11---短除法
- 格式:ppt
- 大小:1.97 MB
- 文档页数:17
第四章分数的意义和性质-约分【知识梳理】1.公因数和最大公因数的意义。
几个数公有的因数叫做这几个数的公因数。
其中最大的一个叫做这几个数的最大公因数。
重点提示:每个数的因数的个数是有限的,因此两个数或多个数的公因数的个数也是有限的。
2. 求两个数最大公因数的方法。
(1)列举法:先分别找出两个数的因数,从中找出公因数,再找出公因数中最大的一个。
(2)筛选法:先找出两个数中较小数的因数,从中圈出较大数的因数,再看哪一个因数最大。
(3)分解质因数法:先将这两个数分别分解质因数,再从分解的质因数中找出这两个数公有的质因数,公有的质因数相乘所得的积就是这两个数的最大公因数。
(4)短除法:先把两个数公有的质因数按从小到大的顺序依次作为除数,连续去除这两个数,直到得出的两个商只有公因数1为止,再把所有的除数相乘,所得的积就是这两个数的最大公因数。
方法提示:用列举法和筛选法求两个数的最大公因数,一般适合较小的数,而分解质因数法和短除法适合任意的数。
3.最大公因数的表示方法。
例.20和12的最大公因数是4,可记作:(20,12)=4。
即用小括号将两个数括起来,中间用逗号隔开,小括号后面是等号,将它们的最大公因数写在等号的后面。
4.求两个数最大公因数的特殊情况。
(1)当两个数成倍数关系时,较小数就是它们的最大公因数。
(2)当两个数的公因数只有1时,它们的最大公因数就是1。
5.互质数的意义和判断方法。
公因数只有1的两个数叫做互质数。
判断两个数是不是互质数,要看它们是不是只有公因数1。
易错提示:互质的两个数不一定都是质数。
6.互质数的特殊情况。
(1)1和任意非0的自然数都是互质数。
(2)2和任何奇数都是互质数。
(3)相邻的两个非0自然数是互质数。
(4)相邻的两个奇数是互质数。
(5)不相同的两个质数是互质数。
7.互质数和质数的区别。
质数是一类数,是只有1和它本身两个因数的数;互质数是对于两个数的关系而言的,公因数只有1的两个数是互质数。
小学数学知识点(集合15篇)小学数学知识点11、数数:根据物体的个数,可以用11—20各数来表示。
2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。
4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。
如:1个十和5个一组成15。
5、数位:从右边起第一位是个位,第二位是十位。
6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。
20的读法,20读作:二十。
7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2.有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。
8、十加几、十几加几与相应的减法(1)、10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。
如:10+5=1517-7=1018-10=8(2)、十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。
(3)、加减法的各部分名称:在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。
在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。
9、解决问题求两个数之间有几个数,可以用数数法,也可以用画图法。
还可以用计算法(用大数减小数再减1的方法来计算)。
养成良好的解题习惯好处要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
在平时要养成良好的解题习惯。
让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。
【内容概述】能被2,3,4,5,8,9,11整除的数的数字特征,以及与此相关的整数的组成与补填问题,乘积末尾零的个数的计算.1.整数a除以整数b(b≠0),所得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a),记作b︱a.如:15÷5=3,所以15能被5整除(5能整除15),记作5︱15.反之,则称为不能整除,用“”表示,如715.如果整数a能被整数b(b≠0)整除,则称a是b的倍数,b是a的约数.如15是5的倍数,5是15的约数.特别的,注意0÷b=0(b≠0),所以说零能被任何非零整数整除,零也是任何非零整数的倍数.还有0÷1=0,所以说1能整除任何整数,1是任何整数的约数.因为整除均在整数范围内考察,所以以下所指之数不特加说明均指整数.2.整除的性质:性质1.如果c︱a,c︱b,那么c︱(a±b).如果a、b都能被c整除,那么它们的和与差也能被C整除.性质2.如果bc︱a,那么b︱a,c︱a.如果b与c的积能整除a,那么b与c都能整除a.性质3.如果b︱a,c︱a,且b、c互质,那么bc︱a.如果b、c都能整除,且b和c互质,那么b与c的积能整除a.性质4.如果c︱b,b︱a,那么c︱a.如果c能整除b,b能整除a,那么c能整除a.3.一些质数整除的数字特征(约数只有1和它本身的数,称为质数):(1)能被2整除的数,其末位数字只能是0,2,4,6,8;(2)能被3整除的数,其各位的数字和能被3整除;(3)能被5整除的数,其末位数字只能是0,5;(4)能被7整除的数,其末三位与前面隔开,末三位与前面隔出数的差(大减小)能被7整除(即qponm cba能被7整除,7︱cba-qponm或7︱qponm-cba);(5)能被11整除的数,其末三位与前面隔开,末三位与前面隔出数的差(大减小)能被11整除(即qponm cba能被11整除11︱cba-qponm或11︱qponm cba)或者,其奇数位数字之和偶数位数字之和所得的差能被11整除;qponm cba表示这是一个多位数,而不是q与p、o、c、b、a等数的乘积,下同.4.对于合数,先把合数分解质因数,再一个一个的考察.这样就化归为质数整除问题,对于分解质因数,详见《质数、合数与分解质因数》.5.对于一些特殊的合数的判断方法.能被4整除的数,末两位数能被4整除;能被8整除的数,末三位数能被8整除;能被25整除的数,末两位数能被25整除;能被125整除的数,末三位能被125整除;能被9整除的数,其数字和一定是9的倍数.范例1 在公元9世纪,有个印度数学家——花拉子米写有一本《花拉子米算术》,他们计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算过程丢失而经常检验加法运算是否正确.所以后来人把这种算法称为“土盘算法”.如:1234+1898+18922+678967+178902=889923.