内循环厌氧反应器(IC)设计计算书
- 格式:xls
- 大小:30.50 KB
- 文档页数:4
一、构造原理(一)构造原理。
IC 反应器高度可达16~25m,高径比一般为4~8,由混合区、颗粒污泥膨胀床区、精处理区、内循环系统和出水区5 个基本部分组成。
核心部分是内循环系统,由一级三相分离器、沼气提升管、气液分离器和泥水下降管等组成。
经pH 值、温度调节及预酸化处理后的废水,首先进入反应器底部的混合区与厌氧颗粒污泥充分混合后,进入颗粒污泥膨胀床区进行生化降解,该处理区容积负荷很高,大部分COD 在此处被降解,产生的沼气由一级三相分离器收集。
IC 反应器构造原理图1.气液分离器2.集气管3.二级三相分离器4.沼气提升管5.论内循环(IC)厌氧反应器的设计工艺思想一级三相分离器6.泥水下降管7.进水8.出水区9.精处理区10.颗粒污泥膨胀床区11.混合区沼气气泡在形成过程中会对液体做膨胀功产生气提作用,使得沼气、污泥和水的混合液沿沼气提升管上升至反应器顶部的气液分离器。
沼气与泥水分离被导出处理系统,泥水混合物沿着泥水下降管进入反应器底部的污泥膨胀床区,形成内循环系统。
经颗粒污泥膨胀床区处理后的污水一部分参与内循环,另一部分进入精处理区进行剩余COD 的降解,提高并保证了出水水质。
由于大部分COD 已被降解,所以精处理区的COD负荷较低,产气量也小。
产生的沼气由二级三相分离器收集,通过集气管进入气液分离器被导出处理系统。
泥水经二级三相分离器作用后,上清液由出水区排走,颗粒污泥返回精处理区。
二、设计工艺思想厌氧反应器发展至今已有100 多年的历史,目前大部分研究基于高效厌氧反应器必须满足两个基本条件(保持大量活性污泥和良好传质)这一角度将厌氧反应器划分为三代,把IC 反应器作为第三代厌氧反应器的代表之一对其设计工艺和特点进行研究。
笔者认为仅从这一角度理解IC 反应器的设计工艺思想有所偏颇,并从污泥龄及水力停留时间、水力流态、微生物体的聚合状态这三个角度来看IC 反应器的设计工艺。
IC反应器设计参考loser1.设计说明IC反应器,即内循环厌氧反应器,相似由2层UASB反应器串联而成。
其由上下两个反应室组成。
在处理高浓度有机废水时,其进水负荷可提高至35~50kgCOD/(m3·d)。
与UASB反应器相比,在获得相同处理速率的条件下,IC反应器具有更高的进水容积负荷率和污泥负荷率,IC反应器的平均升流速度可达处理同类废水UASB反应器的20倍左右。
设计参数(1)参数选取设计参数选取如下:第一反应室的容积负荷N V1=35kgCOD/(m3·d),:第二反应室的容积负荷N V2=12kgCOD/(m3·d);污泥产率0.03kgMLSS/kgCOD;产气率0.35m3/kgCOD(2)设计水质设计参数COD cr BOD5 SS进水水质/ (mg/L) 12000 6000 890去除率/ % 85 80 30出水水质/ (mg/L) 1800 1000 623(3)设计水量Q=3000m3/d=125m3/h=0.035m3/s2.反应器所需容积及主要尺寸的确定(见附图6-4)(1) 有效容积 本设计采用进水负荷率法,按中温消化(35~37℃)、污泥为颗粒污泥等情况进行计算。
V =ve N C C Q )(0- 式中 V -反应器有效容积,m 3;Q -废水的设计流量,m 3/d ;本设计流量日变化系数取K d =1.2,Q=3600 m 3/d N v -容积负荷率,kgCOD/(m 3·d );C 0-进水COD 浓度,kg/m 3; mg/L =10-3kg/m 3,设计取24.074 kg/m 3C e -出水COD 浓度,kg/m 3。
设计取3.611kg/m 3本设计采用IC 反应器处理高浓度废水,而IC 反应器内部第一反应室和第二反应室由于内部流态及处理效率的不同,这里涉及一,二反应室的容积。
据相关资料介绍,IC 反应器的第一反应室(相当于EGSB )去除总COD 的80%左右,第二反应室去除总COD 的20%左右。
IC反应器设计计算书确定根据IC反应器的构造示意图,可以确定反应器的几何尺寸。
首先确定反应器的高度,根据进水负荷率法,反应器的高度一般为6-8m。
本设计选择7m作为反应器的高度。
其次,确定反应器的直径,根据反应器的容积和高度可以计算出反应器的直径。
本设计选择直径为18m。
最后,确定反应器的进水口和出水口的位置和尺寸。
反应器的进水口和出水口应该设置在反应器的不同侧面,以避免水流直接穿过反应器。
进水口和出水口的尺寸应该根据设计流量和水质确定。
3、反应器内部构造设计反应器内部构造设计主要包括气液分离器、沉淀区、集气管等。
气液分离器的作用是将沼气和液态废水分离,沉淀区的作用是使污泥沉淀并进行回流,集气管的作用是收集沼气并将其排出反应器。
本设计采用双层气液分离器,以提高气液分离效果。
