⎪⎫6a 1+6×52d =4,解得a 1=1322.]8.(2017·江苏省淮安市高考数学二模)已知{a n }是公差不为0的等差数列,S n 是其前n 项和,若a 2a 3=a 4a 5,S 9=1,则a 1的值是________.【导学号:56394041】-527[设等差数列{a n }的公差为d (d ≠0), ∵a 2a 3=a 4a 5,S 9=1,∴⎩⎪⎨⎪⎧a 1+d a 1+2d =a 1+3d a 1+4d ,9a 1+9×82d =1,解得a 1=-527.]9.(广东湛江市2017届高三上学期期中调研考试)在各项均为正数的等比数列{a n }中,若log 2a 2+log 2a 8=1,则a 3·a 7=________.2 [由log 2a 2+log 2a 8=1得log 2(a 2a 8)=1,所以a 2a 8=2,由等比数列性质可得a 3a 7=a 2a 8=2.]10.(2017·江苏省盐城市高考数学二模)记公比为正数的等比数列{a n }的前n 项和为S n .若a 1=1,S 4-5S 2=0,则S 5的值为________.31 [若等比数列的公比等于1,由a 1=1,则S 4=4,5S 2=10,与题意不符. 设等比数列的公比为q (q ≠1), 由a 1=1,S 4=5S 2,得a 1-q 41-q=5a 1(1+q ),解得q =±2.∵数列{a n }的各项均为正数,∴q =2. 则S 5=1-251-2=31.]11.(广东郴州市2017届高三第二次教学质量监测试卷)在△ABC 中,A 1,B 1分别是边BA ,CB 的中点,A 2,B 2分别是线段A 1A ,B 1B 的中点,…,A n ,B n 分别是线段A n -1A ,B n -1B (n ∈N *,n >1)的中点, 设数列{a n },{b n }满足:向量B n A n →=a n CA →+b n CB →(n ∈N *),有下列四个命题,其中假命题是:________.【导学号:56394042】①数列{a n }是单调递增数列,数列{b n }是单调递减数列; ②数列{a n +b n }是等比数列; ③数列⎩⎨⎧⎭⎬⎫a nb n 有最小值,无最大值;④若△ABC 中,C =90°,CA =CB ,则|B n A n →|最小时,a n +b n =12.③ [由BA n →=⎝ ⎛⎭⎪⎫1-12n BA →=⎝ ⎛⎭⎪⎫1-12n (CA →-CB →),B n B →=12n CB →,B n A n →=B n B →+BA n →=⎝ ⎛⎭⎪⎫1-12n CA →+⎝ ⎛⎭⎪⎫12n -1-1CB →,所以a n =1-12n ,b n =12n -1-1.则数列{a n }是单调递增数列,数列{b n }是单调递减数列,故①正确;数列{a n +b n }即为⎩⎨⎧⎭⎬⎫12n 是首项和公比均为12的等比数列,故②正确;而当n =1时,a 1=12,b 1=0,a n b n 不存在;n >1时,a nb n =2n -12-2n =-1+12-2n 在n ∈N *上递增,无最小值和最大值,故③错误;在△ABC 中,C =90°,CA =CB ,则|B n A n →|2=(a 2n +b 2n )CA →2+2a n b n CA →·CB →=5⎝ ⎛⎭⎪⎫12n -352-15,当n =1时,取得最小值,即有|B n A n →|最小时,a n +b n =12,故④正确.]12.(天津六校2017届高三上学期期中联考)已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *).若b n +1=(n -2λ)·⎝ ⎛⎭⎪⎫1a n+1(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围是________.⎝ ⎛⎭⎪⎫-∞,23 [因为a n +1=a n a n +2⇒1a n +1=2a n +1⇒1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1⇒1a n +1=⎝ ⎛⎭⎪⎫1a 1+12n -1=2n ,所以b n +1=(n -2λ)·2n,因为数列{b n }是单调递增数列,所以当n ≥2时b n +1>b n ⇒(n -2λ)·2n>(n -1-2λ)·2n -1⇒n >2λ-1⇒2>2λ-1⇒λ<32;当n =1时,b 2>b 1⇒(1-2λ)·2>-λ⇒λ<23,因此λ<23.]13. (山西大学附属中学2017级上学期11月模块诊断)设等差数列{a n }的前n 项和为S n ,且满足S 17>0,S 18<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的项为________. S 9a 9[S 17>0⇒a 1+a 172>0⇒a 92>0⇒a 9>0,S 18<0⇒a 1+a 182<0⇒a 9+a 102<0⇒a 10+a 9<0⇒a 10<0,因此S 1a 1>0,S 2a 2>0,…,S 8a 8>0,S 9a 9>0,S 10a 10<0,而S 1<S 2<…<S 9,a 1>a 2>…>a 8>a 9,所以S 1a 1<S 2a 2<…<S 8a 8<S 9a 9.]14.(云南大理2017届高三第一次统测)若数列{a n }的首项a 1=2,且a n +1=3a n +2(n ∈N *);令b n =log 3(a n +1),则b 1+b 2+b 3+…+b 100=________.5 050 [由a n +1=3a n +2(n ∈N *)可知a n +1+1=3(a n +1),∴a n +1+1a n +1=3,所以数列{a n +1}是以3为首项,3为公比的等比数列,所以a n +1=3n,∴a n =3n-1,所以b n =log 3(a n +1)=n ,因此b 1+b 2+b 3+…+b 100=+2=5 050.]二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)(泰州中学2017届高三上学期期中考试)已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16.(1)求数列{a n }的通项公式;(2)等比数列{b n }满足:b 1=a 1,b 2=a 2-1,若数列c n =a n ·b n ,求数列{c n }的前n 项和S n . [解] (1)设等差数列{a n }的公差为d ,则依题意设d >0.由a 2+a 7=16,得2a 1+7d =16. ① 由a 3a 6=55,得(a 1+2d )(a 1+5d )=55. ②4分由①得2a 1=16-7d 将其代入②得(16-3d )(16+3d )=220.即256-9d 2=220,∴d 2=4,又d >0,∴d =2.代入①得a 1=1,∴a n =1+(n -1)2=2n -1.6分 (2)∵b 1=1,b 2=2,∴b n =2n -1,∴c n =a n b n =(2n -1)2n -1, 8分S n =1·20+3·21+…+(2n -1)·2n -1,2S n =1·21+3·22+…+(2n -1)·2n .两式相减可得:-S n =1·20+2·21+2·22+…+2·2n -1-(2n -1)·2n=1+2×-2n -11-2-(2n -1)·2n,∴-S n =1+-2n -11-2-(2n -1)·2n=1+2n +1-4-(2n -1)·2n=2n +1-3-(2n -1)·2n, ∴S n =3+(2n -1)·2n-2n +1=3+(2n -3)·2n.14分16.(本小题满分14分)(河南省豫北名校联盟2017届高三年级精英对抗赛)已知各项均不相等的等差数列{a n }的前五项和S 5=20,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式; (2)若T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和,且存在n ∈N *,使得T n -λa n +1≥0成立,求实数λ的取值范围.[解] (1)设数列{a n }的公差为d ,则 ⎩⎪⎨⎪⎧5a 1+5×42d =20,a 1+2d 2=a 1a 1+6d ,即⎩⎪⎨⎪⎧a 1+2d =4,2d 2=a 1d . 2分又因为d ≠0,所以⎩⎪⎨⎪⎧a 1=2,d =1.4分 所以a n =n +1. 5分(2)因为1a n a n +1=1n +n +=1n +1-1n +2,所以T n =12-13+13-14+…+1n +1-1n +2=12-1n +2=nn +. 7分因为存在n ∈N *,使得T n -λa n +1≥0成立, 所以存在n ∈N *,使得n n +-λ(n +2)≥0成立, 即存在n ∈N *,使λ≤n n +2成立.10分又n n +2=12⎝⎛⎭⎪⎫n +4n+4≤116(当且仅当n =2时取等号), 所以λ≤116.即实数λ的取值范围是⎝⎛⎦⎥⎤-∞,116. 14分17.(本小题满分14分)(四川省凉山州2017届高中毕业班第一次诊断性检测)已知数列{a n }满足a 1=1,a n a n +1=2n,n ∈N *.(1)若函数 f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值a 4+1,求函数 f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域; (2)求数列{a n }的通项公式. [解] (1)∵a n a n +1=2n,则a n +1a n +2=2n +1,∴a n +2a n=2, 又a 1=1,故a 1a 2=21,即a 2=2, ∴a 3=2,a 4=4,∴A =a 4+1=5,故f (x )=5sin(2x +φ),4分 又x =π6时,f (x )=5,∴sin ⎝ ⎛⎭⎪⎫π3+φ=1,且0<φ<π,解得φ=π6, ∴f (x )=5sin ⎝⎛⎭⎪⎫2x +π6,6分而x ∈⎣⎢⎡⎦⎥⎤-π12,π2,故2x +π6∈⎣⎢⎡⎦⎥⎤0,7π6,从而sin ⎝⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,综上知f (x )∈⎣⎢⎡⎦⎥⎤-52,5. 8分18.(本小题满分16分)(天津六校2017届高三上学期期中联考)已知各项都是正数的数列{a n }的前n 项和为S n ,S n =a 2n +12a n ,n ∈N *.(1) 求数列{a n }的通项公式;(2) 设数列{b n }满足:b 1=1,b n -b n -1=2a n (n ≥2),数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为T n ,求证:T n <2;(3)若T n ≤λ(n +4)对任意n ∈N *恒成立,求λ的取值范围.