最优化设计:第10章 Hopfield神经网络优化方法
- 格式:ppt
- 大小:1.26 MB
- 文档页数:71
H o p f i e l d神经网络综述(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--题目: Hopfield神经网络综述一、概述:1.什么是人工神经网络(Artificial Neural Network,ANN)人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。
人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。
利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。
主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。
根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。
1)反馈神经网络(Recurrent Network)反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。
反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。
反馈网络能够表现出非线性动力学系统的动态特性。
它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。
当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态;(2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。
反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。
该网络主要用于联想记忆和优化计算。
在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。
2.Hopfield神经网络Hopfield网络是神经网络发展历史上的一个重要的里程碑。
HopField 神经网络解决旅行商问题实验名称:用Hopfield 神经网络解决旅行商(TSP)问题实验内容:旅行商问题(TravellingSalesman Problem, 简记TSP ,亦称货郎担问题):设有n 个城市和距离矩阵D=[dij],其中dij 表示城市i 到城市j 的距离,i ,j=1,2 …n ,则问题是要找出遍访每个城市恰好一次的一条回路并使其路径长度为最短。
TSP 的一个解可表述为一个循环排列,假如有5个城市ABCD E顺序为如有5个城市顺序为C→A →E→B→D→C。
那么路线总长度为:D C BD EB AE CA d d d d d d ++++=TSP 问题综合了一大类组合优化问题的典型特征,属于NP 完全问题,不能在多项式时间内进行检验。
若使用动态规划的方法时间复杂性和空间复杂性都保持为n 的指数函数。
HNN 方法是解TSP 问题的另一种有效的方法,在城市数目比较小的情况下可以在较短的时间得到满意的结果。
算法分析:所用到的基本理论与方法,具体算法。
1.根据文献(1),HNN 解TSP 问题的具体步骤为:0、置t=0,A=1.5,D=1;1、读入N 城市之间的距离),,2,1,(n y x d xy =文件;2、计算神经元之间的权重和输入偏置 权重:n j i y x Dd A A T i j xy ij xy YjXi ,2,1,,,,1,,=---=-其中δδδ输入偏置: I=2A;3、)(t U xi 的初值在0附近随机产生(x,i=1,2,……,N );4、计算))/)(tanh(1(21)(0U t U t V xi xi +=, 这里2.00=U 5、利用神经元动态方程,计算∑∑==+=∆n y nj yj yjxi xi I V Tt u 11,)(6利用一阶尤拉法计算 ,5.0)()1()1(=∆∆⨯∆++=+t t t u t U t U xi xi xi ,这里7、如果系统达到平衡状态,那么终止程序,否则返回第4步。
Hopfield神经网络求解TSP问题1.什么是TSP问题旅行商问题,即TSP问题(Traveling Salesman Problem),也是最优化问题。
一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
路径的选择目标是要求得的路径路程为所有路径之中的最小值。
用数学语言描述TSP如下 :设有限个城市集合 : C = { C1 , C 2 , … , Cn },每两个城市间的距离为 d(Ci,Cj)∈Z, 其中 Ci,Cj∈C( 1<=i , j <=n), 即求 minL=∑d(Ci,Cj)的值的问题。
有效路径的方案数目为Rn=((n-1)!/2),例如:R4=3,R5=12,R6=120,R10=181440可见路径总数,随n增大而急剧增长,当城市数目增加到一定的程度,计算量增加到无法进行的地步,所以要选择一种合理快速的算法,而不能对所有情况使用人工列举的方法。
2.Hopfield神经网络介绍人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的.最基础的为BP、Hopfield网络等。
Hopfield网络是一种互连型网络的一种,它引入类似于Lyapunov 函数的能量函数概念,把神经网络的拓扑结构(用连接权矩阵表示)与所求问题(用目标函数描述)相对应,并将其转换为神经网动力学系统的演化问题。
3.神经元的数学模型人的大脑是由大量神经细胞或神经元组成的。
每个神经元可以看作为一个小的处理单元,这些神经元按照某种方式相互连接起来,构成大脑内部的生理神经元网络系统,他们中各个神经元之间连接的强弱不是固定不变的,而是按照外部的信号激励程度做自适应的变化,而每个神经元又随着接收到的多个激励信号的综合大小呈现兴奋或抑制状态。
小波Hopfield神经网络及其在优化中的应用
徐耀群;孙明
【期刊名称】《计算机工程与应用》
【年(卷),期】2006(42)32
【摘要】通过把Hopfield神经网络的sigmoid激励函数替换为Morlet小波函数,提出了一种新型的Hopfield神经网络--小波Hopfield神经网络(WHNN).由于Morlet小波函数具有良好的局部逼近能力和较高的非线性度,因此WHNN在非线性函数寻优上表现出令人满意的较高精确度的效果.一个典型的函数优化例子表明小波Hopfield神经网络比Hopfield神经网络有较高的精确度.