他们看1234的数字和为,10除以9余1,1898的数字和除以9余8,18922的数字和除以9余4,678967的数字和除以9余7,178902的数字和除以9余0,余数的和除以9余2;而等式的右边889923除以9的余数为3.所以上面的加法算式一定是错误的.为什么呢?6.若干个数相乘,求其末尾有多少个连续的0,只要把这个乘积中的因数2与5的个数分别找出来,其中较少的因数个数就是积的末尾连续的0的个数.范例2 试求1981×1982×1983×1984×1985×…×2005这25个数相乘,积的末尾有多少个连续的“0”?【分析与解】其中1985,1990,1995,2000,2005含有因数5分别有1,1,1,3,1个,所以共有l+1+1+3+1=7个因数5;其中1982,1984,1986,1988,1990,1992,1994,1996,1998,2000,2002,2004含有因数2,分别有1,6,1,2,1,3,1,2,1,4,1,2个,所以共有1+6+1+2+1+3+1+2+1+4+1+2=25个因数2.其中因数5较少,含有7个,所以题中25个数的乘积末尾连续的0的个数为7.评注:多数情况下,若干个连续的数相乘,需求其末尾连续0的个数.因为因数2的个数远多于因数5的个数,所以只考虑因数5的个数即可.7.还有一种很重要的方法:试除法.如【典型问题】1、2、3、5、6等类问题都可以使用试除法.如果一个数能同时被多个整数整除,那么一定能被这些数的最小公倍数整除,而求多个数的最小公倍数,则可以采用如下两种方法:①短除法求两个或以上数的最小公倍数,可以使用短除法.范例3试求120、180、300的最小公倍数.【分析与解】于是(120,180,300)=30×2×2×3×5=1800.②分解质因数将一组数的每个数严格分解质因数,然后提出每个质因数的最高次所对应的数,将这些提出的数相乘,求出积就是最小公倍数.8.有时也可以将问题视为数字谜问题,如【典型问题】5、6类问题.1.173口是一个四位数.数学老师说:“我在其中的方框内中先后填入3个数字,所得到的3个四位数:依次可被9,11,6整除.”问:数学老师先后填入的3个数字的和是多少?【分析与解】方法一:利用整除特征注意能被9,11,6整除的数的特征:能被9整除的数,其数字和是9的倍数;能被11整除的数,其奇数位数字和和与偶数位数字和的差为11的倍数;或将其后三位与前隔开,将新组成的两个数作差,将是11的倍数;能被6整除的数,其数字和是3的倍数,且末位为0,2,4,6,8的其中之一.1+7+3=ll,当口内填入7时,1735的数字和为18,为9的倍数,所以当口内填7所组成的数为9的倍数;173口的奇数位数字和为7+口,偶位数数字和为1+3=4,所以当口内填11+4-7=8时,奇数位数字和22和与偶数位数字和的差为11,所组成的数为11的倍数;1+7+3=11,当口内填入l,4,7时,为3的倍数,但只有4为偶数,所以当口内填入4组成的数为6的倍数.所以,这三种情况下填人口内的数字的和为7+8+4=19.方法二:采用试除法用1730试除,1730÷9=192……2,1730÷1l=157……3,1730÷6=288……2.所以依次添上(9-2=)7、(11-3=)8、(6-2=)4后得到的1737、1738、1734依次能被9、11、6整除.所以,这三种情况下填入口内的数字的和为7+8+4=19.2.如果六位数1992口口能被105整除,那么它的最后两位数是多少?【分析与解】因为105=3×7×5,所以这个六位数同时满足能被3、7、5整除的数的特征即可.而能被7整数的数,将其后三位与前隔开,将新组成的两个数作差,将是7的倍数;能被5整数的数,其末位只能是0或5.方法一:利用整除特征末位只能为0或5.①如果末位填入0,那么数字和为1+9+9+2+口+0=21+口,要求数字和是3的倍数,所以口可以为0,3,6,9,验证均不是200-199=1,230-199=31,260-199=61,290-199=91,有9l是7的倍数,即199290是7的倍数,所以题中数字的末两位为90.②如果末位填入5,同上解法,验证没有数同时满足能被3、7、5整除的特征.所以,题中数的末两位只能是90.方法二:采用试除法用199200试除,199200÷105=1897……15,余15可以看成不足(105-15=)90.所以补上90,即在末两位的方格内填人90即可.3.某个七位数1993口口口能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数字依次是多少?【分析与解】方法一:利用整除特征因为这个数能被5整除,所以末位只能是0或5,又能被2整除,所以其末位为偶数,所以只能是0.在满足以上条件的情况下,还能被4整除,那么末两位只能是20、40、60或80.又因为还能同时被9整除,所以这个数的数字和也应该是9的倍数,1993A20,1993B40,1993C60,1993D80的数字和分别为24+A,26+B,28+C,30+D,对应的A、B、C、D只能是3,1,8,6.即末三位可能是320,140,860,680.而只有320,680是8的倍数,再验证只有1993320,1993680中只有1993320是7的倍数.因为有同时能被2,4,5,7,8,9整除的数,一定能同时被2,3,4,5,6,7,8,9这几个数整除,所以1993320为所求的这个数.显然,其末三位依次为3,2,0.方法二:采用试除法一个数能同时被2,3,4,5,6,7,8,9整除,而将这些数一一分解质因数:,所以这个数一定能被32×23×5×7=8×9×5×7=2520整除.用1993000试除,1993000÷2520=790……2200,余2200可以看成不足2520-2200=320,所以在末三位的方格内填入320即可.4.从0,l,2,3,4,5,6,7,8,9这10个数字中选出5个不同的数字组成一个五位数,使它能被3,5,7,13整除,这个数最大是多少?【分析与解】因为[3,5,7,13]=1365,在100000之内最大的1365的倍数为99645(100000÷1365=73……355,100000-355=99645),有99645-1365=98280,98280-1365=96915.96915-1365=95550.95550-1365=94185.所以,满足题意的5位数最大为94185.5.修改31743的某一个数字,可以得到823的倍数.问修改后的这个数是多少?【分析与解】方法一:采用试除法823是质数,所以我们掌握的较小整数的特征不适用,31743÷823=38……469,于是31743除以823可以看成余469也可以看成不足(823-469=)354,于是改动某位数字使得得到的新数比原来大354或354+823n也是满足题意的改动.有n=1时,354+823:1177,n=2时,354+823×2=2000,所以当千位增加2,即改为3时,有修改后的五位数33743为823的倍数.