【导学号:56394043】[解] (1)n =1时,a 1=a 21+12a 1,∴a 1=12.⎩⎪⎨⎪⎧S n -1=a 2n -1+12a n -1S n =a 2n +12a n⇒a n =a 2n -a 2n -1+12a n -12a n -1,⇒(a n +a n -1)⎝ ⎛⎭⎪⎫a n -a n -1-12=0,∵a n >0,∴a n -a n -1=12,∴{a n }是以12为首项,12为公差的等差数列.∴a n =12n .4分(2)证明:b n -b n -1=n ,⎩⎪⎨⎪⎧b 2-b 1=2b 3-b 2=3⋮b n -b n -1=n⇒b n -b 1=n +n -2⇒b n =n n +2.1b n=2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1,即T n <2. (3)由2nn +1≤λ(n +4)得λ≥2nn +n +=2n +4n +5,当且仅当n =2时,2n +4n+5有最大值29,∴λ≥29.16分19.(本小题满分16分)(中原名校豫南九校2017届第四次质量考评)设等差数列{a n }的前n 项和为S n ,且S 5=a 5+a 6=25.(1)求{a n }的通项公式;(2)若不等式2S n +8n +27>(-1)nk (a n +4)对所有的正整数n 都成立,求实数k 的取值范围. [解] (1)设公差为d ,则5a 1+5×42d =a 1+4d +a 1+5d =25,∴a 1=-1,d =3.∴{a n }的通项公式为a n =3n -4. 6分(2)S n =-n +3nn -2,2S n +8n +27=3n 2+3n +27,a n +4=3n ;8分(-1)nk <n +1+9n,当n 为奇数时,k >-⎝ ⎛⎭⎪⎫n +1+9n ;当n 为偶数时,k <n +1+9n,∵n +1+9n ≥7,当且仅当n =3时取等号,∴当n 为奇数时,n +1+9n的最小值为7,当n 为偶数时,n =4时,n +1+9n 的最小值为294,∴-7<k <294.16分20.(本小题满分16分)设A (x 1,y 1),B (x 2,y 2)是函数f (x )=12+log 2x1-x 的图象上任意两点,且OM →=12(OA →+OB →),已知点M 的横坐标为12.(1)求证:M 点的纵坐标为定值;(2)若S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝⎛⎭⎪⎫n -1n ,n ∈N *,且n ≥2,求S n;(3)已知a n=⎩⎪⎨⎪⎧23,n =1,1S n+Sn +1+,n ≥2.其中n ∈N *.T n 为数列{a n }的前n 项和,若T n <λ(S n +1+1)对一切n ∈N *都成立,试求λ的取值范围.【导学号:56394044】[解] (1)证明:∵OM →=12(OA →+OB →),∴M 是AB 的中点.设M 点的坐标为(x ,y ),由12(x 1+x 2)=x =12,得x 1+x 2=1,则x 1=1-x 2或x 2=1-x 1.2分 而y =12(y 1+y 2)=12[f (x 1)+f (x 2)]=12⎝ ⎛⎭⎪⎫12+log 2x 11-x 1+12+log 2x 21-x 2 =12⎝ ⎛⎭⎪⎫1+log 2x 11-x 1+log 2x 21-x 2=12⎝ ⎛⎭⎪⎫1+log 2x 11-x 1·x 21-x 2 =12⎝ ⎛⎭⎪⎫1+log 2x 1x 2x 1x 2=12()1+0=12,∴M 点的纵坐标为定值12. 5分(2)由(1),知x 1+x 2=1,f (x 1)+f (x 2)=y 1+y 2=1,S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n 2+…+f ⎝ ⎛⎭⎪⎫n -1n ,S n =f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫n -2n +…+f ⎝ ⎛⎭⎪⎫1n , 两式相加,得2S n =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n +⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2n +f ⎝ ⎛⎭⎪⎫n -2n +…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫1n =1+1+…+1n -1,∴S n=n -12(n ≥2,n ∈N *).8分(3)当n ≥2时,a n =1S n +S n +1+=4n +n +=4⎝⎛⎭⎪⎫1n +1-1n +2.10分 T n =a 1+a 2+a 3+…+a n =23+4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=23+4⎝ ⎛⎭⎪⎫13-1n +2=2n n +2. 12分由T n <λ(S n +1+1),得2n n +2<λ·n +22.∴λ>4n n +2=4nn 2+4n +4=4n +4n+4. ∵n +4n≥4,当且仅当n =2时等号成立,∴4n +4n+4≤44+4=12. 因此λ>12,即λ的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 16分。
专题六 第一讲A 组1.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为导学号 52134691( B )A . 2B .823C . 3D .833[解析] 由l 1∥l 2知3=a (a -2)且2a ≠6(a -2), 2a 2≠18,求得a =-1,∴l 1:x -y +6=0,l 2:x -y +23=0,两条平行直线l 1与l 2间的距离为d =|6-23|12+-2=823.故选B . 2.(文)(2017·哈三中一模)直线x +y +2=0截圆x 2+y 2=4所得劣弧所对圆心角为导学号 52134692( D )A .π6B .π3C .2π3D .5π6[解析] 弦心距d =|2|2=1,半径r =2,∴劣弧所对的圆心角为2π3.(理)⊙C 1:(x -1)2+y 2=4与⊙C 2:(x +1)2+(y -3)2=9相交弦所在直线为l ,则l 被⊙O :x 2+y 2=4截得弦长为导学号 52134693( D )A .13B .4C .43913D .83913[解析] 由⊙C 1与⊙C 2的方程相减得l :2x -3y +2=0. 圆心O (0,0)到l 的距离d =21313,⊙O 的半径R =2,∴截得弦长为2R 2-d 2=24-413=83913. 3.(2017·湖南岳阳一模)已知圆C :x 2+(y -3)2=4,过A (-1,0)的直线l 与圆C 相交于P ,Q 两点.若|PQ |=23,则直线l 的方程为导学号 52134694( B )A .x =-1或4x +3y -4=0B .x =-1或4x -3y +4=0C .x =1或4x -3y +4=0D .x =1或4x +3y -4=0[解析] 当直线l 与x 轴垂直时,易知x =-1符合题意;当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),由|PQ |=23,则圆心C 到直线l 的距离d =|-k +3|k 2+1=1,解得k =43,此时直线l 的方程为y =43(x +1),故所求直线l 的方程为x =-1或4x -3y +4=0.4.(2017·南昌一模)已知点P 在直线x +3y -2=0上,点Q 在直线x +3y +6=0上,线段PQ 的中点为M (x 0,y 0),且y 0<x 0+2,则y 0x 0的取值范围是导学号 52134695( D )A .[-13,0)B .(-13,0)C .(-13,+∞)D .(-∞,-13)∪(0,+∞)[解析] 本题考查点到直线的距离、直线的斜率.由题意得|x 0+3y 0-2|10=|x 0+3y 0+6|10, 整理得x 0+3y 0+2=0.又y 0<x 0+2,设y 0x 0=k OM ,如图,当点位于线段AB (不包括端点)上时,k OM >0,当点位于射线BN (不包括端点B )上时,k OM <-13,所以y 0x 0的取值范围是(-∞,-13)∪(0,+∞).故选D .5.(2017·重庆适应性测试)已知圆C :(x -1)2+(y -2)2=2与y 轴在第二象限所围区域的面积为S ,直线y =2x +b 分圆C 的内部为两部分,其中一部分的面积也为S ,则b =导学号 52134696( D )A .- 6B .± 6C .- 5D .± 5[解析] 本题主要考查圆的性质、点到直线的距离公式与数形结合思想.记圆C 与y 轴的两个交点分别是A ,B ,圆心C 到y 轴的距离为1,且|CA |=|CB |=2,则CA ⊥CB ,因此圆心C (1,2)到直线2x -y +b =0的距离也等于1才符合题意,于是有|2×1-2+b |5=1,解得b =±5,故选D . 6.(2017·广东综合测试)已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是原点,且有|OA →+OB →|≥33|AB →|,则k 的取值范围是导学号 52134697( C ) A .(3,+∞) B .[2,+∞) C .[2,22)D .[3,22][解析] 本题考查直线与圆的位置关系、平面向量的运算.设AB 的中点为D ,则OD ⊥AB ,因为|OA →+OB →|≥33|AB →|,所以|2OD →|≥33|AB →|,|AB →|≤23|OD →|,又因为|OD →|2+14|AB →|2=4,所以|OD →|≥1.因为直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点,所以|OD →|<2,所以1≤⎪⎪⎪⎪⎪⎪-k 2<2,解得2≤k <22, 故选C .7.若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__2__.导学号 52134698[解析] 直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)交于A ,B 两点,O 为坐标原点,且∠AOB =120°,则圆心(0,0)到直线3x -4y +5=0的距离为12r ,即532+42=12r ,∴r =2.8.(2017·天津耀华中学月考)在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是__(-13,13)__.导学号 52134699[解析] 本题考查了直线与圆的位置关系,利用数形结合可解决此题,属中档题. 要使圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,只需满足圆心到直线的距离小于1即可.