沉淀区的设计应该保证污泥的沉淀时间,本设计选择沉淀区的深度为2m。
集气管应该设置在反应器的中央位置,以保证沼气能够充分收集并排出反应器。
4、反应器运行控制反应器的运行控制主要包括进水流量、进水COD浓度、进水pH值等参数的控制。
进水流量应该根据反应器的设计流量进行控制,进水COD浓度应该控制在反应器的处理范围内,进水pH值应该控制在6.5-8.5之间。
同时,反应器的温度应该保持在35-37℃之间,以保证反应器内部的微生物能够正常运行。
在运行过程中,应该定期对反应器的污泥进行处理和回流,以保证反应器的稳定运行。
IC反应器是一种高效的废水处理设备,其处理效果稳定、运行成本低,因此在废水处理领域得到了广泛的应用。
本设计基于IC反应器的设计原理和实际情况,对反应器的主要设计参数和运行控制进行了详细的分析和说明,为实际工程应用提供了参考。
计算相邻两个上挡板之间的距离需要先计算B-B'之间的负荷。
根据水流上升速度小于20m/h的一般规则,B-B'之间的总面积S可以通过以下公式计算得出:S=Q256/2020,其中Q为IC反应器循环泵的流量。
内循环(IC)厌氧反应器设计计算方法的探讨内循环(IC)厌氧反应器设计计算方法的探讨胡纪萃【摘要】文章论述了内循环(IC)厌氧反应器的设计计算方法,在对IC反应器水力特性分析的基础上,对有人提出计算升流管内液体升流速度的关系式进行了修正,并提供了有用的设计计算参数,最后,详细地提供了设计计算实例。
【期刊名称】中国沼气【年(卷),期】2011(029)001【总页数】4【关键词】内循环厌氧反应器;设计计算;水力特性;设计参数Abstract:Themethod of design and calculation for internal circulation(IC)anaerobic reactor was expounded in thispaper.On the basisof analysis for the hydraulic characteristcsof IC reactor,the estimating relation of superficial velocity in the riserpipewasmodified.The available paramertersof the design and calculationwere presented.Also,the exemplum of design and calculation for IC reactor was exp lained in detail.Key words:internal circulation anaerobic reactor;design and calculation;hydraulic characteristics;design parameter 内循环(IC)厌氧反应器(以下简称IC反应器)自上个世纪80年代开发应用以来,在世界各国得到了广泛的应用。
1995年上海富仕达酿酒公司从荷兰帕克公司引进了我国第一套 IC反应器技术[1],目前 IC反应器在我国的酒精、淀粉、造纸和啤酒废水等的处理中得到了广泛的应用。
IC厌氧反应器设计计算IC 厌氧反应器作为一种高效的厌氧处理技术,在废水处理领域得到了广泛的应用。
其独特的结构和运行原理,使其能够在处理高浓度有机废水时展现出出色的性能。
下面我们就来详细探讨一下 IC 厌氧反应器的设计计算。
一、设计基础数据在进行 IC 厌氧反应器的设计计算之前,首先需要明确一些基础数据,包括废水的水质水量、进水有机物浓度、温度、pH 值等。
这些数据将直接影响反应器的尺寸、容积和运行参数的确定。
例如,废水的流量决定了反应器的处理能力,进水有机物浓度则关系到反应器内微生物的负荷以及产气率。
一般来说,IC 厌氧反应器适用于处理高浓度有机废水,有机物浓度通常在数千毫克每升以上。
温度对厌氧反应的速率和微生物的活性有着重要影响,通常在 30 38℃之间较为适宜。
pH 值也需要控制在一定范围内,一般为 65 80 ,以保证微生物的正常生长和代谢。
二、IC 厌氧反应器的结构IC 厌氧反应器主要由两个反应区组成,即下部的第一反应区(也称流化床反应区)和上部的第二反应区(也称固液分离区)。
第一反应区是一个高负荷的反应区域,废水和颗粒污泥在此充分混合,有机物被快速降解。
这一区域通常具有较大的上升流速,以保证良好的传质效果。
第二反应区则主要用于泥水分离,使处理后的废水和污泥得以分离。
其结构相对较为简单,通常采用沉淀或过滤的方式实现泥水分离。
此外,IC 厌氧反应器还包括进水系统、出水系统、沼气收集系统和排泥系统等附属设施。
三、设计计算步骤1、确定反应器的容积负荷容积负荷是指单位容积反应器每天所能承受的有机物量,通常以千克 COD/(立方米·天)表示。