【总页数】3页(P42-43,47)
【作者】徐耀群;孙明
【作者单位】哈尔滨工业大学,控制理论与导航技术中心,哈尔滨,150001;哈尔滨商业大学,计算机与信息工程学院,哈尔滨,150028;哈尔滨商业大学,计算机与信息工程学院,哈尔滨,150028
【正文语种】中文
【中图分类】TP18
【相关文献】
1.Hopfield 人工神经网络在物流配送中心选址优化中的应用 [J], 马正元;黄斌
2.应用Hopfield神经网络和小波域隐Markov树模型的图像复原 [J], 娄帅;丁振良;袁峰;李晶
3.应用Hopfield神经网络优化最大熵的图像恢复算法 [J], 丁卫平
4.傅立叶Hopfield神经网络及其在优化中的应用 [J], 徐耀群;何少平;张莉
5.Hopfield人工神经网络在工程优化中的应用 [J], 姚素芬;张子生
因版权原因,仅展示原文概要,查看原文内容请购买。
基于Hopfield神经网络的打磨工艺路线优化崔光鲁;陈劲杰;徐希羊;周媛【摘要】为提升工件表面处理工艺品质,提出运用人工智能的方法解决打磨工艺执行路线决策问题.基于人工神经网络思想,利用连续型Hopfield神经网络算法,对打磨工艺执行路线进行优化排序.文中以锅具打磨为分析案例,展示具体应用方法.得出了更加优化的锅具表面打磨工艺执行路线,为以后工件表面处理更加智能高效提供了理论依据.【期刊名称】《电子科技》【年(卷),期】2017(030)005【总页数】4页(P36-39)【关键词】决策优化;智能算法;Hopfield神经网络;工艺排序方法【作者】崔光鲁;陈劲杰;徐希羊;周媛【作者单位】上海理工大学机械工程学院,上海200093;上海理工大学机械工程学院,上海200093;上海理工大学机械工程学院,上海200093;上海理工大学机械工程学院,上海200093【正文语种】中文【中图分类】TP18随着现代工业产品复杂程度的不断增加,新的加工制造方法也层出不穷,导致了产品的生产工艺路线的可行解也成指数方式增长。
为了与新的发展形势相适应,人工智能算法可为工艺路线提供一种更加智能且行之有效的解决方法。
传统的工艺决策路线是分级、分阶段地考虑几何特征、加工工艺要求、工艺实现方法与优化指标等约束条件的,最后得出各工序较为合理的安排顺序。
存在着工艺决策智能化水平较低、过程与设计经验难以提取等缺点。
当产品工艺路线网络图中可能的组合方案较多时,枚举法不再适用[1],就需要寻求一些智能算法对生产中最优的工艺执行路线进行求解。
打磨生产过程中,需要综合考虑制造资源、生产实效两方面的因素。
制造资源包括打磨所使用的执行设备、打磨材料、夹具等,生产实效则为打磨效果、实现成本、加工效率等。
上述两方面因素构成了对打磨的限制约束,以成本低、效率高为优化目标。
打磨过程的排序问题就转化为寻找制造资源的变换次数最少的执行路线问题[2]。
%% 连续Hopfield神经网络的优化—旅行商问题优化计算% function main%% 清空环境变量、定义全局变量clear allclcglobal A D%% 导入城市位置load city_location%% 计算相互城市间距离distance=dist(citys,citys');%% 初始化网络N=size(citys,1);A=200;D=100;U0=0.1;step=0.0001;delta=2*rand(N,N)-1;U=U0*log(N-1)+delta;V=(1+tansig(U/U0))/2;iter_num=10000;E=zeros(1,iter_num);%% 寻优迭代for k=1:iter_num% 动态方程计算dU=diff_u(V,distance);% 输入神经元状态更新U=U+dU*step;% 输出神经元状态更新V=(1+tansig(U/U0))/2;% 能量函数计算e=energy(V,distance);E(k)=e;end%% 判断路径有效性[rows,cols]=size(V);V1=zeros(rows,cols);[V_max,V_ind]=max(V);for j=1:colsV1(V_ind(j),j)=1;endC=sum(V1,1);R=sum(V1,2);flag=isequal(C,ones(1,N)) & isequal(R',ones(1,N));%% 结果显示% 计算初始路径长度sort_rand=randperm(N);citys_rand=citys(sort_rand,:);Length_init=dist(citys_rand(1,:),citys_rand(end,:)');for i=2:size(citys_rand,1)Length_init=Length_init+dist(citys_rand(i-1,:),citys_rand(i,:)');end% 绘制初始路径figure(1)plot([citys_rand(:,1);citys_rand(1,1)],[citys_rand(:,2);citys_rand(1,2)],'o-') for i=1:length(citys)text(citys(i,1),citys(i,2),[' ' num2str(i)])endtext(citys_rand(1,1),citys_rand(1,2),[' 起点' ])text(citys_rand(end,1),citys_rand(end,2),[' 终点' ])title(['优化前路径(长度:' num2str(Length_init) ')'])axis([0 1 0 1])grid onxlabel('城市位置横坐标')ylabel('城市位置纵坐标')% 计算最优路径长度[V1_max,V1_ind]=max(V1);citys_end=citys(V1_ind,:);Length_end=dist(citys_end(1,:),citys_end(end,:)');for i=2:size(citys_end,1)Length_end=Length_end+dist(citys_end(i-1,:),citys_end(i,:)');enddisp('最优路径矩阵');V1% 绘制最优路径figure(2)plot([citys_end(:,1);citys_end(1,1)],...