即|c |122+52<1,解|c |<13,∴-13<c <13.9.(2017·河北唐山调研)已知定点M (0,2),N (-2,0),直线l :kx -y -2k +2=0(k 为常数).导学号 52134700(1)若点M ,N 到直线l 的距离相等,求实数k 的值;(2)对于l 上任意一点P ,∠MPN 恒为锐角,求实数k 的取值范围. [解析] (1)∵点M ,N 到直线l 的距离相等, ∴l ∥MN 或l 过MN 的中点. ∵M (0,2),N (-2,0), ∴直线MN 的斜率k MN =1,MN 的中点坐标为C (-1,1).又∵直线l :kx -y -2k +2=0过定点D (2,2), ∴当l ∥MN 时,k =k MN =1; 当l 过MN 的中点时,k =k CD =13.综上可知,k 的值为1或13.(2)∵对于l 上任意一点P ,∠MPN 恒为锐角,∴l 与以MN 为直径的圆相离,即圆心到直线l 的距离大于半径, ∴d =|-k -1-2k +2|k 2+1>2,解得k <-17或k >1.10.(2017·济南模拟)已知点P (0,5)及圆C :x 2+y 2+4x -12y +24=0.导学号 52134701(1)若直线l 过点P 且被圆C 截得的线段为43,求l 的方程; (2)求过P 点的圆C 的弦的中点的轨迹方程.[解析] (1)如图所示,|AB |=43,将圆C 方程化为标准方程为(x +2)2+(y -6)2=16,所以圆C 的圆心坐标为(-2,6),半径r =4,设D 是线段AB 的中点,则CD ⊥AB ,所以|AD |=23,|AC |=4.C 点坐标为(-2,6).在Rt △ACD 中,可得|CD |=2.若直线l 的斜率存在,设为k ,则直线l 的方程为y -5=kx ,即kx -y +5=0. 由点C 到直线AB 的距离公式:|-2k -6+5|k 2+-2=2,得k =34.故直线l 的方程为3x -4y +20=0.直线l 的斜率不存在时,也满足题意,此时方程为x =0. 所以所求直线l 的方程为x =0或3x -4y +20=0.B 组1.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为导学号 52134702( D )A .-53或-35B .-32或-23C .-54或-45D .-43或-34[解析] 由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k ,则其直线方程为y +3=k (x -2),即kx -y -2k -3=0.∵光线与圆(x +3)2+(y -2)2=1相切,∴|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34.故选D .2.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=导学号 52134703( C )A .2 6B .8C .4 6D .10[解析] 由已知得k AB =3-21-4=-13,k CB =2+74-1=3,所以k AB ·k CB =-1,所以AB ⊥CB ,即△ABC 为直角三角形,其外接圆圆心为(1,-2),半径为5,所以外接圆方程为(x -1)2+(y +2)2=25,令x =0,得y =±26-2,所以|MN |=46,故选C .3.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A 、B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为导学号 52134704( A )A .x -y +5=0B .x +y -1=0C .x -y -5=0D .x +y -3=0[解析] 设圆x 2+y 2+2x -4y +a =0(a <3)的圆心为C ,弦AB 的中点为D ,易知C (-1,2),又D (-2,3),故直线CD 的斜率k CD =3-2-2--=-1, 则由CD ⊥l 知直线l 的斜率k l =-1k CD=1,故直线l 的方程为y -3=x +2,即x -y +5=0.4.已知点A (-2,0),B (0,2),若点C 是圆x 2-2ax +y 2+a 2-1=0上的动点,△ABC 面积的最小值为3-2,则a 的值为导学号 52134705( C )A .1B .-5C .1或-5D .5[解析] 解法一:圆的标准方程为(x -a )2+y 2=1,圆心M (a,0)到直线AB :x -y +2=0的距离为d =|a +2|2,可知圆上的点到直线AB 的最短距离为d -1=|a +2|2-1,(S △ABC )min =12×22×|a +2|-22=3-2,解得a =1或-5.解法二:圆的标准方程为(x -a )2+y 2=1,设C 的坐标为(a +cos θ,sin θ),C 点到直线AB :x -y +2=0的距离为d =|a +cos θ-sin θ+2|2=|2θ-π4+a +2|2. △ABC 的面积为S △ABC =12×22×|2θ-π4+a +2|2=|2sin(θ-π4)+a +2|,当a ≥0时,a +2-2=3-2,解得a =1; 当-2≤a <0时,|a +2-2|=3-2,无解; 当a <-2时,|a +2+2|=3-2,解得a =-5.解法三:设与AB 平行且与圆相切的直线l ′的方程为x -y +m =0(m ≠2),圆心M (a,0)到直线l ′的距离d =1,即|a +m |2=1,解得m =±2-a , 两平行线l ,l ′之间的距离就是圆上的点到直线AB 的最短距离, 即|m -2|2=|±2-a -2|2, (S △ABC )min =12×22×|±2-a -2|2=|±2-a -2|.当a ≥0时,|±2-a -2|=3-2,解得a =1. 当a <0时,|±2-a -2|=3-2,解得a =-5. 故a =1或-5.5.若直线x cos θ+y sin θ-1=0与圆(x -1)2+(y -sin θ)2=116相切,且θ为锐角,则该直线的斜率是导学号 52134706( A )A .-33B .- 3C .33D . 3[解析] 由条件知,|cos θ+sin 2θ-1|cos 2θ+sin 2θ=14, ∵θ为锐角,∴cos θ=12,∴sin θ=32.∴直线的斜率k =-cos θsin θ=-33,故选A .6.两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线l 1:2x -y +a =0,l 2:2x -y +a 2+1=0和圆:x 2+y 2+2x -4=0相切,则a 的取值范围是导学号 52134707( C )A .a >7或a <-3B .a >6或a <- 6C .-3≤a ≤-6或6≤a ≤7D .a ≥7或a ≤-3[解析] 本题主要考查直线和圆的位置关系、补集思想及分析、理解、解决问题的能力.两条平行线与圆都相交时,由⎩⎪⎨⎪⎧ -+a |5<5-+a 2+1|5<5得-6<a <6,两条直线都和圆相离时,由⎩⎪⎨⎪⎧-+a |5>5-+a 2+1|5>5得a <-3,或a >7,所以两条直线和圆“相切”时a的取值范围-3≤a ≤-6或6≤a ≤7,故选C .7.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若sin 2A +sin 2B =12sin 2C ,则直线ax -by +c =0被圆x 2+y 2=9所截得弦长为导学号 52134708[解析] 由正弦定理得a 2+b 2=12c 2,∴圆心到直线距离d =|c |a 2+b2=c12c 2=2,∴弦长l =2r 2-d 2=29-2=27.8.已知过点P (2,1)有且只有一条直线与圆C :x 2+y 2+2ax +ay +2a 2+a -1=0相切,则实数a =__-1__.导学号 52134709[解析] 由条件知点P 在⊙C 上,∴4+1+4a +a +2a 2+a -1=0,∴a =-1或-2. 当a =-1时,x 2+y 2-2x -y =0表示圆,当a =-2时,x 2+y 2-4x -2y +5=0不表示圆,∴a =-1.9.(2017·全国卷Ⅲ,20)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:导学号 52134710(1)能否出现AC ⊥BC 的情况?说明理由.(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. [解析] (1)不能出现AC ⊥BC 的情况.理由如下: 设A (x 1,0),B (x 2,0), 则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:BC 的中点坐标为(x 22,12),可得BC 的中垂线方程为y -12=x 2(x 2-x 22).由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x2x -x 22,又x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为(-m2,-12),半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-m22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。