方法二:视作数字谜假设改动数位不是首位与末位,那么我们考虑3口口口3除以823的商:30003÷823=36……375;39993÷823=48……489.所以商在37~48之间,而823的个位3只有与1相乘所得的积才是3,所以这个商的尾数为1,这样的数字在37~48之问,只有41.有823×41=33743.所以改动31743的千位为3即可.6.在六位数11口口11中的两个方框内各填入一个数字,使此数能被17和19整除,那么方框中的两位数是多少?【分析与解】方法一:采用试除法如果一个数能同时被17和19整除,那么一定能被323整除.110011÷323=340……191,余191也可以看成不足(323-191=)132.所以当132+323n是100的倍数时,才能保证在只改动110011的千位、百位数字,而得到323的倍数.所以有323n的末位只能是10-2=8,所以n只能是6,16,26,…验证有n=16时,132+323×16=5300,所以原题的方框中填入5,3得到的115311满足题意.方法二:视为数字谜因为[17,19]=323,所以有:注意,第3行的个位数字为1,于是乘数的个位数字只能为7,所以第3行为323×7=2261;于是有所以第4行的末位为10+1-6=5,所以乘数的十位数字只能为5,于是第4行为323×5=1615;于是有,所以第5行在(110011-16150-2261=)91600~(119911-16150-2261=)101500之间,又是323×100的倍数,所以只能为32300×3=96900;于是最终有 .所以题中的方框内应填入5,3这两个数字.7.已知四十一位数55…5口99…9(其中5和9各有20个)能被7整除,那么中间方格内的数字是多少?【分析与解】 我们知道abcabc 这样的六位数一定能整除7、11、13;下面就可用这个性质来试着求解:由上知2055555个2099999个的末6位数999999必定整除7;有2055555个2099999个=2055555个1499999个×1000000+999999;于是只用考察: 2055555个1499999个×1000000,又因为1000000,7互质,所以1000000对整除7没有影响,所以要求2055555个1499999个一定是7的倍数.注意到,实际上我们已经将末尾的6个9除去;这样,我们将数字9、5均6个一组除去,最后剩下的数为(2036)555-⨯个口(2036)999-⨯个,即55口99.我们只用计算55口99当“口”取何值时能被7整除,有口为6时满足.评注:对于含有类似n abcabc abcabc abcabc个的多位数,考察其整除7、11、13情况时,可以将abcabc 一组一组的除去,直接考察剩下的数.8.用数字6,7,8各两个,组成一个六位数,使它能被168整除.这个六位数是多少?【分析与解】因为168=20×3×7,所以组成的六位数可以被8、3、7整除.能够被8整除的数的特征是末三位组成的数一定是8的倍数,末两位组成的数一定是4的倍数,末位为偶数.在题中条件下,验证只有688、768是8的倍数,所以末三位只能是688或768,而又要求是7的倍数,由上题知abcabc形式的数一定是7、11、13的倍数,所以768768一定是7的倍数,口口口688的口不管怎么填都得不到7的倍数.至于能否被3整除可以不验证,因为整除3的数的规律是数字和为3的倍数,在题中给定的条件下,不管怎么填数字和都是定值,必须满足,不然本题无解.当然验证的确满足.所以768768能被168整除,且验证没有其他满足条件的六位数.9.将自然数1,2,3,…依次写下去组成一个数:12345678910111213….如果写到某个自然数时,所组成的数恰好第一次能被72整除,那么这个自然数是多少?【分析与解】因为72=32×23,所以这个数必须是8的倍数,即后三位必须是8的倍数(也一定有后二位为4的倍数,末位为偶数),且数字和是9的倍数.有456,312,516,920,324,728,132,536…均是4的倍数,但是只有456,920,728,536是8的倍数.验证这些数对应的自然数的数字和:456对应123456,数字和为2l,920对应123…91011…1920,数字和为102,728对应123…91011…192021…28,数字和为154,536对应123…91011…192021…293031…36,数字和为207,所以在上面这些数中,只有536对应的123…91011…192021…293031…36既是8的倍数,又是9的倍数.所以,满足题意的自然数为36.10.1至9这9个数字,按图4-1所示的次序排成一个圆圈.请你在某两个数字之间剪开,分别按顺时针和逆时针次序形成两个九位数(例如,在l和7之间剪开,得到两个数是193426857和758624391).如果要求剪开后所得到的两个九位数的差能被396整除,那么剪开处左右两个数字的乘积是多少?【分析与解】 在解这道题之前我们先看一个规律:n n 位原序数与位反序数的差一定是99n 9n ⎧⎨⎩的倍数为奇数时的倍数为偶数时(如:12365为原序数,那么它对应的反序数为56321,它们的差43956是99的倍数.对于上面的规律想想为什么?)那么互为反序的两个九位数的差,一定能被99整除.而396=99×4,所以我们只用考察它能否能被4整除.于是只用观察原序数、反序数的末两位数字的差能否被4整除,显然只有当剪开处两个数的奇偶性相同时才有可能.注意图中的具体数字,有(3,4)处、(8,5)处的两个数字奇偶性均不相同,所以一定不满足.而剩下的几个位置奇偶性相同,有可能满足.进一步验证,有(9,3)处剪开的末两位数字之差为43-19=24,(4,2),(2,6),(6,8),(5,7),(7,1),(1,9)处剪开的末两位数字之差为62-3=28.86-42=44,58-26=32,85-17=68,91-57=34,71-39=32.所以从(9,3),(4,2),(2,6),(6,8),(5,7),(1,9)处剪开,所得的两个互为反序的九位数的差才是396的倍数.(9,3),(4,2),(2,6),(6,8),(5,7),(1,9)处左右两个数的乘积为27,8,12,48,35,9.11.有15位同学,每位同学都有编号,他们是l 号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除.1号作了一一验证:只有编号连续的两位同学说得不对,其余同学都对.问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请求出这个数.【分析与解】 (1)列出这14个除数:2、3、4、5 、6、7、 8、9 、 10、11 、12 、 13 、 14 、15.注意到如果这个数不能被2整除,那么一定不能被4、6、8、10…等整除,显然超过两个自然数;类。
