Hopfield神经网络优化方法
- 格式:ppt
- 大小:646.50 KB
- 文档页数:60
TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,?,n);2)非对称旅行商问题(dij≠dji,?i,j=1,2,3,?,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,?,v n}的一个访问顺序为T={t1,t2,t3,?,t i,?,t n},其中t i∈V(i=1,2,3,?,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。
3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。
目录绪论 (2)1环境建模 (2)1.1子区域内的行走方式 (2)1.2区域分割 (3)1.3区域全连通图 (5)1.4优化机器人行走路线 (5)2Hopfield人工神经网络算法概述 (6)2.1TSP问题描述 (8)3仿真试验设计 (10)3.1移动机器人环境地图 (10)3.2环境地图的全连通图 (10)3.3Hopfield人工神经网络算法模块 (11)3.4程序中的参数 (12)3.5仿真结果 (13)4小结 (14)附录:算法 (15)基于Hopfield人工神经网络的路径优化绪论本文研究了移动机器人在含障区域内完成全覆盖行走路径的优化。
将子区域内行走路线、区域分割和子区域衔接顺序三方面结合,进行总体优化的考虑。
提出用“双线扫法”完成区域的分割,选择“向内螺旋式”行进作为子区域内部行进路径,构造整个待覆盖区域全连通图模型。
由于基于全连通图模型的行走路径与TSP问题极其相似,所以我采用了Hopfield人工神经网络求解TSP问题的方法优化全连通图,对移动机器人在各个子区域的行走顺序进行寻优。
最后给出了仿真试验,试验表明利用Hopfield人工神经网络,移动机器人在含有障碍物的环境中能够找到全覆盖的最优路径或者次优的路径。
1环境建模所谓全覆盖寻优路径规划,是指机器人合理而高效地走遍一个区域内除障碍物以外的全部地方。
和点到点寻优算法一样全覆盖算法的应用范围很广,比如清扫(灰尘树叶积雪等)、收割(谷物草等)、耕犁、播撒(农药种子刷塗)、探矿、搜救、水下测绘、排雷等等。
1.1子区域内的行走方式子区域内部行进方式采用“螺旋收缩式”。
虽然“螺旋收缩式”和“往复前进式”本身各有优缺点,但在多子区域覆盖问题上,“螺旋收缩式”的优点显而易见。
这些优点包括:“螺旋收缩式”行进方式可避免“往复前进式”的边缘效应;“螺旋收缩式”不会留下或只在中间留下很少的未覆盖面积,而这位于中间的小的未覆盖部分,对机器人来说是很容易解决的;从理论上讲,机器人完成子区域内部覆盖后的终点位于最开阔的子区域重心(见图1),从而有利于区域分割任务完成后的机器人子区域衔接行为。
实验八:基于神经网络的优化计算实验一、实验目的掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。
二、实验原理连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。
如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。
三、实验条件VC++6.0。
四、实验内容1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。
2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。
3、上交源代码。
五、实验报告1、画出连续Hopfield神经网络求解TSP问题的流程图。
2、根据实验内容,给出相应结果及分析。
(1)15个城市(测试文件TSP15.TXT)tsp15.txt 最短路程 371最佳路线1914861351534712210111→→→→→→→→→→→→→→→(2)20个城市(测试文件TSP20.TXT)tsp20.txt 最短路程349最佳路线→→→→→→→→→→→→→→→→→→→→→1416189713151117351242891916102013、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。
遗传算法易出现早熟收敛和收敛性差的缺点。
Hopfield算法对高速计算特别有效,但网络不稳定。
用Hopfield解TSP问题效果并不理想。
TSP的⼏种求解⽅法及其优缺点TSP的⼏种求解⽅法及其优缺点⼀、什么是TSP问题旅⾏商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定⼀条经过各城市当且仅当⼀次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A 为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定⼀条长度最短的Hamilton回路,即遍历所有顶点当且仅当⼀次的最短距离。
旅⾏商问题可分为如下两类:1)对称旅⾏商问题(dij=dji,Πi,j=1,2,3,?,n);2)⾮对称旅⾏商问题(dij≠dji,?i,j=1,2,3,?,n)。
⾮对称旅⾏商问题较难求解,我们⼀般是探讨对称旅⾏商问题的求解。
若对于城市V={v1,v2,v3,?,v n}的⼀个访问顺序为T={t1,t2,t3,?,t i,?,t n},其中t i∈V(i=1,2,3,?,n),且记t n+1=t1,则旅⾏商问题的数学模型为:minL=。
TSP是⼀个典型的组合优化问题,并且是⼀个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接⽐较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极⾼的实际应⽤价值。
⼆、主要求解⽅法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插⼊、最远插⼊、最近添加、贪婪插⼊等。
但是,由于构造型算法优化质量较差,迄今为⽌已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退⽕算法2)禁忌搜索算法3)Hopfield神经⽹络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1 模拟退⽕算法⽅法1)编码选择:采⽤描述TSP解的最常⽤的⼀种策略——路径编码。
2)SA状态产⽣函数的设计:对于基于路径编码的SA状态产⽣函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插⼊操作(INS)。