专题能力训练17 椭圆、双曲线、抛物线能力突破训练1.(2017全国Ⅲ,理5)已知双曲线C:=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆=1有公共焦点,则C的方程为()A.=1B.=1C.=1D.=12.已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若<0,则y0的取值范围是() A.-B.-C.-D.-3.以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.84.已知双曲线=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为()A.=1B.=1C.=1D.=15.设双曲线=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的一个交点为P,设O为坐标原点.若=m+n(m,n∈R),且mn=,则该双曲线的离心率为()A. B.C. D.6.双曲线=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=.7.(2017全国Ⅰ,理15)已知双曲线C:=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若∠MAN=60°,则C的离心率为.如图,已知抛物线C1:y=x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.9.如图,动点M与两定点A(-1,0),B(1,0)构成△MAB,且直线MA,MB的斜率之积为4,设动点M的轨迹为C.(1)求轨迹C的方程;(2)设直线y=x+m(m>0)与y轴相交于点P,与轨迹C相交于点Q,R,且|PQ|<|PR|,求的取值范围.10.已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足||=·()+2.(1)求曲线C的方程;(2)点Q(x0,y0)(-2<x0<2)是曲线C上动点,曲线C在点Q处的切线为l,点P的坐标是(0,-1),l 与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.思维提升训练11.(2017全国Ⅰ,理10)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为()A.16B.14C.12D.1012.(2017全国Ⅱ,理16)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N,若M为FN的中点,则|FN|=.13.(2017山东,理14)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.14.已知圆C:(x+1)2+y2=20,点B(1,0),点A是圆C上的动点,线段AB的垂直平分线与线段AC 交于点P.(1)求动点P的轨迹C1的方程;(2)设M,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线C1于P,Q两点,求△MPQ面积的最大值.15.已知动点C是椭圆Ω:+y2=1(a>1)上的任意一点,AB是圆G:x2+(y-2)2=的一条直径(A,B 是端点),的最大值是.(1)求椭圆Ω的方程;(2)已知椭圆Ω的左、右焦点分别为点F1,F2,过点F2且与x轴不垂直的直线l交椭圆Ω于P,Q 两点.在线段OF2上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.参考答案专题能力训练17椭圆、双曲线、抛物线能力突破训练1.B解析由题意得,c=3.又a2+b2=c2,所以a2=4,b2=5,故C的方程为=1.2.A解析由条件知F1(-,0),F2(,0),=(--x0,-y0),=(-x0,-y0),-3<0. ①=1,=2+2.代入①得,∴-<y0<3.B解析不妨设抛物线C的方程为y2=2px(p>0),圆的方程为x2+y2=R2.因为|AB|=4,所以可设A(m,2).又因为|DE|=2,所以解得p2=16.故p=4,即C的焦点到准线的距离是4.4.D解析根据对称性,不妨设点A在第一象限,其坐标为(x,y),于是有则xy=b2=12.故所求双曲线的方程为=1,故选D.5.C解析在y=±x中令x=c,得A,B-,在双曲线=1中令x=c得P当点P的坐标为时,由=m+n,得-则-由得或(舍去),,-,∴e=同理,当点P的坐标为-时,e=故该双曲线的离心率为6.2解析∵四边形OABC是正方形,∴∠AOB=45°,∴不妨设直线OA的方程即双曲线的一条渐近线的方程为y=x=1,即a=b.又|OB|=2,∴c=2a2+b2=c2,即a2+a2=(2)2,可得a=2. 7解析如图所示,由题意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,|OP|=--设双曲线C的一条渐近线y=x的倾斜角为θ,则tanθ=-tanθ=, -,解得a2=3b2,∴e=8.解(1)由题意知直线PA的斜率存在,故可设直线PA的方程为y=k(x-t),由-消去y,整理得:x2-4kx+4kt=0,由于直线PA与抛物线相切,得k=t.因此,点A的坐标为(2t,t2).设圆C2的圆心为D(0,1),点B的坐标为(x0,y0),由题意知:点B,O关于直线PD对称,故--解得因此,点B的坐标为(2)由(1)知|AP|=t和直线PA的方程tx-y-t2=0.点B到直线PA的距离是d=设△PAB的面积为S(t),所以S(t)=|AP|·d=9.解(1)设M的坐标为(x,y),当x=-1时,直线MA的斜率不存在;当x=1时,直线MB的斜率不存在.于是x≠1,且x≠-1.此时,MA的斜率为,MB的斜率为-由题意,有-=4.整理,得4x2-y2-4=0.故动点M的轨迹C的方程为4x2-y2-4=0(x≠±1).(2)由--消去y,可得3x2-2mx-m2-4=0. ①对于方程①,其判别式Δ=(-2m)2-4×3(-m2-4)=16m2+48>0,而当1或-1为方程①的根时,m的值为-1或1.结合题设(m>0)可知,m>0,且m≠1.设Q,R的坐标分别为(x Q,y Q),(x R,y R),则x Q,x R为方程①的两根,因为|PQ|<|PR|,所以|x Q|<|x R|.因为x Q=-,x R=,且Q,R在同一条直线上,所以-=1+-此时>1,且2,所以1<1+-<3,且1+-,所以1<<3,且综上所述,的取值范围是10.解(1)由题意可知=(-2-x,1-y),=(2-x,1-y),=(x,y),=(0,2).∵||=()+2,-=2y+2,∴x2=4y.∴曲线C的方程为x2=4y.(2)设Q,则S△QAB=2-=2-∵y=,∴y'=x,∴k l=x0,∴切线l的方程为y-x0(x-x0)与y轴交点H-,|PH|=-=1-直线PA的方程为y=-x-1,直线PB的方程为y=x-1,由---得x D=-由--得x E=,∴S△PDE=|x D-x E|·|PH|=1-,∴△QAB与△PDE的面积之比为2.思维提升训练11.A解析方法一:由题意,易知直线l1,l2斜率不存在时,不合题意.设直线l1方程为y=k1(x-1),联立抛物线方程,得-消去y,得x2-2x-4x+=0,所以x1+x2=同理,直线l2与抛物线的交点满足x3+x4=由抛物线定义可知|AB|+|DE|=x1+x2+x3+x4+2p=+4=+8≥2+8=16, 当且仅当k1=-k2=1(或-1)时,取得等号.方法二:如图所示,由题意可得F(1,0),设AB倾斜角为不妨令∈作AK1垂直准线,AK2垂直x轴,结合图形,根据抛物线的定义,可得所以|AF|·cosθ+2=|AF|,即|AF|=-同理可得|BF|=,所以|AB|=-又DE与AB垂直,即DE的倾斜角为+θ,则|DE|=,所以|AB|+|DE|=16,当θ=时取等号,即|AB|+|DE|最小值为16,故选A.12.6解析设N(0,a),由题意可知F(2,0).又M为FN的中点,则M因为点M在抛物线C上,所以=8,即a2=32,即a=±4所以N(0,±4.所以|FN|=-=6.13.y=±x 解析抛物线x2=2py的焦点F,准线方程为y=-设A(x1,y1),B(x2,y2),则|AF|+|BF|=y1++y2+=y1+y2+p=4|OF|=4=2p.所以y1+y2=p.联立双曲线与抛物线方程得-消去x,得a2y2-2pb2y+a2b2=0.所以y1+y2==p,所以所以该双曲线的渐近线方程为y=±x.14.解(1)由已知可得,点P满足|PB|+|PC|=|AC|=2>2=|BC|,所以动点P的轨迹C1是一个椭圆,其中2a=2c=2.动点P的轨迹C1的方程为=1.(2)设N(t,t2),则PQ的方程为y-t2=2t(x-t)y=2tx-t2.联立方程组-消去y整理,得(4+20t2)x2-20t3x+5t4-20=0,有--而|PQ|=|x1-x2|=-,点M到PQ的高为h=,由S△MPQ=|PQ|h代入化简,得S△MPQ=--,当且仅当t2=10时,S△MPQ可取最大值15.解(1)设点C的坐标为(x,y),则+y2=1.连接CG,由,又G(0,2),=(-x,2-y),可得=x2+(y-2)2-=a(1-y2)+(y-2)2-=-(a-1)y2-4y+a+,其中y∈[-1,1].因为a>1,所以当y=--1,即1<a≤3时,取y=-1,得有最大值-(a-1)+4+a+,与条件矛盾;当y=->-1,即a>3时,的最大值是---,由条件得---,即a2-7a+10=0,解得a=5或a=2(舍去).综上所述,椭圆Ω的方程是+y2=1.(2)设点P(x1,y1),Q(x2,y2),PQ的中点坐标为(x0,y0),则满足=1,=1,两式相减,整理,得--=-=-,从而直线PQ的方程为y-y0=-(x-x0).又右焦点F2的坐标是(2,0),将点F2的坐标代入PQ的方程得-y0=-(2-x0),因为直线l与x轴不垂直,所以2x0-=5>0,从而0<x0<2.假设在线段OF2上存在点M(m,0)(0<m<2),使得以MP,MQ为邻边的平行四边形是菱形,则线段PQ的垂直平分线必过点M,而线段PQ的垂直平分线方程是y-y0=(x-x0),将点M(m,0)代入生活的色彩就是学习得-y0=(m-x0),得m=x0,从而m K12的学习需要努力专业专心坚持。
专题能力训练直线与圆锥曲线能力突破训练.已知为坐标原点是椭圆(>>)的左焦点分别为的左、右顶点为上一点,且⊥轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为().....(江西赣州二模)已知双曲线(>)的离心率为,则抛物线的焦点到双曲线的渐近线的距离是().....如果与抛物线相切倾斜角为°的直线与轴和轴的交点分别是和,那么过两点的最小圆截抛物线的准线所得的弦长为()..(河南六市第二次联考)已知双曲线Γ(>>)的左、右焦点分别为,椭圆Γ的离心率为,直线过与双曲线交于两点,若∠∠,则双曲线Γ的两条渐近线的倾斜角分别为()°和°°和°°和°°和°.平面直角坐标系中,双曲线(>>)的渐近线与抛物线(>)交于点.若△的垂心为的焦点,则的离心率为..已知椭圆(>>)的右焦点(),过点且与坐标轴不垂直的直线与椭圆交于两点,当直线经过椭圆的一个顶点时其倾斜角恰好为°.()求椭圆的方程.()设为坐标原点,线段上是否存在点(),使得?若存在,求出实数的取值范围;若不存在,说明理由..(浙江)如图,已知抛物线,点,抛物线上的点().过点作直线的垂线,垂足为.()求直线斜率的取值范围;()求·的最大值..已知椭圆(>>)的离心率为()()(),△的面积为.()求椭圆的方程;()设是椭圆上一点,直线与轴交于点,直线与轴交于点,求证·为定值.。