数的整除知识点【篇一:数的整除知识点】一. 数的分类第一种分法 : 树状图韦恩图整数第二种分法整数第三种分法:正整数一些关于数的结论:1.0是最小的自然数,-1是最大的负整数,1是最小的正整数2.没有最大的整数,没有最小的负整数,没有最大的正整数3.正整数、负整数、整数的个数都是无限的二.整除1.整除定义(概念):整数a除以整数b,如果除得的商是整数而余数为零,我们就说a 能被b整除;或者说b能整除a注意点:一定要看清楚谁被谁整除或谁整除谁,这里的a相当于被除数,b相当于除数2.整除的条件:1.除数、被除数都是整数2.被除数除以除数,商是整数而且余数为零注意点:区分整除与除尽:整除是特殊的除尽(如正方形是特殊的长方形一样),即a能被不能说4能被5整除三.因数与倍数1.因数与倍数的定义:整数a能被整数b整除,a 就叫做b的倍数,b就叫做a的因数(约数)。
的倍数,0.2是4的因数。
2.因数与倍数的特点:一个整数的因数中最小的因数是1,最大的因数是它本身。
一个数的倍数中最小的倍数是这个数本身,没有最大的倍数。
因数的个数是有限的,都能一一列举出来,倍数的个数是无限的。
3.求一个数因数的方法:利用积与因数的关系一对一对找,找出哪两个数的乘积等于这个数,16的因数就有1、2、4、8、16,计算时一定不要忘了1和这个数本身都是它的因数,注意按照一定的顺序以防遗漏。
4.求一个数倍数的方法:这个数本身分别乘以1、2、3、4、5??(即正整数)得到的积就是这个数的倍数。
若用n表示所有的正整数,则2的倍数可表示为2n, 5的倍数可表示为5n四.能被2、5、3整除的数的特点1.能被2整除的数(即2的倍数)个位上的数字是0、2、4、6、8,反之,个位上的数字是0、2、4、6、8的数也能被2整除2.能被5整除的数(即5的倍数)个位上的数字是0、5,反之,个位上的数字是0、5的数都能被5整除3.能被3整除的数(即3的倍数)各个位数上的数字之和是3的倍数,反之,各个位数上的数字之和是3的倍数的数都能被3整除4.能被2、5同时整除的数的个位数字都是0,个位数字为0的数也能被10整除,能被10整除的数一定能被2或5其中的一个或两个同时整除。
短除法总结什么是短除法短除法(也称为列竖式除法)是一种用于解决除法问题的算法。
它是学习数学除法的基础,在小学高年级的数学课程中被广泛教授和应用。
短除法的基本思想是将被除数分解成若干个整数乘以除数,然后将这些结果相加得到最终的商和余数。
通过不断地“试商”和“降位”,可以逐步找到正确的商和余数。
短除法的步骤相对简单,可以帮助学生更好地理解和掌握除法运算。
短除法步骤短除法的步骤如下:1.在除法术题上方写下被除数和除数;2.将被除数的最高位和除数进行除法运算,得到商,并将商写在被除数的下方;3.将商乘以除数,得到一个乘积;4.将乘积写在被除数的下方,并进行减法运算,得到一个差;5.如果差小于除数,则差即为最终的余数;6.如果差大于等于除数,则将差作为新的被除数,重复上述步骤,直到差小于除数为止;7.最终商的和所有余数即为最终结果。
下面以一个具体的例子来说明短除法的运算步骤:432 │ 3636 - (432 ÷ 36 = 12)* 36 = 0在这个例子中,被除数为432,除数为36。
首先将432和36进行除法运算,得到商12,并将12写在被除数的下方。
然后将12乘以36,得到一个乘积432,再将432写在被除数的下方。
最后进行432-432的减法运算,得到一个差为0,说明没有余数。
短除法的应用短除法在实际生活中有着广泛的应用。
除法是我们日常生活中常用的运算之一,例如计算购物时的折扣、分配资源等。
通过掌握短除法,我们能够更加方便地进行这些实际问题的计算。
此外,短除法还在其他领域有广泛应用,例如数据处理、计算机编程等。
在计算机科学中,除法是一种基本的数学运算,短除法的思想也被应用于计算机处理器的除法运算中。
短除法的优缺点短除法作为一种基本的除法算法,具有以下优点:1.容易理解和掌握:短除法的步骤相对简单,易于学习和理解。
它是学习除法运算的基础,可以帮助学生建立正确的数学思维和计算能力。
2.灵活适用:短除法适用于各种除法问题,不论是小数除法还是整数除法,只需按照短除法的步骤进行操作即可。
短除法练习题班级姓名一、求下列各题的最大公因数和最小公倍数15和205和30和6416 和2426 和3977 和5550 和4048和1 1和78.写出每个分数中分子与分母的最大公因数。
121 141011211三.写出每组分数中两个分母的最小公倍数。
7和3 ) 58 和1 ) 7915 和1011 和1 ) 518935 和1 ) 25 和10 42和15和46和699511112 和5)59和12)))四.解决下列问题3 6个人排队做操,如果每5个人排一排,至少再来几个人正好排完?一个长方形瓷砖长5 4厘米,宽2 4厘米,可以将它分割成若干个完全一样的正方形,没有剩余,边长最长是多少厘米?最少可以分几个?一种长方形瓷砖长5 4厘米,宽2 4厘米,至少用多少块这样的瓷砖可以拼成一个正方形?正方形的边长最少长多少厘米?两根彩带分别长5 4厘米,2 4厘米,把这两根彩带剪成同样长的短彩带且没有剩余,每根彩带最长是多少厘米?一共可以分成多少根?一盘苹果,2个一拿,3个一拿,4个一拿都正好拿完,而且没有剩余,这盘苹果最少有多少个?一盘苹果,3个一拿少一个,4个一拿也少一个,这盘苹果最少有多少个?三个连续自然数的和是7 2 ,这三个连续的自然数分别是多少?如果三个连续自然数的偶数的和是7 2,这三个连续的自然数分别是多少?14和21和1 15和1815 和208 和359 和5299 和3310 和161和2345 和54180 和1202和24和3 121和112和4824和9和825和306和48 和90 5 和5191 和493 和495 和387和36和221和1525 和5016 和3620 和3048 和4019 和384和1和11和512和1564和489和1236和30和3 11和14和72一、基本概念:公因数:两个或多个数都有的因数叫做公因数公倍数:两个或多个数都有的倍数叫做公倍数最大公因数:两个或多个数都有的因数里最大的叫做最大公因数最小公倍数:两个或多个数都有的倍数里最小的叫做最小公倍数公约数和最大公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1, 2, 3, 4, 6, 12; 30的约数有1, 2, 3, 5, 6, 10, 15, 30o 12 和30的公约数有1, 2, 3, 6,其中6是12和30的最大公约数。
数量关系讲义一、计算基础知识1. 常用整除性质能被2整除的特征:末尾是0、2、4、6、8; 能被3;9整除的特征:各位数字之和能被3和9整除; 能被4;25整除的特征:当且仅当末两位能被4和25整除; 能被8;125整除的特征:当且仅当末三位能被8和125整除; 能被5整除的特征:末尾是0、5;能被6整除的特征:能同时被2和3整除;能被7;11;13整除的特征:当且仅当其末三位数字,与剩下的数之差能被7;11;13整除。
