半导体陶瓷物理效应.ppt
- 格式:ppt
- 大小:167.50 KB
- 文档页数:19
半导体高中物理半导体是一种电子能带结构介于导体和绝缘体之间的材料,具有独特的导电性质。
在高中物理学中,半导体是一个重要的话题。
本文将探讨半导体的基本概念、性质和应用。
首先,我们来了解半导体的基本概念。
半导体是指在温度较高时表现为导体,而在温度较低时表现为绝缘体的物质。
它的导电性质是通过材料中的载流子(电子或空穴)传导电流来实现的。
在半导体中,电子和空穴是通过化学反应或热激发产生的。
半导体材料可以是单晶体(如硅、锗)或复合材料(如硅锗合金)。
半导体具有一些独特的性质。
首先是温度敏感性。
随着温度的升高,半导体的导电性会增强,因为更多的载流子会被激发出来。
这种特性使得半导体在温度传感器和温度控制器中得到广泛应用。
其次是光电性质。
半导体在受到光照时,会发生光生电效应,产生电子-空穴对。
这种特性使得半导体在光电器件(如太阳能电池、光电二极管)中有重要的应用。
半导体的导电性质可以通过掺杂来调节。
掺杂是指向半导体中引入杂质,改变其导电性质的过程。
掺杂分为施主掺杂和受主掺杂。
施主掺杂是向半导体中引入能够提供额外自由电子的杂质,如磷或砷。
这些自由电子可以增加半导体的导电性能,使其成为N型半导体。
受主掺杂是向半导体中引入能够提供额外空穴的杂质,如硼或铟。
这些空穴可以增加半导体的导电性能,使其成为P型半导体。
N型半导体和P型半导体的结合形成PN结。
PN结是半导体器件中最基本的结构之一。
当N型半导体和P型半导体相接触时,N型半导体中的自由电子会向P型半导体中的空穴扩散,形成电子-空穴对结合区域。
在这个结合区域中,自由电子和空穴会重新组合,形成电子空穴复合。
这种电子空穴复合过程会导致PN结的区域失去自由电荷,形成一个电势差,称为内建电势。
内建电势使得PN结形成一个单向导电的区域,即正向偏置和反向偏置。
PN结具有一些重要的应用。
其中之一是二极管。
二极管是一种电子器件,可以在电流只能从P端流向N端的情况下导电。
二极管广泛应用于电源电路、整流电路和信号调制电路中。
半导体陶瓷专题报告一.半导体陶瓷简介半导体陶瓷概念:具有半导体特性、电导率约在10-6~10-5S/m的陶瓷。
半导体陶瓷的电导率因外界条件(温度、光照、电场、气氛和温度等)的变化而发生显著的变化,因此可以将外界环境的物理量变化转变为电信号,制成各种用途的敏感元件。
半导体陶瓷生产工艺的共同特点是必须经过半导化过程。
半导化过程可通过掺杂不等价离子取代部分主晶相离子(例如,BaTiO3中的Ba2+被La3+取代),使晶格产生缺陷,形成施主或受主能级,以得到n型或p型的半导体陶瓷。
另一种方法是控制烧成气氛、烧结温度和冷却过程。
例如氧化气氛可以造成氧过剩,还原气氛可以造成氧不足,这样可使化合物的组成偏离化学计量而达到半导化。
半导体陶瓷敏感材料的生产工艺简单,成本低廉,体积小,用途广泛。
半导体陶瓷的分类:按用途分类:1.压敏陶瓷压敏陶瓷系指对电压变化敏感的非线性电阻陶瓷。
目前压敏陶瓷主要有SiC、TiO2、SrTiO3和ZnO四大类,但应用广、性能好的当属氧化锌压敏陶瓷,由于ZnO压敏陶瓷呈现较好的压敏特性,在电力系统、电子线路、家用电器等各种装置中都有广泛的应用,尤其在高性能浪涌吸收、过压保护、超导性能和无间隙避雷器方面的应用最为突出。
它们的电阻率相对于电压是可变的,在某一临界电压下电阻值很高,超过这一临界电压则电阻急剧降低。
自七十年代日本首先使用ZnO无间隙避雷器取代传统的SiC串联间隙避雷器以来,国内外都相继开展了这方面的研究。
但氧化锌压敏陶瓷在高压领域的应用还存在局限性。
如生产高压避雷器,则需要大量的ZnO压敏电阻阀片叠加,不仅加大了产品的外形尺寸,而且高压避雷器要求较低的残压比也极难实现,为此必须研究开发新的高性能高压压敏陶瓷材料。
通过对试样结果的分析,用化学级原料成功地制备出性能优异的SnO2压敏陶瓷,新型SnO2压敏陶瓷显示出优异的非线性电流——电压特性,与目前国内外市场上流行的ZnO压敏材料相比,其性能高于前者。