2018年高考数学(理)二轮复习讲练测专题六 解析几何考向一 直线与圆【高考改编☆回顾基础】2x +y =0垂直的直线方程为________. 【答案】y=12x【解析】因为直线2x +y =0的斜率为-2,所以所求直线的斜率为12,所以所求直线方程为y =12x.2.【弦长问题】【2016·全国卷Ⅰ改编】设直线y =x +22与圆C :x 2+y 2-22y -2=0相交于A ,B 两点,则|AB|=________. 【答案】2 33.【直线与圆,圆与圆的位置关系】【2016·山东卷改编】已知圆M :x 2+y 2-2ay =0(a>0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是________. 【答案】相交 【解析】由垂径定理得a 22+(2)2=a 2,解得a 2=4,∴圆M :x 2+(y -2)2=4,∴圆M 与圆N 的圆心距d =(0-1)2+(2-1)2=2.∵2-1<2<2+1,∴两圆相交.4.【椭圆的几何性质、直线与圆的位置关系】【2017课标3,改编】已知椭圆C:22221x y a b+=,(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 .【解析】【命题预测☆看准方向】从近五年的高考试题来看,高考的重点是求圆的方程、求与圆有关的轨迹方程、直线与圆的位置关系、弦长问题、切线问题、圆与圆的位置关系,圆与圆锥曲线的交汇问题是高考的热点,经常以选择题、解答题的形式出现.另外,从高考试题看,涉及直线、圆的问题有与圆锥曲线等综合命题趋势.复习中应注意围绕圆的方程、直线与圆的位置关系、圆与圆的位置关系等,其中经常考查的是圆与圆位置关系中的动点轨迹,直线与圆的位置关系中的弦长问题、切线问题、参数的取值范围等.【典例分析☆提升能力】【例1】【2018届北京丰台二中高三上学期期中】已知点()2,0P 及圆22:6440C x y x y +-++=.(Ⅰ)设过P 的直线1l 与圆C 交于M , N 两点,当4MN =时,求以MN 为直径的圆Q 的方程.(Ⅱ)设直线10ax y -+=与圆C 交于A , B 两点,是否存在实数a ,使得过点P 的直线l ,垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.【答案】(1) ()2224x y -+= (2) 不存在实数a ,使得过点()2,0P 的直线2l 垂直平分弦AB .【解析】试题分析:(1)由利用两点间的距离公式求出圆心C 到P 的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d ,发现|CP|与d 相等,所以得到P 为MN 的中点,所以以MN 为直径的圆的圆心坐标即为P 的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(2)把已知直线的方程代入到圆的方程中消去y 得到关于x 的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a 的不等式,求出不等式的解集即可得到a 的取值范围,利用反证法证明证明即可.(Ⅱ)把直线10ax y -+=及1y ax =+代入圆C 的方程,消去y ,整理得:()()2216190ax a x ++-+=,由于直线10ax y -+=交圆C 于A , B 两点,故()()223613610a a ∆=--+>,即20a ->,解得0a <.则实数a 的取值范围是(),0-∞. 设符合条件的实数a 存在,由于2l 垂直平分弦AB ,故圆心()3,2C -必在直线2l 上, 所以2l 的斜率2PC k =,所以12AB k a ==, 由于()1,02∉-∞, 故不存在实数a ,使得过点()2,0P 的直线2l 垂直平分弦AB .【趁热打铁】【2018届江苏省兴化市楚水实验学校、黄桥中学、口岸中学三校高三12月联考】经过点()2,0且圆心是直线2x =与直线4x y +=的交点的圆的标准方程为__________. 【答案】()()22224x y -+-=【解析】直线2x =与直线4x y +=的交点为()2,2 即圆心为()2,2,因为圆经过点()2,0所以半径为2,故圆的标准方程为()()22224x y -+-= 故答案为()()22224x y -+-=【例2】已知圆C 经过点A(0,2),B(2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x +4y +5=0被圆C 所截得的弦长为2 3.点P 为圆C 上异于A ,B 的任意一点,直线PA 与x 轴交于点M ,直线PB 与y 轴交于点N. (1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求BA 1→·BA 2→; (3)求证:|AN|·|BM|为定值.【答案】(1)x 2+y 2=4.(2)3.(3)证明:见解析.(2)将y =x +1代入x 2+y 2=4得2x 2+2x -3=0. 设A 1(x 1,y 1),A 2(x 2,y 2), 则x 1+x 2=-1,x 1x 2=-32.∴BA 1→·BA 2→=(x 1-2)(x 2-2)+y 1y 2=x 1x 2-2(x 1+x 2)+4+(x 1+1)(x 2+1)=2x 1x 2-(x 1+x 2)+5=-3+1+5=3. (3)证明:当直线PA 的斜率不存在时,|AN|·|BM|=8. 当直线PA 与直线PB 的斜率都存在时,设P(x 0,y 0), 直线PA 的方程为y =y 0-2x 0x +2,令y =0得M ⎝ ⎛⎭⎪⎫2x 02-y 0,0.直线PB 的方程为y =y 0x 0-2(x -2),令x =0得N ⎝ ⎛⎭⎪⎫0,2y 02-x 0.∴|AN|·|BM|=⎝ ⎛⎭⎪⎫2-2y 02-x 0⎝ ⎛⎭⎪⎫2-2x 02-y 0=4+4⎣⎢⎡⎦⎥⎤y 0x 0-2+x 0y 0-2+x 0y 0(x 0-2)(y 0-2) = 4 + 4·y 20 -2y 0 + x 20 -2x 0 + x 0 y 0 (x 0 -2)(y 0 -2) = 4 + 4·4-2y 0 -2x 0 + x 0 y 0(x 0 -2)(y 0 -2) = 4 +4×4-2y 0 -2x 0 + x 0 y 04-2y 0 -2x 0 + x 0 y 0 = 8, 故|AN|·|BM|为定值8.【趁热打铁】(1)已知圆C 的方程为x 2+y 2+8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围为________________.(2)已知圆C :x 2+y 2-ax +2y -a +4=0关于直线l 1:ax +3y -5=0对称,过点P(3,-2)的直线l 2与圆C 交于A ,B 两点,则弦长|AB|的最小值为________________. 【答案】(1)-43≤k≤0 (2)2 3.(2)圆C :x 2+y 2-ax +2y -a +4=0,其圆心C 为⎝ ⎛⎭⎪⎫a 2,-1,半径r =12a 2+4a -12.∵圆C 关于直线l 1:ax +3y -5=0对称,∴a22-3-5=0,解得a =±4.当a =-4时,半径小于0,不合题意,舍去. ∴a =4,则圆心C 为(2,-1),半径r = 5.由|PC|=2<5,可知点P 在圆内,则当弦长|AB|最小时,直线l 2与PC 所在直线垂直. 此时圆心C 到直线l 2的距离d =|PC|=2, 弦长|AB|=2r 2-d 2=23, 即所求最小值为2 3.【方法总结☆全面提升】1.要注意几种直线方程的局限性,点斜式、斜截式方程要求直线不能与x 轴垂直,两点式方程要求直线不能与坐标轴垂直,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.2.求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即若斜率存在时,“斜率相等”或“互为负倒数”;若出现斜率不存在的情况,可考虑用数形结合的方法去研究.3.求圆的方程一般有两类方法:(1)几何法,通过圆的性质、直线与圆、圆与圆的位置关系,求得圆的基本量和方程; (2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.4.直线与圆的位置关系: (1)代数法.将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离;(2)几何法.把圆心到直线的距离d 和半径r 的大小加以比较:d<r ⇔相交;d =r ⇔相切;d>r ⇔相离. 优先选用几何法.【规范示例☆避免陷阱】【典例】已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A,B.①求圆1C 的圆心坐标.②求线段AB 的中点M 的轨迹C 的方程.③是否存在实数k,使得直线L:y=k(x-4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 【规范解答】: ①由22650x y x +-+=,得(x-3)2+y 2=4, 从而可知圆C 1的圆心坐标为(3,0).②设线段AB 的中点M(x,y), 由弦的性质可知C 1M ⊥AB,即C 1M ⊥OM.故点M 的轨迹是以OC 1为直径的圆,该圆的圆心为C ,半径r=|OC 1|=3=,其方程为+y 2=,即x 2+y 2-3x=0. 又因为点M 为线段AB 的中点,所以点M 在圆C 1内,所以<2.又x 2+y 2-3x=0,所以x> 易知x≤3,所以<x≤3.所以线段AB 的中点M 的轨迹C 的方程为x 2+y 2-3x=0【反思提高】处理有关圆的问题,要特别注意圆心、半径及平面几何知识的应用,如经常用到弦心距、半径、弦长的一半构成的直角三角形,利用圆的一些特殊几何性质解题,往往使问题简化. 【误区警示】1.求轨迹方程常用的方法有直接法、定义法、相关点法(坐标代入法)等,解决此类问题时要读懂题目给出的条件,进行合理转化,准确得出结论.本题确定轨迹方程,易于忽视横坐标的限制范围.2.涉及直线与圆的位置关系时,应多考虑圆的几何性质,利用几何法进行运算求解往往会减少运算量.考向二 椭圆、双曲线、抛物线【高考改编☆回顾基础】1.【椭圆的方程及其几何性质】【2017·江苏卷改编】椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为12,椭圆的半焦距为c 且a 2=4c ,则椭圆E 的标准方程为____________. 【答案】x 24+y23=1【解析】因为椭圆E 的离心率为12,所以e =c a =12,又a 2=4c,所以a =2,c =1,于是b =a 2-c 2=3,因此椭圆E 的标准方程是x 24+y23=1.2.【双曲线的方程及其几何性质】【2017·全国卷Ⅲ】双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________. 【答案】5【解析】令x 2a 2-y 29=0,得双曲线的渐近线方程为y =±3a x ,∵双曲线x 2a 2-y 29=1(a>0)的一条渐近线方程为y =35x ,∴a =5.3. 【抛物线方程及其几何性质】【2017课标1,改编】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB|+|DE|的最小值为 . 【答案】16【命题预测☆看准方向】从近五年的高考试题来看,圆锥曲线的定义、标准方程、几何性质等是高考考查的重点,也是高考命题的基本元素.考查的角度有:对圆锥曲线的定义的理解及定义的应用,求圆锥曲线的标准方程,求圆锥曲线的离心率以及向量、直线、圆锥曲线的小综合. 考查的重点是依据圆锥曲线的几何性质求离心率;根据圆锥曲线的定义求标准方程;圆锥曲线与向量的小综合;两种圆锥曲线间的小综合;直线与圆锥曲线的小综合;圆锥曲线的综合应用等.【典例分析☆提升能力】【例1】【2017课标II ,理9】若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B 32 D .233【答案】A 【解析】【趁热打铁】【2018届吉林省实验中学高三上第五次月考(一模)】F 1,F 2分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于A 、B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为357 【答案】D【解析】设AB m =,则112212,24AF BF BF a AF AF a m a =-==+∴=,由余弦定理得()()222022464264cos60287,7c a a a a a e e =+-⨯⨯⨯=∴== 选D.【例2】【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。