[citys_end(:,2);citys_end(1,2)],'o-')for i=1:length(citys)text(citys(i,1),citys(i,2),[' ' num2str(i)])endtext(citys_end(1,1),citys_end(1,2),[' 起点' ])text(citys_end(end,1),citys_end(end,2),[' 终点' ])title(['优化后路径(长度:' num2str(Length_end) ')'])axis([0 1 0 1])grid onxlabel('城市位置横坐标')ylabel('城市位置纵坐标')% 绘制能量函数变化曲线plot(1:iter_num,E);ylim([0 2000])title(['能量函数变化曲线(最优能量:' num2str(E(end)) ')']);xlabel('迭代次数');ylabel('能量函数');elsedisp('寻优路径无效');end% %===========================================% function du=diff_u(V,d)% global A D% n=size(V,1);% sum_x=repmat(sum(V,2)-1,1,n);% sum_i=repmat(sum(V,1)-1,n,1);% V_temp=V(:,2:n);% V_temp=[V_temp V(:,1)];% sum_d=d*V_temp;% du=-A*sum_x-A*sum_i-D*sum_d;% %==========================================% function E=energy(V,d)% global A D% n=size(V,1);% sum_x=sumsqr(sum(V,2)-1);% sum_i=sumsqr(sum(V,1)-1);% V_temp=V(:,2:n);% V_temp=[V_temp V(:,1)];% sum_d=d*V_temp;% sum_d=sum(sum(V.*sum_d));% E=0.5*(A*sum_x+A*sum_i+D*sum_d);% % % % 计算dufunction du=diff_u(V,d)global A Dn=size(V,1);sum_x=repmat(sum(V,2)-1,1,n);sum_i=repmat(sum(V,1)-1,n,1);V_temp=V(:,2:n);V_temp=[V_temp V(:,1)];sum_d=d*V_temp;du=-A*sum_x-A*sum_i-D*sum_d;% % % % % 计算能量函数function E=energy(V,d)global A Dn=size(V,1);sum_x=sumsqr(sum(V,2)-1);sum_i=sumsqr(sum(V,1)-1);V_temp=V(:,2:n);V_temp=[V_temp V(:,1)];sum_d=d*V_temp;sum_d=sum(sum(V.*sum_d));E=0.5*(A*sum_x+A*sum_i+D*sum_d);。
人工神经网络实验用CHNN 算法求解TSP 问题一. 问题描述利用连续型Hopfield 反馈网络求解10城市的旅行商(TSP )问题。
其中10个城市的坐标给定如下:基本网络参数为:0500,200,0.02A B D C μ=====二. 算法实现1.CHNN 算法应用CHNN 网络解决优化问题一般需要以下步骤:(1.)对于特定的问题,要选择一种合适的表示方法,使得神经网络的输出与问题的解相对应。
(2.)构造网络的能量函数,使其最小值对应于问题的最佳解。
(3.)将能量函数与CHNN 算法标准形式相比较,推出神经网络权值与偏流表达式。
(4.)推出网络状态更新公式,并利用更新公式迭代求问题的最优解。
2.TSP 问题为使用CHNN 网络进行TSP 问题的求解,根据上述步骤,可将问题转化为:(1.)对N 个城市的TSP 问题,用一个N N ⨯的换位阵描述旅行路线,换位阵中每行每列有且只有一个元素为1,其余全为0。
为1的元素其横坐标x 表示城市名,纵坐标i 表示该城市在访问路线中的位置。
(2.)网络的能量函数由四部分组成,分别用来保证换位阵的合法性以及最终路线长度的最短。
2,1,1()()2222xi xj xi yi xi xy xi y i y i x i j i i x y x x i x i y xA B C D E v v v v v n d v v v +-≠≠≠=++-++∑∑∑∑∑∑∑∑∑∑∑(3.)将能量函数与标准形式相比较,得到网络权值与偏流表达式为:(4.)从而,网络更新公式为:3. 程序设计根据上述推导在MATLAB 中设计CHNN 网络求解TSP 问题的程序(程序代码见附页)。
(1.)程序说明本程序中有以下两点需要说明。
➢ 迭代结束条件:理论上来说,当网络的能量函数不再减小时网络达到最优状态,但在实际中如果用能量函数的变化来判断程序的结束存在潜在的问题(如计算能量函数的复杂性以及误差导致判断不准确等),因此,本实验利用迭代次数控制程序结束,当迭代至1000次时,一次运行结束。