2. 短除法求解多个数字的“最大公约数”和“最小公倍数”3. 基本代数公式——公式法平方差: ))((22b a b a b a -+=-;幂次运算律:n n n m n n m n m n m b a b a a a a a a =⋅==⋅+)(;)(;二、基本计算技巧与方法1.核心提示:在计算处理方面,纯计算问题在数学运算模块中比重较小,但计算类问题所要求的计算方法和计算技巧仍是整个数学运算的基础。
2.典型真题讲解与练习● 题型一:公式法化简【例1】(安徽)123456788*123456790-123456789*123456789=( )。
A.-1B.0C.1D.2● 题型二:整体相消【例1】.(北京应届2008-22))51413121()4131211(+++⨯+++ ⨯++++-)514131211()413121(++的值是( )。
21 A . 31B . 41 C . 51 D .● 题型三:数字特性法【例1】(河北2009-106)999913579991359913⨯+⨯+⨯的值是 ( )。
13507495 A . 13574795B . 13704675 C . 13704795 D .【例2】(浙江2007A-11)2007200720072007200713579++++的值的个位数是?( )。
5 A . 6 B . 8 C . 9 D .● 题型四:直接代入法【例1】.(北京应届2009-22)1分、2分和5分的硬币共100枚,价值2元,如果其中2分硬币的价值比1分硬币的价值多13分,则三种硬币各多少枚?( ) 51,32,17 A . 60,20,20B . 45,40,1 C . 54,28,1 D .【例2】. (内蒙古2008-11)甲、乙、丙、丁四个数的和是43,甲数的2倍加8,乙数的3倍,丙数的4倍,丁数的5倍减去4都相等,则这四个数字分别是?( )A. 14,12, 8, 9B.16, 12 ,9, 6C. 11,10,8,14,D. 14,12,9,8● 题型五:奇偶法1. 两个数的和为奇数,则它们奇偶相反,两个数的和为偶数,则它们奇偶相同;2. 两个数的和为奇数,则其差也为奇数,两个数的和为偶数,则其差也为偶数。
求最小公倍数的十种方法作者:来源:《小学教学参考(数学)》2013年第04期一、列举倍数法(定义求法)所谓列举倍数法(定义求法)就是分别列举出要求最小公倍数的那几个数的一些倍数,从中找出除“0”以外最小的那个公倍数,就是最小公倍数。
如:求12和18的最小公倍数。
解:∵12的倍数有:0,12,24,36,48,60,72……18的倍数有:0,18,36,54,72……从上面可以看出12和18的最小公倍数是36。
即:[12,18]=36。
二、韦恩图法(文氏图法)所谓韦恩图法(文氏图法)就是分别写出要求最小公倍数的那几个数的一些倍数集合,并用韦恩图法表示出来,其中两个(或多个)集合交集中除“0”外最小的那个元素就是它们的最小公倍数。
这正是与大纲要求把集合、对应等新思想适当渗透到小学数学教材中去相适应。
如:求24和36的最小公倍数。
解:24的倍数集合M={0,24,48,72,96,120,144……}36的倍数集合N={0,36,72,108,144,180……}那么:M∩N={0,72,144……}∴[24,36]=72。
第二种方法与第一种方法有很多相似之处,但第二种方法是利用韦恩图解,很直观,学生更容易接受。
三、分解质因数法分解质因数法就是先把要求最小公倍数的那几个数分别分解质因数,然后将原来几个数里所含该质因数的最多个数的每一个质因数相乘,所得的积就是要求的最小公倍数。
如:求96、30和132的最小公倍数。
解:96=25×3 30=2×3×5 132=22×3×11在96、30和132的任何一个不为零的公倍数里至少有五个质因数2、一个质因数3、一个质因数5,一个质因数11,所以[96,30,132]=25×3×5×11=5280。
四、短除法所谓短除法就是先用要求最小公倍数的那几个数的公有除数连续去除那几个数,一直除到所得的商互质为止,再把所有的除数和最后商连乘起来,乘得的积就是所求的最小公倍数。
34个奥数解题公式34个小学奥数“必考”公式,打印贴墙背,6年数学“不慌张”!数学是一门十分重视根底的学科,小学数学正是孩子打根底的最好阶段,而小学数学中,应用题一直是考试中的重难点。
1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题:确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
分解素因数是六年级数学上学期第一章第二节内容,主要包含素数、合数的概念以及分解素因数,公因数与最大公因数,公倍数与最小公倍数这三大块内容,这节课主要讲解前面两大块内容,重点是素数与合数的概念以及分解素因数,难点是求2个整数或者是3个整数的最大公因数.通过这节课的学习一方面为我们后面学习公倍数和最小公倍数奠定基础,另一方面用所学知识解决实际问题,加强学生对数学学习的兴趣.1、素数与合数(1)素数:一个正整数,如果只有1和它本身两个因数,则叫做素数,也叫做质数;(2)合数:一个正整数,如果除了1和它本身以外还有别的因数,则叫做合数;(3)1既不是素数,也不是合数;正整数可分为:1、素数和合数三类.分解素因数知识结构模块一:素数与合数知识精讲内容分析1 / 1例题解析【例1】判断37,39,47和49是素数还是合数.【难度】★【答案】37和47是素数,39和40是合数.【例2】下列各数中,哪些是素数?哪些是合数?6,13,18,31,51,67,87,120.【难度】★【答案】13,31,67是素数;6,18,51,87,120是合数.【例3】根据要求填空:在1,2,9,21,43,51,59,64这八个数中:(1)是奇数又是素数的数是();(2)是奇数不是素数的数是();(3)是素数而不是奇数的数是();(4)是合数而不是偶数的数是().【难度】★【答案】(1)43,59 ;(2)1,9,21,51 ;(3)2;(4)9,21,51.【例4】已知字母p、q分别代表一个素数,并且p + q = 99,你能知道p、q这两个数相乘的积是多少吗?【难度】★★【答案】194【解析】99是一个奇数和一个偶数的和,且这两个数都是素数,所以这两个数是2和97,积是194.【总结】2是最小的素数,也是唯一的偶素数.【例5】判断题(若是正确的,请说明理由;若是错误的,请把它改正确).(1)所有的偶数是合数,所有的奇数是素数;(2)某数是3的倍数,这个数一定是合数;(3)一个合数至少有3个因数;(4)在所有的素数中,只有2是偶数,其余的素数都是奇数;(5)一个自然数,如果不是素数,就一定是合数;(6)两个素数的和一定是合数;(7)大于2的合数都是偶数;3 / 3(8) 一个大于1的自然数,如果有小于本身的因数,那么这个数一定是合数.【难度】★★【答案】(1)×;(2)×;(3)√;(4)√;(5)×;(6)×;(7)×;(8)×.【例6】用10以内的质数组成一个三位数,使它能同时被3、5整除,这个数最小和最大分别是多少? 【难度】★★ 【答案】375和735.