6.直线、圆、圆锥曲线■要点重温…………………………………………………………………………· 1.直线的倾斜角与斜率(1)倾斜角的范围为[0,π).(2)经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的倾斜角为α(α≠90°),则斜率为k =tan α=y 1-y 2x 1-x 2(x 1≠x 2); (3)解决直线的倾斜角与斜率的问题,可借助k =tan α的图象(如图22).图22[应用1] 已知直线l 过P (-1,2),且与以A (-2,-3),B (3,0)为端点的线段相交,求直线l 的斜率的取值范围. [答案] ⎝ ⎛⎦⎥⎤-∞,-12∪[5,+∞) 2.直线方程的几种形式:点斜式:y -y 0=k (x -x 0);斜截式:y =kx +b ;两点式:y -y 1y 2-y 1=x -x 1x 2-x 1;截距式:x a +yb=1(a ≠0,b ≠0);一般式:Ax +By +C =0(A 2+B 2≠0).要注意由于“截距为零”或“斜率不存在”等特殊情况造成丢解.[应用2] 若直线在x 轴上的截距是在y 轴上截距的2倍,且过点(1,2),则此直线方程为________.[答案] x +2y -5=0或y =2x 3.两直线的平行与垂直(1)l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.(2)l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则有l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0.特别提醒: A 1A 2=B 1B 2≠C 1C 2,A 1A 2≠B 1B 2,A 1A 2=B 1B 2=C 1C 2仅是两直线平行、相交、重合的充分不必要条件.[应用3] 设直线l 1:x +my +6=0和l 2:(m -2)x +3y +2m =0,当m =________时,l 1∥l 2;当m =________时,l 1⊥l 2;当________时l 1与l 2相交;当m =________时,l 1与l 2重合.[答案] -1 12 m ≠3且m ≠-1 34.点到直线的距离及两平行直线间的距离(1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B 2;(2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.[应用4] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________. [答案] 1513265.圆的方程:(1)标准方程:(x -a )2+(y -b )2=r 2;(2)一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0);(3)以线段P 1P 2为直径的圆方程:(x -x 1)(x -x 2)+ (y -y 1)(y -y 2)=0.(4)求圆的方程的方法:待定系数法,即根据题意列出关于a ,b ,r 或D ,E ,F 的方程组,求得a ,b ,r 或D ,E ,F 的对应值,代入圆的标准方程或一般方程便可.解题时注意圆的几何性质的应用.[应用5] (1) 若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则a =________.(2)求与x 轴相切,圆心在直线3x -y =0上,且被直线x -y =0截得的弦长为27的圆的方程. [答案] (1)-1(2)x 2+y 2-2x -6y +1=0或 x 2+y 2+2x +6y +1=0 6.直线与圆的位置关系(1)若直线与圆相交,设弦长为l ,弦心距为d ,半径为r ,则l =2r 2-d 2. (2)圆O 内过点A 的最长弦即为过该点的直径,最短弦为过该点且垂直于直径的弦. (3)讨论直线与圆的位置关系时,一般不用Δ>0,Δ=0,Δ<0,而用圆心到直线的距离d 与圆的半径r 之间的关系,即d <r ,d =r ,d >r ,分别确定相交、相切、相离的位置关系. [应用6] 过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0D .4x +y -3=0[解析] 点(3,1)与圆心(1,0)的连线的斜率为12,所以直线AB 的斜率为-2,显然(1,1)为其中一个切点,所以直线AB 的方程为y -1=-2(x -1),化简得2x +y -3=0.故选A. [答案] A7.(1) 圆锥曲线的定义和性质[应用7] (1)已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线x 2a-y 2=1的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是( ) A.19 B .125 C.15D .13(2)若x 2m +y 2n=1表示椭圆,则m ,n 应满足的关系是________.(3)已知椭圆的离心率为12,且过点(2,3),求椭圆的标准方程.[解析] (1)由抛物线定义可得M 点到准线的距离为5,∴p =8,∴抛物线方程为y 2=16x ,∴M (1,4),点A (-a ,0),由AM 的斜率等于渐近线的斜率得41+a =1a ,解得a =19,故选A.[答案] (1)A (2)m >0,n >0,m ≠n (3)x 216+ y 212=1和 x 2434+ y 2433=18.(1)在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意二次项的系数是否为零,利用解的情况可判断位置关系:有两解时相交;无解时相离;有唯一解时,在椭圆中相切,在双曲线中需注意直线与渐近线的关系,在抛物线中需注意直线与对称轴的关系,而后判断是否相切.(2)直线与圆锥曲线相交时的弦长问题斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长 |P 1P 2|=+k2x 1+x 22-4x 1x 2]或|P 1P 2|=⎝ ⎛⎭⎪⎫1+1k 2y 1+y 22-4y 1y 2].(3)过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于C (x 1,y 1),D (x 2,y 2),则①焦半径|CF |=x 1+p2;②弦长|CD |=x 1+x 2+p ;③x 1x 2=p 24,y 1y 2=-p 2.[应用8] 已知抛物线的方程为y 2=2px (p >0),过抛物线上一点M (p ,2p )和抛物线的焦点F 作直线l 交抛物线于另一点N ,则|NF |∶|FM |等于( ) A .1∶ 2 B .1∶ 3 C .1∶2D .1∶3[解析] 由题意可知直线l 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2,联立方程⎩⎪⎨⎪⎧y 2=2px ,y =22⎝ ⎛⎭⎪⎫x -p 2得N ⎝ ⎛⎭⎪⎫p4,-22p ,所以|NF |=p 4+p 2=34p ,|FM |=p +p 2=32p ,所以|NF |∶|FM |=1∶2. [答案] C[应用9] 已知双曲线x 2-y 22=1,过点A (1,1)能否作直线l ,使l 与双曲线交于P 、Q 两点,并且A 为线段PQ 的中点?若存在,求出直线l 的方程;若不存在,说明理由.[解] 设被A (1,1)所平分的弦所在直线方程为y =k (x -1)+1. 代入双曲线方程x 2-y 22=1,整理得,(2-k 2)x 2+2k (k -1)x -3+2k -k 2=0, 由Δ=4k 2(k -1)2-4(2-k 2)(2k -3-k 2)>0, 解得k <32.设直线与双曲线交点为M (x 1,y 1),N (x 2,y 2), 由根与系数的关系,得x 1+x 2=2kk -k 2-2,点A (1,1)是弦中点,则x 1+x 22=1.∴k k -k 2-2=1,解得k =2>32,故不存在被点A (1,1)平分的弦.■查缺补漏…………………………………………………………………………·1.已知圆C :(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,直线3x +4y +2=0与圆C 相切,则该圆的方程为( ) A .(x -1)2+y 2=6425B .x 2+(y -1)2=6425C .(x -1)2+y 2=1 D .x 2+(y -1)2=1C [因为抛物线y 2=4x 的焦点为(1,0),所以a =1,b =0,又直线3x +4y +2=0与圆C 相切,得r =|3+2|5=1,所以该圆的方程为(x -1)2+y 2=1.]2.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±34x ,且其右焦点为(5,0),则双曲线C 的方程为( ) A.x 29-y 216=1B .x 216-y 29=1 C.x 23-y 24=1 D .x 24-y 23=1B [由题意得b a =34,c 2=a 2+b 2=25,所以a =4,b =3,所求双曲线方程为x 216-y 29=1.]3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,四个顶点构成的四边形的面积为12,直线l与椭圆C 交于A ,B 两点,且线段AB 的中点为M (-2,1),则直线l 的斜率为( ) A .13 B .32 C .12D .1C [由题意得c a =32,2ab =12⇒a 2=12,b 2=3,利用点差法得直线l 的斜率为-b 2x 中a 2y 中=--12×1=12,选C.] 4.若抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( )A .34B .32C .1D .2D [设抛物线的焦点为F (0,1),AB 的中点为M ,准线方程为y =-1,则点M 到准线的距离d =12(|AF |+|BF |)≥12|AB |=3,即点M 到准线的距离的最小值为d min =3,所以点M 到x轴的最短距离d ′min =d min -1=2,选D.]5.已知P 为椭圆x 225+y 216=1上的点,点M 为圆C 1:(x +3)2+y 2=1上的动点,点N 为圆C 2:(x -3)2+y 2=1上 的动点,则|PM |+|PN |的最大值为( ) A .8 B .12 C .16D . 20B [由题可知,(|PM |+|PN |)max =|PC 1|+|PC 2|+2=12,故选B.]6.过曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 1作曲线C 2:x 2+y 2=a 2的切线,设切点为M ,延长F 1M 交曲线C 3:y 2=2px (p >0)于点N ,其中C 1、C 3有一个共同的焦点,若|MF 1|=|MN |,则曲线C 1的离心率为( )A. 5 B .5-1 C.5+1 D .5+12D [如图所示,OM ⊥F 1N ,且M 为线段F 1N 的中点,所以AN =F 2N =2a ,F 2N ⊥F 1N ,所以在Rt△F 1F 2N 中,cos∠NF 1F 2=2b 2c =b c ,在Rt△F 1AN 中,cos∠F 1NA =2a 2b =a b ,又因为∠NF 1F 2=∠F 1NA ,所以b c =a b ,即c 2-a 2=b 2=ac ,解之得e =1+52,故选D.]7.已知双曲线C 1:x 24-y 2=1,双曲线C 2:x 2a 2-y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 2的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若S △OMF 2=16,且双曲线C 1,C 2的离心率相同,则双曲线C 2的实轴长是( ) A .32 B .16 C .8D .4B [因为双曲线C 2:x 2a 2-y 2b 2=1与双曲线C 1:x 24-y 2=1的离心率相同,所以e =c a =52,解得b a =12,即双曲线C 2的一条渐近线方程为y =12x ,即x -2y =0,又因为OM ⊥MF 2,△OMF 2的面积为16,所以12|OM |·|MF 2|=|MF 2|2=16,解得|MF 2|=4,即右焦点F 2(c,0)到渐近线x -2y =0的距离为4,所以c5=4,解得c =45,a =4552=8,2a =16,即双曲线C 2的实轴长为16.故选B.]8.抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线方程为( ) A .y 2=6x B .y 2=8x C .y 2=16xD .y 2=152xB [依题意,设M (x ,y ),|OF |=p 2,所以|MF |=2p ,x +p 2=2p ,x =3p2,y =3p ,又△MFO的面积为43,所以12×p 2×3p =43,p =4,所以抛物线方程为y 2=8x ,选B.]9.在平面直角坐标系xOy 中,直线l :y =2x -4,圆C 的半径为1,圆心在直线l 上,若圆C 上存在点M ,且M 在圆D :x 2+(y +1)2=4上,则圆心C 的横坐标a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤35,2B.⎣⎢⎡⎦⎥⎤0,125C. ⎣⎢⎡⎦⎥⎤2-25 5,2+25 5D.⎣⎢⎡⎦⎥⎤0,2-25 5∪⎣⎢⎡⎦⎥⎤2+25 5,4B [点M 既在圆C 上,又在圆D 上,所以圆C 和圆D 有公共点,圆C 的圆心为(a,2a -4) ,半径为1,圆D 的圆心为(0,-1) ,半径为2,则圆心距a 2+a -4+2=5a 2-12a +9 ,满足⎩⎨⎧5a 2-12a +9≤35a 2-12a +9≥1,解得:0≤a ≤125,故选B.]10.已知圆C :x 2+y 2=4,点P 为直线x +2y -9=0上一动点,过点P 向圆C 引两条切线PA 、PB,A 、B 为切点,则直线AB 经过定点A.⎝ ⎛⎭⎪⎫49,89 B .⎝ ⎛⎭⎪⎫29,49 C .(2,0)D .(9,0)A [设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0), 则PA :x 1x +y 1y =4;PB :x 2x +y 2y =4; 即x 1x 0+y 1y 0=4;x 2x 0+y 2y 0=4;因此A 、B 在直线x 0x +y 0y =4上,直线AB 方程为x 0x +y 0y =4,又x 0+2y 0-9=0,所以(9-2y 0)x +y 0y =4⇒y 0(y -2x )+9x -4=0即y -2x =0,9x -4=0⇒y =89,x =49,直线AB 经过定点⎝ ⎛⎭⎪⎫49,89,选A.] 11.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上、下顶点分别是B 1,B 2,点C 是B 1F 2的中点,若B 1F 1→·B 1F 2→=2,且CF 1⊥B 1F 2,则椭圆的方程为________.x 24+y 23=1 [由题意可得F 1(-c,0),F 2(c,0),B 1(0,b ),B 2(0,-b ),C ⎝ ⎛⎭⎪⎫c 2,b 2,B 1F 1→·B 1F 2→=(-c ,-b )·(c ,-b )=-c 2+b 2=2①,CF 1→⊥B 1F 2→,可得CF 1→·B 1F 2→=0,即有⎝⎛⎭⎪⎫-3c 2,-b 2·(c ,-b )=-32c 2+b 22=0②,解得c =1,b =3,a =b 2+c 2=2,可得椭圆的方程为x 24+y 23=1.]12.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.43[圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2,即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0,解得0≤k ≤43.故k 的最大值是43.]13.已知双曲线C :x 2a 2-y 2b2=1(b >a >0)的右焦点为F ,O 为坐标原点,若存在直线l 过点F 交双曲线C 的右支于A ,B 两点,使OA →·OB →=0,则双曲线离心率的取值范围是________.⎣⎢⎡⎭⎪⎫1+52,3 [设A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =my +c (0≤m <a b ),联立双曲线方程,消去x ,得(b 2m 2-a 2)y 2+2b 2mcy +b 4=0,所以y 1+y 2=-2b 2mc b 2m 2-a 2①,y 1y 2=b4b 2m 2-a2②.因为OA →·OB →=x 1x 2+y 1y 2=0,即m 2y 1y 2+mc (y 1+y 2)+c 2+y 1y 2=0,代入①②整理,得b 4m2-2b 2m 2c 2+c 2b 2m 2-a 2c 2+b 4=0,0≤m 2=b 4-a 2c 2b 2c 2-b 4<a 2b2.由b 4-a 2b 2≥0,得(c 2-a 2)2-a 2c 2≥0,即c 4-3a 2c 2+a 4≥0,e 4-3e 2+1≥0,解得e ≥1+52;由b 4-a 2c 2b 2c 2-b 4<a 2b2,得b 4-a 4-a 2c 2<0,即(c 2-a 2)2-a 4-a 2c 2<0,c 4-3a 2c 2<0,所以c a< 3.综上所述,e ∈⎣⎢⎡⎭⎪⎫1+52,3.]14.已知直线l :x =my +1过椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F ,抛物线x 2=43y 的焦点为椭圆C 的上顶点,且直线l 交椭圆C 于A ,B 两点. (1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且MA →=λ1AF →,MB →=λ2BF →,当m 变化时, λ1+λ2的值是否为定值?若是,求出这个定值,若不是,说明由.[解] (1)易知椭圆右焦点F (1,0),∴c =1,抛物线x 2=43y 的焦点坐标(0,3),∴b =3, ∴a 2=b 2+c 2=4. ∴椭圆C 的方程为x 24+y 23=1 .(2)易知m ≠0,M ⎝ ⎛⎭⎪⎫0,-1m ,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +1x 24+y23=1 ⇒(3m 2+4)y 2+6my -9=0,∴Δ=(6m )2+36(3m 2+4)=144(m 2+1)>0. ∴y 1+y 2=-6m 3m 2+4,y 1·y 2=-93m 2+4.又由MA →=λ1AF →,MB →=λ2BF →得:λ1=-1-1my 1,λ2=-1-1my 2.∴λ1+λ2=-2-1m ·y 1+y 2y 1·y 2=-83.15.已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率为12,它的一个顶点恰好是抛物线x2=43y 的焦点.(1)若A ,B 是椭圆C 上关于x 轴对称的任意两点,设点P (-4,0),连接PA 交椭圆C 于另一点E ,求证:直线BE 与x 轴相交于定点M ;(2)设O 为坐标原点,在(2)的条件下,过点M 的直线交椭圆C 于S ,T 两点,求OS →·OT →的取值范围.[解] (1)证明:设椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0),抛物线x 2=43y 的焦点为(0,3).由题意,可得⎩⎪⎨⎪⎧a 2-b 2a =12,b =3,∴⎩⎨⎧a =2,b = 3.∴椭圆C 的标准方程为x 24+y 23=1. 由题意可知直线PA 存在斜率,设直线PA 的方程为y =k (x +4),代入椭圆方程可得(4k 2+3)x 2+32k 2x +64k 2-12=0.由Δ=322k 4-4(4k 2+3)(64k 2-12)>0,有-12<k <12.设A (x 1,y 1),E (x 2,y 2),则B (x 1,-y 1),由根与系数的关系得x 1+x 2=-32k 24k 2+3①,x 1x 2=64k 2-124k 2+3②直线BE 的方程为y +y 1=y 2+y 1x 2-x 1(x -x 1), 令y =0,可得x M =x 2y 1-x 1y 1y 1+y 2+x 1=x 1y 2+x 2y 1y 1+y 2,将y 1=k (x 1+4),y 2=k (x 2+4)代入上式,整理可得x M =2x 1x 2+4x 1+x 2x 1+x 2+8③将①,②代入③整理可得x M =k 2--128k2-32k 2+k 2+=-1∴直线BE 与x 轴相交于定点M (-1,0).(2)当过点M 的直线ST 的斜率为0时,S (-2,0),T (2,0),此时OS →·OT →=-4.当过点M 的直线ST 的斜率不为0时,设直线ST 的方程为x =my -1,且设点S (x 1,y 1),T (x 2,y 2).联立⎩⎪⎨⎪⎧ x =my -1x 24+y 23=1,消去x 整理,得(3m 2+4)y 2-6my -9=0, 由根与系数的关系得:y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4. 从而OS →·OT →=x 1x 2+y 1y 2=(my 1-1)(my 2-1)+y 1y 2=(m 2+1)y 1y 2-m (y 1+y 2)+1=-m 2+3m 2+4-6m 23m 2+4+1=-12m 2-53m 2+4 =-4+113m 2+4∈⎝ ⎛⎦⎥⎤-4,-54综上所述,OS →·OT →的取值范围为⎣⎢⎡⎦⎥⎤-4,-54.。