容积负荷的取值需要根据废水的水质、温度和处理要求等因素综合确定。
一般来说,对于高浓度有机废水,容积负荷可以取 10 20 千克 COD/(立方米·天)。
2、计算反应器的有效容积根据进水流量和容积负荷,可以计算出反应器的有效容积:有效容积=进水流量 ×进水有机物浓度 ÷容积负荷例如,假设进水流量为 100 立方米/天,进水有机物浓度为 10000 毫克/升(即 10 千克/立方米),容积负荷取 15 千克 COD/(立方米·天),则有效容积为:100 × 10 ÷ 15 ≈ 667(立方米)3、确定反应器的尺寸根据有效容积和反应器的高径比(一般为 2 5),可以确定反应器的直径和高度。
1.厌氧塔的设计计算1.1反应器结构尺寸设计计算(1)反应器的有效容积设计容积负荷为)//(0.53d m kgCOD N v =进出水COD 浓度)/(20000L mg C =,E=0.70V=3084000.570.0203000m N E QC v =⨯⨯=,取为84003m 式中Q——设计处理流量dm /3C 0——进出水COD 浓度kgCOD/3m E——去除率N V ——容积负荷(2)反应器的形状和尺寸。
工程设计反应器3座,横截面积为圆形。
1)反应器有效高为m h 0.17=则横截面积:)(4950.1784002m hV S =有效==单池面积:)(16534952m n S S i ===2)单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。
设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18=单池截面积:)(6.1765.714.3)2(*14.3222'm h D S i =⨯==设计反应器总高m H 18=,其中超高1.0m单池总容积:)(3000)0.10.18(6.176'3'm H S V i i =-⨯=⨯=单个反应器实际尺寸:m m H D 1815⨯=⨯φ反应器总池面积:)(8.52936.1762'm n S S i =⨯=⨯=反应器总容积:)(900033000'3m n V V i =⨯=⨯=(3)水力停留时间(HRT)及水力负荷(r V )vN h Q V t HRT 722430009000=⨯==)]./([24.036.176********h m m S Q V r =⨯⨯==根据参考文献,对于颗粒污泥,水力负荷)./(9.01.023h m m V r -=故符合要求。
1.7.2三相分离器构造设计计算(1)沉淀区设计根据一般设计要求,水流在沉淀室内表面负荷率)./(7.023'h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(23h m m 。
厌氧内循环反应器(IC)厌氧内循环反应器简称IC反应器,是基于UASB反应器颗粒化和三相分离器的概念而改进的新型反应器,可看成是由两个UASB反应器的单元相互重叠而成。
它的特点是在一个高的反应器内将沼气的分离分成两个阶段。
底部一个处于极端的高负荷,上部一个处于低负荷。
其基本构造如图3所示。
图3 IC反应器构造简图1-进水; 2-集气罩 3-沼气提升管和回流部分;4-气液分离器;5-沼气导管; 6-回流管;7-集气罩;8-集气管;9-沉淀区;10-出水管;11-气封。
IC反应器的构造特点是具有很大的高径比,一般可达到4-8,高度可达16-25m,从外观看,就象一个厌氧生化反应塔。
IE反应器从功能上讲由四个不同的功能部分组成,即混合部分、膨胀床部分、精处理部分1、混合区:由反应器的底部进入的污水与颗粒污泥和内部气体循环所带回的出水有效地混合,使进水得到有效地稀释和均化。
2、污泥膨胀床部分:由包含高浓度的颗粒污泥膨胀床所构成。
床的膨胀或流化是由于进水的上升流速、回流和产生的沼气所造成。
废水和污泥之间有效地接触使得污泥具有高的活性,可获得高的有机负荷和转化效率。
3、精处理部分:在这一区域内,由于低的污泥负荷率,相对长的水力停留时间和推流的流态特性,产生了有效的后处理。
另外由于沼气产生的扰动在精处理部分较低,使得生物可降解COD几乎全部去除。
虽然与UASB反应器条件相比,反应器的负荷率较高,但因内部循环流体不经过这一区域,因此在精处理区的上升流速也较低,这两点为固体停留提供了最佳的条件。
4、回流系统:内部的回流是利用气提原理,因为在上部和下层的气室间存在着压力差。
回流的比例是由产其量所决定的。
大部分有机物(BOD和COD)是在IE反应器下部的颗粒污泥膨胀床内降解为生物沼气的(甲烷),沼气经由第一部分分离器收集,通过气体升力携带水和污泥进入气体上升管,至位于IE反应器顶部的液气分离罐进行液气分离,水与污泥经过中心循环下降管流向反应器底部,形成内循环流。