【例7】一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数是多少? 【难度】★★【答案】11,13,17,31,37,71,73,79,97.【解析】两位质数中,十位数字是2、4、5、6、8的,不满足条件,剩余的有:11,13,17,19,31,37,53,59,71,73,79,97,其中满足条件的有:11,13,17,31,37,71,73,79,97.【总结】本题主要查对质数概念的理解和运用.【例8】已知一个长方形的长和宽都是质数厘米,并且周长是36厘米.问这个长方形的面积至多是多少个平方厘米? 【难度】★★★ 【答案】77平方厘米【解析】由周长是36厘米可得:长+宽=18,由于长和宽都是质数, 所以18只能写成5+13或7+11.所以这个长方形的面积最大为:7×11=77平方厘米 答:这个长方形的面积至多是77平方厘米. 【总结】本题是利用质数解决实际问题.师生总结1、 最小的素数是几?最小的合数是几?2、 最小的偶素数是几?3、 如何判断一个正整数是不是素数?【例9】三个素数的和是100,这三个素数的积最大是多少? 【难度】★★★ 【答案】4514【解析】由三个素数和为100且2是素数中唯一的偶数,所以2是其中一个素数, 即:另两个素数的和是98. 又:98=19+79=31+67=37+61所以这三个数的乘积最大是:2×37×61=4514. 答:这三个素数的积最大是4514.【总结】偶数与偶数的和是偶数,偶数与奇数的和是奇数,2是唯一的偶素数.【例10】若三个素数的乘积恰好等于它们的和的11倍,那么这三个素数各是几? 【难度】★★★【答案】2、11、13或3、7、11.【解析】设这三个质数为a 、b 、c ,可得等式:11()abc a b c =++, 又11也是质数,所以a ,b ,c 中必有一个数是11, 设a =11,即11bc =11(11+b +c ),所以11bc b c =++. ①当b 、c 中含有质数2时,不妨令b =2 2c =11+2+c ,解得c =13,符合题意.②当b 、c 中不含有质数2,即b c 都是奇数时, 不妨令:b =2M +1,c =2N +1,有: (2M +1)(2N +1)=11+2M +1+2N +1. 即4MN =12,MN =3. 显然只能是M =3,N =1.此时b =2×3+1=7,c =1×2+1=3,符合题意. 综上,这三个质数可以是:2、11、13或3、7、11.【总结】本题是一道综合性非常强的题目,要求学生要充分理解其中的假设法.1、分解素因数每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数.知识精讲模块二:分解素因数5 / 5把一个合数用素因数相乘的形式表示出来,叫做分解素因数. 2、口算法分解素因数例如:728922233=⨯=⨯⨯⨯⨯. 3、短除法分解素因数形如右图,这种在左侧写除数,下方写商的除法格式叫做“短除法”. 用短除法分解素因数的步骤如下:(1)先用一个能整除这个合数的素数(通常从最小的开始)去除;(2)得出的商如果是合数,再按照上面的方法继续除下去,直到得出的商是素数为止; (3)然后把各个除数和最后的商按从小到大的顺序写成连乘的形式.【例11】把24分解素因数的正确算式是( )A .24234=⨯⨯B .242223=⨯⨯⨯C .2412223=⨯⨯⨯⨯D .24226=⨯⨯【难度】★ 【答案】B【解析】A 、D 选项中有合数,C 选项中有1,1既不是素数,也不是合数. 【总结】每个合数都可以写成几个素数相乘的形式,叫做分解素因数.【例12】在等式462223n ⨯==⨯⨯⨯中,4和6都是n 的( ),2和3都是n 的( )A .素因数B .素数C .因数D .合数【难度】★ 【答案】C 、A 【解析】略【总结】本题主要考察素数和素因数的区别. 【例13】把以下各数分解素因数:35,72,105,108,238.【难度】★【答案】35=5×7; 72=2×2×2×3×3; 105=3×5×7; 108=2×2×3×3×3;238=2×7×17.【解析】略【总结】本题主要考查如何将一个合数分解素因数.例题解析355 7【例14】请把2、3、5、7、14、15这六个数分成两组,使每组数的乘积相等. 【难度】★★【答案】3、5、14和2、7、15.【解析】因为14=2×7,所以14和2、7分在两组;因为15=3×5,所以15和3、5分在两组;故:3、5、14一组,2、7、15一组. 【总结】本题主要是对分解素因数的综合运用.【例15】如果a <>表示全部素因数的和,如6235<>=+=,试求3510<>-<>的值. 【难度】★★ 【答案】7【解析】由已知得:<35>=5+7=14,<10>=2+5=7, 所以<35>-<10>=7. 【总结】本题类似于阅读理解题,要对a <>所表示的概念准确理解.【例16】下面的算式里,□里数字各不相同,求这四个数字的和.□□×□□=1995.【难度】★★ 【答案】20【解析】因为1995=3×5×7×19=35×57,所以这四个数分别是3、5、5、7, 和是:3+5+5+7=20.【总结】本题主要是对分解素因数的综合运用.【例17】有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗.共有多少种分法? 【难度】★★ 【答案】5种【解析】由因为168=1×168=2×84=3×56=4×42=6×28=8×21=12×14;所以168的因数有:1,2,3,4,6,8,12,14,21,28,42,56,84,168.师生总结1、 分解素因数的方法有哪些?2、归纳总结短除法分解素因数的步骤.因为每份不得少于10颗,也不能多于50颗,所以满足条件的因数有:12、14、21、28、42.所以共有5种分法.【总结】本题主要是利用因数的概念解决实际问题.【例18】把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920.这篮苹果共有多少个?【难度】★★【答案】28个【解析】因为1920=2×2×2×2×2×2×2×3×5=4×6×8×10,所以四个小朋友分别分到4、6、8、10个苹果,4+6+8+10=20(个) 答:这篮苹果共有20个.【总结】本题是一道应用题,主要是还是利用分解素因数的思想进行求解.【例19】有a个人都属鸡,而且生日都是3月20日.某年,他们的年龄数的乘积为207025,他们的年龄数之和是102.则a等于几?【难度】★★★【答案】6【解析】因为207025=5×5×7×7×13×13=1×13×13×25×49,又这几个人的生肖相同,所以他们的年龄是49,25,13,13,1,因为49+25+13+13=100,所以102-100=2.所以有2人年龄为1,有2人年龄为13,有1人年龄为25,有1人年龄为49,共6人,即a=6.【总结】本题是一道非常综合的题目,主要还是利用分解素因数的方法,找到原数的因数,从而求出适合题意的解来.