实际问题与一元二次方程面积问题
- 格式:ppt
- 大小:408.00 KB
- 文档页数:19
一元二次方程的应用复习教学目标【知识技能】能根据几何图形找出问题中的等量关系,列出一元二次方程解决实际问题,并检验解的合理性。
【过程与方法】经历读题、审题和解题,让学生进一步体会“问题情境--建立模型--求解--解释与应用”的过程。
【情感、态度与价值观】获得运用数学知识分析和解决实际问题的方法和经验,更好的体会数学的价值观。
教学重点、难点重点:将实际问题转化为一元二次方程的数学模型,并根据实际问题检验解的合理性。
难点:建立数学模型解决实际问题,借助方程验证方案的可行性。
突破方法:引导学生用不同图形的面积公式列出方程。
教法与学法教学方法:启发引导,创设情境,利用多媒体课件激发学生学习兴趣;引导学生分析设计方案,借助方程验证方案的可行性。
学习方法:小组合作探究,组内讨论交流教学准备教师准备:多媒体课件学生准备:完成导学案教学过程一、前置诊断1.在长a米,宽b米的一块草坪上修了一条1米宽的笔直小路,则余下的草坪面积可表示为米2,为了增加美感,把这条小路改为宽恒为1米的弯曲小路,则剩余草坪的面积可表示为米2。
2.幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,求四周的宽度是多少。
3.如图,学校准备在校园里利用围墙的一段,围成一个矩形花园ABCD(围墙MN最长可利用25米),现有50米的栅栏,请设计一种围法,使矩形花园的面积为300米2。
【设计说明】:本环节的目的是发挥教材的引领作用。
把教材、学生和教师三个方面有机地结合起来,帮助学生回顾应用一元二次方程解决应用题的一般步骤,解决图形公式型应用题的基本方法,纠正学生解答过程中出现的问题。
【学生活动】:独立思考和交流合作相结合,完成学案中的问题。
【题后反思】列方程解应用题的基本步骤:【拓展应用】幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设两块地毯,四周未铺地毯的条形区域的宽度都相同,若地毯面积是教室矩形地面面积的32,求四周的宽度是多少。
数学试卷九年级实际问题与一元二次方程(3)导学案(27)班级: 上课时间:姓名:评价知识目标:(1)、掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.(2)、利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.重点:据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型.(一)导学求思1、列方程解应用题步骤2、填空:1).直角三角形的面积公式是 •一般三角形的面积公式是2).正方形的面积公式是长方形的面积公式又是3).梯形的面积公式是 4).菱形的面积公式是5).平行四边形的面积公式是 6).圆的面积公式是(二)、探究交流(一)要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下、左、右边衬等宽,应如何设计四周边衬的宽度?分析:(法一)这本书的上下左右边衬的宽度相等,可设四周边衬的宽度为xcm,据四周的边衬所占面积是封面面积的四分之一可得方程。
(此题的过程展示右上)分析: (法二)这本书的上下左右边衬的宽度相等,可设四周边衬的宽度为xcm,据四周的边衬所占面积是封面面积的四分之一可知正中央矩形的面积是封面面积的四分之三,从而得方程。
解:(三)(探究3)如图,要设计一本书的封面,封面长27cm,宽21cm,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度(结果保留小数点后一位)?分析:(法一)这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7,设正中央的矩形两边分别为9xcm,7xcm,则上、下边衬为,左、右边衬为因为四周的彩色边衬所点面积是封面面积的四分之一,则中央矩形的面积是封面面积的四分之三,从而得方程。
一元二次方程解决实际问题一、根据题目的意思设数;二、根据题目列出方程;三、解方程;四、根据具体问题的实际意义,检验结果是否合理;五、答题。
1、面积问题;1)要使一块矩形场地的长比宽多6米,并且面积为16平方米,场地的长和宽分别是多少?2)某农民要在自己的房屋旁边搞一个鸡场,房屋的墙长16米,计划用32米长的围栏靠墙围成一个矩形鸡场。
(1)要使鸡场的面积为120平方米,则矩形的长和宽分别是多少?(2)能不能围成一个面积为150平方米的矩形?(3)矩形的长和宽分别是多少时,鸡场的面积最大?2、增长率问题;1)某种药品经过两次的降价,由原来的每盒25元下降到16元。
设平均每次的下降率为x,由题意所得,列出方程是;2)某村2011年人均收入为1200元,2013年的人均收入为1452元,求人均收入的增长率。
3)(2013年第20题)雅安地震牵动全国人民的心,某单位开展一次“一方有难,八方支援”赈灾捐款活动,第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天。
第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?4)(2012年第16题)据媒体报道,我国2009年公民出境旅游总人数约5 000万人次,2011年公民出境旅游总人数约7 200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?3、双循环、单循环问题;1)足球比赛是进行主客(双循环)比赛的。
在一次足球联赛中,一共进行了30场比赛。
问有多少支队参加比赛?2)要组织以次篮球比赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,有多少个对参加比赛?3)在一次聚会中,每两个人之间都握一次手,共握了45次手,问有多少人参加聚会?4、病毒传染与树杈问题;1)有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?如果得不到很好的控制,则第三轮传染,一共会有多少人患上流感?2)有一只猪患了“猪流感”,经过两轮传染共有169只猪患了“猪流感”,求每轮传染中平均一只猪传染了几只猪?3)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,每个支干长出多少小分支?*5、动态几何问题例9如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动。