%% 连续Hopfield神经网络的优化—旅行商问题优化计算% function main%% 清空环境变量、定义全局变量clear allclcglobal A D%% 导入城市位置load city_location%% 计算相互城市间距离distance=dist(citys,citys');%% 初始化网络N=size(citys,1);A=200;D=100;U0=0.1;step=0.0001;delta=2*rand(N,N)-1;U=U0*log(N-1)+delta;V=(1+tansig(U/U0))/2;iter_num=10000;E=zeros(1,iter_num);%% 寻优迭代for k=1:iter_num% 动态方程计算dU=diff_u(V,distance);% 输入神经元状态更新U=U+dU*step;% 输出神经元状态更新V=(1+tansig(U/U0))/2;% 能量函数计算e=energy(V,distance);E(k)=e;end%% 判断路径有效性[rows,cols]=size(V);V1=zeros(rows,cols);[V_max,V_ind]=max(V);for j=1:colsV1(V_ind(j),j)=1;endC=sum(V1,1);R=sum(V1,2);flag=isequal(C,ones(1,N)) & isequal(R',ones(1,N));%% 结果显示% 计算初始路径长度sort_rand=randperm(N);citys_rand=citys(sort_rand,:);Length_init=dist(citys_rand(1,:),citys_rand(end,:)');for i=2:size(citys_rand,1)Length_init=Length_init+dist(citys_rand(i-1,:),citys_rand(i,:)');end% 绘制初始路径figure(1)plot([citys_rand(:,1);citys_rand(1,1)],[citys_rand(:,2);citys_rand(1,2)],'o-') for i=1:length(citys)text(citys(i,1),citys(i,2),[' ' num2str(i)])endtext(citys_rand(1,1),citys_rand(1,2),[' 起点' ])text(citys_rand(end,1),citys_rand(end,2),[' 终点' ])title(['优化前路径(长度:' num2str(Length_init) ')'])axis([0 1 0 1])grid onxlabel('城市位置横坐标')ylabel('城市位置纵坐标')% 计算最优路径长度[V1_max,V1_ind]=max(V1);citys_end=citys(V1_ind,:);Length_end=dist(citys_end(1,:),citys_end(end,:)');for i=2:size(citys_end,1)Length_end=Length_end+dist(citys_end(i-1,:),citys_end(i,:)');enddisp('最优路径矩阵');V1% 绘制最优路径figure(2)plot([citys_end(:,1);citys_end(1,1)],...[citys_end(:,2);citys_end(1,2)],'o-')for i=1:length(citys)text(citys(i,1),citys(i,2),[' ' num2str(i)])endtext(citys_end(1,1),citys_end(1,2),[' 起点' ])text(citys_end(end,1),citys_end(end,2),[' 终点' ])title(['优化后路径(长度:' num2str(Length_end) ')'])axis([0 1 0 1])grid onxlabel('城市位置横坐标')ylabel('城市位置纵坐标')% 绘制能量函数变化曲线plot(1:iter_num,E);ylim([0 2000])title(['能量函数变化曲线(最优能量:' num2str(E(end)) ')']);xlabel('迭代次数');ylabel('能量函数');elsedisp('寻优路径无效');end% %===========================================% function du=diff_u(V,d)% global A D% n=size(V,1);% sum_x=repmat(sum(V,2)-1,1,n);% sum_i=repmat(sum(V,1)-1,n,1);% V_temp=V(:,2:n);% V_temp=[V_temp V(:,1)];% sum_d=d*V_temp;% du=-A*sum_x-A*sum_i-D*sum_d;% %==========================================% function E=energy(V,d)% global A D% n=size(V,1);% sum_x=sumsqr(sum(V,2)-1);% sum_i=sumsqr(sum(V,1)-1);% V_temp=V(:,2:n);% V_temp=[V_temp V(:,1)];% sum_d=d*V_temp;% sum_d=sum(sum(V.*sum_d));% E=0.5*(A*sum_x+A*sum_i+D*sum_d);% % % % 计算dufunction du=diff_u(V,d)global A Dn=size(V,1);sum_x=repmat(sum(V,2)-1,1,n);sum_i=repmat(sum(V,1)-1,n,1);V_temp=V(:,2:n);V_temp=[V_temp V(:,1)];sum_d=d*V_temp;du=-A*sum_x-A*sum_i-D*sum_d;% % % % % 计算能量函数function E=energy(V,d)global A Dn=size(V,1);sum_x=sumsqr(sum(V,2)-1);sum_i=sumsqr(sum(V,1)-1);V_temp=V(:,2:n);V_temp=[V_temp V(:,1)];sum_d=d*V_temp;sum_d=sum(sum(V.*sum_d));E=0.5*(A*sum_x+A*sum_i+D*sum_d);。
实验六基于神经网络的优化计算实验一、实验目的掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。
二、实验原理连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。
如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。
实验报告1、画出连续Hopfield神经网络求解TSP问题的流程图。
2、根据实验内容,给出相应结果及分析。
(1)、参考求解TSP问题的连续Hopfield神经网络源代码(设置参数A=15,B=15,D=0.015, u0=0.02,h=0.5,r= cityNumber*10),给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。
1)int main(int argc,char *argv[]):修改路径计算的代码2)最后要求输出:TSP4(2)、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数(A=50,B=50,D=0.01,C=50,u0=0.02, h=0.5,r=cityNumber*100;A=0.5, B=0.5, D=0.5, C=0.2,u0=0.02,h=0.5,r=cityNumber*100;A=500,B=500,D=500,C=200,u0=0.02,h=0.5, r=cityNumber*100;A=5, B=5, D=0.01, C=5,u0=0.02,h=0.5, r=cityNumber*100),分析不同参数对算法结果的影响。