专题能力训练18直线与圆锥曲线能力突破训练1.已知O为坐标原点,F是椭圆C:=1(a>b>0)的左焦点,A,B分别为C的左、右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE 的中点,则C的离心率为()A. B. C. D.2.(2017江西赣州二模)已知双曲线=1(a,b>0)的离心率为,则抛物线x2=4y的焦点到双曲线的渐近线的距离是()A. B. C. D.3.如果与抛物线y2=8x相切倾斜角为135°的直线l与x轴和y轴的交点分别是A和B,那么过A,B 两点的最小圆截抛物线y2=8x的准线所得的弦长为()A.4B.2C.2D.4.(2017河南六市第二次联考)已知双曲线Γ1:=1(a>0,b>0)的左、右焦点分别为F1,F2,椭圆Γ2:=1的离心率为e,直线MN过F2与双曲线交于M,N两点,若cos∠F1MN=cos∠F1F2M,=e,则双曲线Γ1的两条渐近线的倾斜角分别为()A.30°和150°B.45°和135°C.60°和120°D.15°和165°5.平面直角坐标系xOy中,双曲线C1:=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为.6.已知椭圆C:=1(a>b>0)的右焦点F(1,0),过点F且与坐标轴不垂直的直线与椭圆交于P,Q两点,当直线PQ经过椭圆的一个顶点时其倾斜角恰好为60°.(1)求椭圆C的方程.(2)设O为坐标原点,线段OF上是否存在点T(t,0),使得?若存在,求出实数t的取值范围;若不存在,说明理由.7.(2017浙江,21)如图,已知抛物线x2=y,点A,B,抛物线上的点P(x,y).过点B作直线AP的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求|P A|·|PQ|的最大值.8.已知椭圆C:=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线P A与y轴交于点M,直线PB与x轴交于点N,求证:|AN|·|BM|为定值.9.已知椭圆C:+y2=1与直线l:y=kx+m相交于E,F两点,且直线l与圆O:x2+y2=相切于点W(O为坐标原点).(1)证明:OE⊥OF;(2)设λ=,求实数λ的取值范围.思维提升训练10.定长为3的线段AB的两个端点A,B分别在x轴、y轴上滑动,动点P满足=2.(1)求点P的轨迹曲线C的方程;(2)若过点(1,0)的直线与曲线C交于M,N两点,求的最大值.11.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B 作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.12.已知椭圆E:=1(a>b>0)过点(0,),且离心率e=.(1)求椭圆E的方程;(2)设直线l:x=my-1(m∈R)交椭圆E于A,B两点,判断点G与以线段AB为直径的圆的位置关系,并说明理由.参考答案专题能力训练18直线与圆锥曲线能力突破训练1.A解析由题意,不妨设直线l的方程为y=k(x+a),k>0,分别令x=-c与x=0,得|FM|=k(a-c),|OE|=ka.设OE的中点为G,由△OBG∽△FBM,得,即,整理,得,故椭圆的离心率e=,故选A.2.B解析抛物线x2=4y的焦点为(0,1),双曲线=1(a,b>0)的离心率为,所以=2,双曲线的渐近线为y=±x=±2x,则抛物线x2=4y的焦点到双曲线的渐近线的距离是故选B.3.C解析设直线l的方程为y=-x+b,联立直线与抛物线方程,消元得y2+8y-8b=0.因为直线与抛物线相切,所以Δ=82-4×(-8b)=0,解得b=-2,故直线l的方程为x+y+2=0,从而A(-2,0),B(0,-2).因此过A,B两点的最小圆即为以AB为直径的圆,其方程为(x+1)2+(y+1)2=2,而抛物线y2=8x的准线方程为x=-2,此时圆心(-1,-1)到准线的距离为1,故所截弦长为2=2.4.C解析由题意可知=e=,∴2|F1M|=|F1N|.由cos∠F1MN=cos∠F1F2M,可得∠F1MN=∠F1F2M,即|F1M|=|F1F2|=2c,|F1N|=4c,由双曲线的定义可得|MF2|=2c-2a,|NF2|=4c-2a.取MF2的中点K,连接KF1,则|KM|=|KF2|=c-a.由勾股定理可得|F1K|2+|NK|2=|NF1|2,即4c2-(c-a)2+(5c-3a)2=16c2,整理可得(c-2a)(3c-a)=0,由双曲线的性质可得e==2,则双曲线Γ1的两条渐近线的倾斜角分别为60°和120°.故选C.5解析双曲线的渐近线为y=±x.由得A由得B∵F为△OAB的垂心,∴k AF·k OB=-1.即=-1,解得,,即可得e=6.解(1)由题意知c=1,又=tan60°=,所以b2=3,a2=b2+c2=4,所以椭圆的方程为=1.(2)设直线PQ的方程为y=k(x-1)(k≠0),代入=1,得(3+4k2)x2-8k2x+4k2-12=0,设P(x1,y1),Q(x2,y2),线段PQ的中点为R(x0,y0),则x0=,y0=k(x0-1)=-由,得()=(2)=0,所以直线TR为直线PQ的垂直平分线,直线TR的方程为y+=-令y=0得点T的横坐标t=因为k2∈(0,+∞),所以+4∈(4,+∞),所以t所以线段OF上存在点T(t,0),使得,其中t 7.解(1)设直线AP的斜率为k,k==x-,因为-<x<,所以直线AP斜率的取值范围是(-1,1).(2)联立直线AP与BQ的方程解得点Q的横坐标是x Q=因为|P A|=(k+1),|PQ|=(x Q-x)=-,所以|P A|·|PQ|=-(k-1)(k+1)3.令f(k)=-(k-1)(k+1)3,因为f'(k)=-(4k-2)(k+1)2,所以f(k)在区间上单调递增,上单调递减,因此当k=时,|P A|·|PQ|取得最大值8.解(1)由题意得解得a=2,b=1.所以椭圆C的方程为+y2=1.(2)由(1)知,A(2,0),B(0,1).设P(x0,y0),则+4=4.当x0≠0时,直线P A的方程为y=(x-2).令x=0,得y M=-,从而|BM|=|1-y M|=直线PB的方程为y=x+1.令y=0,得x N=-,从而|AN|=|2-x N|=所以|AN|·|BM|====4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.9.解(1)因为直线l与圆O相切,所以圆x2+y2=的圆心到直线l的距离d=,从而m2=(1+k2).由整理,得(1+2k2)x2+4kmx+2m2-2=0.设E(x1,y1),F(x2,y2),则x1+x2=-,x1x2=,所以=x1x2+y1y2=x1x2+(kx1+m)·(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)+m2==0.所以OE⊥OF.(2)因为直线l与圆O相切于W,=1,=1,所以λ=由(1)知x1x2+y1y2=0,所以x1x2=-y1y2,即,从而,即,所以λ=因为-x1,所以思维提升训练10.解(1)设A(x0,0),B(0,y0),P(x,y),由=2得(x,y-y0)=2(x0-x,-y),即因为=9,所以+(3y)2=9,化简,得+y2=1,所以点P的轨迹方程为+y2=1.(2)当过点(1,0)的直线为y=0时,=(2,0)·(-2,0)=-4,当过点(1,0)的直线不为y=0时,可设为x=ty+1,A(x1,y1),B(x2,y2).联立并化简,得(t2+4)y2+2ty-3=0,由根与系数的关系得y1+y2=-,y1y2=-,=x1x2+y1y2=(ty1+1)(ty2+1)+y1y2=(t2+1)y1y2+t(y1+y2)+1=(t2+1)+t+1==-4+又由Δ=4t2+12(t2+4)=16t2+48>0恒成立,所以t∈R,对于上式,当t=0时,()max=综上所述,的最大值为11.解(1)因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为=1(y≠0).(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2),由得(4k2+3)x2-8k2x+4k2-12=0,则x1+x2=,x1x2=,所以|MN|=|x1-x2|=过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,所以|PQ|=2=4故四边形MPNQ的面积S=|MN||PQ|=12可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为[12,8).12.解(1)由已知,得解得所以椭圆E的方程为=1.(2)方法一:设点A(x1,y1),B(x2,y2),AB的中点为H(x0,y0).由得(m2+2)y2-2my-3=0,所以y1+y2=,y1y2=-,从而y0=所以|GH|2==(m2+1)my0+===(1+m2)(-y1y2),故|GH|2-my0+(1+m2)y1y2+==>0,所以|GH|>故点G在以AB为直径的圆外.方法二:设点A(x1,y1),B(x2,y2),则由得(m2+2)y2-2my-3=0, 所以y1+y2=,y1y2=-,从而+y1y2 =+y1y2=(m2+1)y1y2+m(y1+y2)+==>0,所以cos<>>0.又不共线,所以∠AGB为锐角.故点G在以AB为直径的圆外.。