模块三:公因数和最大公因数知识精讲1、公因数几个数公有的因数,叫做这几个数的公因数.2、最大公因数7 / 7几个数的公因数中,最大的一个叫做这几个数的最大公因数.3、两个数互素如果两个整数只有公因数1,那么称这两个数互素.4、求最大公因数求几个数的最大公因数,只要把它们所有公有的素因数连乘,所得的积就是它们的最大公因数.例题解析【例20】求出下列各组数的最大公因数.(1)14和42;(2)121和44;(3)28和56;(4)17和9.【难度】★【答案】(1)14;(2)11;(3)28;(4)1.【例21】指出下列哪组中的两个数互素.(1)3和5;(2)6和9;(3)14和15;(4)18和1.【难度】★【答案】(1)(3)(4).【解析】如果两个整数只有公因数1,那么称这两个数互素.【总结】互素两数的几种常见类型:(1)两个数都是素数;(2)一个素数,一个合数;(3)1和其它的任意正整数.【例22】找出下列各数的公因数与最大公因数.(1)84、28、60;(2)12、16、20.【难度】★【答案】(1)公因数:1、2、4,最大公因数:4;(2)公因数:1、2、4,最大公因数:4.【例23】下列说法中,正确的个数有()个①2是4和16的一个公因数;②12是24和36的最大公因数;③如果两个数互素,那么这两个数一定都是素数;④1和任何正整数互素.A.0 B.1 C.2 D.3【答案】D9 / 9【例24】已知m n p 、、都为自然数,且2n p ÷=,12m n ÷=,那么m n p 、、的最大公因数是多少? 【难度】★★ 【答案】p【解析】m 是n 的倍数,n 是p 的倍数,因此m 是p 的倍数;所以最大公因数是p . 【总结】若三个数都是倍数关系,则它们的最大公因数是最小的那个数.【例25】已知两个数的积是5766,它们的最大公因数是31,求这两个数. 【难度】★★【答案】31、168或62、93.【解析】设这两个数是31a ,31b (a 、b 互素), 则:31a ×31b =5766 ∴ab =6① a =1,b =6时,两个数是31、168; ②a =2,b =3时,两个数是62、93.【总结】本题是一道综合题,综合运用了最大公因数和因数的概念.【例26】将长、宽、高分别是120厘米,90厘米,60厘米的长方体木料锯成同样大小的正方体木块,而没有剩余,锯成的木块棱长最长是多少?共可以锯成多少块? 【难度】★★ 【答案】30厘米,9块【解析】120、90、60的最大公因数是30,所以棱长最长为30厘米. (120+90+60)÷30=9(块)答:锯成的木块棱长最长是30厘米,共可以锯成9块.【例27】学校买来40支圆珠笔和50本练习本,平均奖给四年级三好学生,结果圆珠笔多4支,练习本多2本,四年级有多少名三好学生,他们各得到什么奖品? 【难度】★★【答案】(1)12名,3支圆珠笔,4本练习本;(2)6名,6支圆珠笔,8本练习本. 【解析】40-4=36(支),50-2=48(本),36与48的最大公因数是12. 12=1×12=2×6=3×4.(1)若12名,每人3支圆珠笔,4本练习本; (2)若6名,每人6支圆珠笔,8本练习本; (3)若4名或2名,圆珠笔可分完,与题意矛盾; 【总结】本题是利用最大公因数的思想解决实际问题.【例28】幼儿园一个班买书,如买35本,平均分给每个小朋友差一本,如买56本,平均分给每个小朋友后还剩2本,如买69本,平均分给每个小朋友则差3本.这个班的小朋友最多有几人?【难度】★★★【答案】18人【解析】35+1=36本,56-2=54本,69+3=72本,36、54、73的最大公因数是18.答:这个班的小朋友最多有18人.【总结】本题是利用最大公因数的思想解决实际问题.师生总结1、两个整数的最大公因数的方法有哪些?2、互素的两个整数具有什么样的特征?【习题1】下列说法中,正确的个数有()个①一个自然数,不是质数就是合数;②任何一个自然数至少有2个因数;③90分解素因数是90=5⨯2⨯9;④两个素数的和一定是偶数;A.0 B.1 C.2 D.3【难度】★【答案】A【习题2】将20写成两个质数之和,这两个质数最大乘积是多少?【难度】★【答案】91【解析】因为20可以写成3+17或7+13的两个质数的和,所以积最大是:7×13=91.【习题3】下列各数中是否含有相同的公因数,若含有请指出,并求出最大公因数.(1)6和9;(2)27和51;(3)28、42和56.【难度】★【答案】(1)含有,最大公因数:3;(2)含有,最大公因数:3;(3)含有,最大公因数:14.【习题4】已知两个数的和是107,它们的乘积是1992,这两个数分别是多少?【难度】★★【答案】24和83【解析】1992=2×2×2×3×83=24×83,所以这两个数是24和83.【总结】本题主要是考查分解素因数在数字求和中的运用.【习题5】两个正整数的和是50,他们的最大公因数是5,这两个数的差的最大值是几?【难度】★★【答案】40【解析】设这两个数是5a,5b(a、b互素),则:5a+5b=50.所以a+b=10 .①a=1,b=9时,两个数是5、45;45-40=5;②a=3,b=7时,两个数是15、35.35-15=20;所以这两个数的差的最大值是40.【总结】本题主要考查素数在数字计算中的运用.【习题6】王老师带领一班同学去植树,学生恰好分成4组.如果王老师和学生每人植树一样多,那么他们一共植了539棵.这个班有多少个学生?每人植树多少棵?【难度】★★【答案】48个,11棵【解析】因为539=7×7×11=49×11,所以学生数是48人,每人植树11棵.【总结】本题是对分解素因数的综合运用.【习题7】某农副食品店销售三级别的大米,已知一级大米150斤,二级大米180斤,三级大米210斤的价格都是450元,现需将这三种大米分别按整斤数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元?【难度】★★【答案】15元【解析】因为150、180、210的最大公因数是30,所以每种大米最多分30小份,11 / 11即每份最低:450÷30=15元.答:每袋的价格最低是15元.【总结】本题是利用最大公因数的思想解决实际问题.【习题8】 “九九重阳节敬老节”将至,幸福小区组织一批老年人决定分乘若干辆至多可乘44人的大巴前去郊游.如果打算每辆车坐22个人,就会有1个人没有座位;如果少开一辆车,那么,这批老人刚好平均分乘余下的大巴.那么有多少个老人?原有多少辆大巴?【难度】★★★【答案】529个,24辆.【解析】22+1=23人,因23是质数,所以把这23人,只能平均分到23个车里. 所以原来的车数是:23+1=24(辆),24×22+1=529(个).答:有529个老人,原有24辆大巴.【总结】本题的综合性比较强,解题是注意对本题中的“23”这个素数的准确理解.【习题9】 甲乙两人射箭,规定每射一箭得到的环数是0~10这10个数中的一个整数,他们各射5靶,每人得到的环数之积刚好都是1764,但是甲的总环数比乙少4环,求甲、乙各自的总环数.【难度】★★★【答案】24环,28环.【解析】因为1764=2×2×3×3×7×7,所以每人都有两个7环.剩余三个环数可能为:2、2、9; 3、3、4; 2、3、6; 1、4、9; 1、6、6. 和分别为:13,10,11,14,13.因为甲的总环数比乙少4环,所以甲另外三环的和应是10环,乙另外三环的和应是14环.所以甲的环数为:14+10=24环,乙的环数为:14+14=28环.【总结】本题依旧是考查分解素因数在实际问题中的应用.【习题10】 有a b c d 、、、四个数,已知a b 、的最大公因数是60,c d 、的最大公因数是96,这四个数的最大公因数是多少?【难度】★★★【答案】12【解析】由已知得:a 、b 是60的倍数,c 、d 是96的倍数,因此60和96的最大公因数即是a b c d 、、、四个数的最大公因数.而60和96的最大公因数是12.13 / 13 答:这四个数的最大公因数是12.【总结】本题主要是考查学生对最大公因数的概念的准确理解和运用.【作业1】 求出下列每组数的最大公因数.(1)48和72;(2)104和182; (3)13和52; (4)160和185. 【难度】★【答案】(1)24;(2)26;(3)13;(4)5.【解析】(1)短除法得: 48与72的最大公因数是24;(2)短除法得:104与182的最大公因数是26;(3)13和52是倍数关系,最大公因数是较小数,13与52的最大公因数是13;(4)短除法得:160与185的最大公因数是5.【总结】本题主要是考查求两个数的最大公因数.【作业2】 已知四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数,求这四个数.【难度】★【答案】3、3、5、8【解析】因为360=2×2×2×3×3×5,又四个数中只有一个合数,且小于10,所以只能是8.所以这四个数是3、3、5、8;【总结】本题还是考查分解素因数的运用.【作业3】 已知:235A =⨯⨯,335B =⨯⨯,则A 和B 的公因数有哪些,最大公因数是几?【难度】★【答案】公因数:3、5、15;最大公因数:15.【解析】略【总结】求最大公因数的方法:①枚举法;②短除法;③分解素因数法.【作业4】 将下列各数分解素因数.36,81,143,437,663【难度】★★ 课后作业【答案】36=2×2×3×3;81=3×3×3×3;143=11×13;663=3×13×17.【解析】略【总结】本题主要是考查如何将一个正整数分解素因数.【作业5】两个数的和为90,两个数的最大公因数是15,求这两个数.【难度】★★【答案】15,75【解析】设这两个数是15a,15b(a、b互素),则:15a+15b=90,所以a + b = 6 .因为这两个数的最大公因数是15,所以a=1,b=5.所以这两个数是15、75.【总结】本题已知两数和和两数的最大公因数,在求这两个数时注意方法的选用.【作业6】已知两个数的和被5除余1,它们的积是2924,那么它们的差等于多少?【难度】★★【答案】25【解析】2924=2×2×17×43=1×2924=2×1462=4×731=17×172=34×86=43×68因为和被5除余1,所以这两个数是:43、68,68-43=25,答:它们的差是25.【总结】本题是利用求一个数的因数的方法求出满足条件的两个数.【作业7】用一个数去除18、24、60都能整除,这个数最大是多少?【难度】★★【答案】6【解析】18、24、60的最大公因数是6,所以这个数最大是6.【总结】本题主要考查求三个数的最大公因数.【作业8】288人参加团体操,分成人数相等的若干队,每队人数在15至35之间.有哪些分法?【难度】★★【答案】3种分法:(1)每队16人,共18队;(2)每队18人,共16队;(3)每队24人,共12队.【解析】因为288=2×2×2×2×2×3×3 =2×144=3×76=4×72=6×48=8×36=12×24=16×18,而每队人数在15至35之间,故有3种分法:16人,18队;18人,16队;24人,12队;【总结】本题是利用求一个数的因数的方法求出满足条件的两个数.【作业9】有三根绳子,一根长36米,一根长16米,一根长24米.要把它们剪成同样长的小段做跳绳,每小段要尽量长,一共能剪成多少根跳绳?【难度】★★★【答案】19根【解析】因为36、16、24的最大公因数是4,所以一共能剪成:(36+16+24)÷4=19根.【总结】本题主要是考查利用三个数的最大公因数解决实际问题.【作业10】从一块正方形的木板上锯下宽为3分米的一个木条后,剩下木板的面积是108 平方分米,则锯下的木条面积是多少平方分米?【难度】★★★【答案】36平方分米【解析】108=2×2×3×3×3=12×9,则原来木板边长12分米.12×3=36平方分米.答:锯下的木条面积是36平方分米.【总结】本题综合性较强,解题时注意对题意的准确理解.15 / 15。
目录【小学数学浅奥知识点小结】 (2)一.和差倍问题 (2)二.年龄问题 (2)三.植树问题 (2)四.平均数问题 (2)五.因数(约数)与倍数 (3)六.数的整除 (3)七.余数与同余 (4)八.行程问题 (4)九.时钟问题(快慢表问题) (5)十.归一问题 (5)十一.鸡兔同笼问题 (5)十二.盈亏问题 (6)十三.牛吃草问题 (6)十四.周期循环与数表规律 (6)十五.抽屉原理 (6)十六.定义新运算 (6)十七.完全平方数 (7)十八.数列数组 (7)十九.加法乘法原理 (7)二十.排列组合 (8)二十一.分数与百分数的应用 (8)二十二.分数大小的比较 (8)二十三.分数拆分与裂项 (9)二十四.比和比例 (9)二十五.工程问题 (9)二十六.逻辑推理基本方法 (10)二十七.几何面积 (10)二十八.几何面积五大模型 (10)二十九.立体图形 (11)三十.其他零散知识点 (12)【小学数学浅奥知识点小结】一. 和差倍问题【基本概念】和差倍问题包括这几类问题:1)和差问题:已知两个数的和及这两个数的差,求这两个数。
2)和倍问题:已知两个数的和及这两个数的倍数关系,求这两个数。
3)差倍问题:已知两个数的差及这两个数的倍数关系,求这两个数。
【基本公式】1)和差问题:(和-差)÷2=较小数;(和+差)÷2=较大数2)和倍问题:和÷(倍数+1)=较小数3)差倍问题:差÷(倍数-1)=较小数注:可以画线段图帮助理解二. 年龄问题【基本特征】1)两人年龄差不变;2)两人年龄同增或同减;3)两人年龄的倍数是发生变化的。
【基本公式】1)几年后年龄=大小年龄差÷倍数差-小年龄2)几年前年龄=小年龄-大小年龄差÷倍数差三. 植树问题【基本类型】在直线或者不封闭的曲线上植树,两端都植树;在直线或者不封闭的曲线上植树,两端都不植树;在直线或者不封闭的曲线上植树,只有一端植树;在封闭曲线上植树。
1、和差倍问题2、年龄问题的三个基本特征①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7、牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。