重庆市万盛区关坝中学_七年级数学下学期第一次月考试卷(含解析)新人教版【含答案】
- 格式:doc
- 大小:374.52 KB
- 文档页数:17
新人教版七年级数学下册第一次月考试卷含解析(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版七年级数学下册第一次月考试卷含解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版七年级数学下册第一次月考试卷含解析(word版可编辑修改)的全部内容。
123(第三题)ABCD1234(第2题)12345678(第4题)ab c新人教版七年级数学下册第一次月考试卷一、单项选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120°C 、180°D 、140°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①② B、①③ C、①④ D、③④5、一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的 方向上平行前进,那么这两次转弯的角度可以是( ). A 、先右转80°,再左转100° B 、先左转80°,再右转80°C 、先左转80°,再右转100°D 、先右转80°,再右转80°6、下列哪个图形是由左图平移得到的( )BD7、点P 为直线l 外一点,点A 、B 、C 为直线l 上三点,PA =4cm ,PB=5cm ,PC=2cm , 则点P 到直线l 的距离为( )。
2019学年重庆市七年级下第一次月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 在-2,,,3.14,,,这6个数中,无理数共有()A.1个 B.2个 C.3个 D.4个2. 下列说法正确的是()A.有且只有一条直线与已知直线平行B.垂直于同一条直线的两条直线互相平行C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D.在平面内过一点有且只有一条直线与已知直线垂直3. 下列各组数中,互为相反数的组是()A.-2与 B.-2和 C.-与2 D.︱-2︱和24. 下列等式正确的是()A.=± B. C. D.5. 某人从A点出发沿北偏东60°方向走到B点,再从B点向南偏西15°方向走到C点,则∠ABC等于()A.45°B.75°C.105°D.135°6. 若点P(a,b)在第四象限,则Q(-a,b-1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7. 如图,AB∥CD,直线PQ分别交AB,CD于点E,F,FG是∠EFD的平分线,交AB于点G.若∠PFD=40°,那么∠FGB等于()A.80° B.100° C.110° D.120°8. 如图,下列条件中,能判断DE∥AC的是()A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4 D.∠1=∠29. 如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40°.在射线0B上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是()A.60° B.80° C.100° D.120°10. 如图,AB⊥AC,CD平分∠ACB,BE平分∠ABC,AG∥BC,AG⊥BG。
重庆初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=70°,则∠BOD 的度数等于( )A .20°B .30°C .35°D .40°2.如图,直线a ∥b ,直线c 是截线,如果∠1=65°,那么∠2等于( )A .165°B .135°C .125°D .115°3.如果直线a 、直线b 都和直线c 平行,那么直线a 和直线b 的位置关系是( )A .相交B .平行C .相交或平行D .不相交4.已知:如图,下列条件中,不能判断直线L 1∥L 2的是( )A .∠1=∠3B .∠4=∠5C .∠2+∠4=180°D .∠2=∠35.下列叙述中,正确的是( )A .相等的两个角是对顶角B .一条直线有只有一条垂线C .从直线外一点到这条直线上的各点所连接的线段中,垂线段最短D .一个角一定不等于它的余角6.如图是一条管道的剖面图,如果要求管道经两次拐弯后的方向保持原来不变,那么管道的两个拐角∠α,∠β之间的关系是( )A .∠α=∠βB .∠α+∠β=90°C .∠α+∠β=180°D .∠α+∠β=360° 7.如果两条平行线被第三条直线所截得的八个角中,有一个角的度数已知,则( )A .只能求出其余三个角的度数B .只能求出其余五个角的度数C .只能求出其余六个角的度数D .可以求出其余七个角的度数二、填空题1.如图,直线AB、CD相交于点O,若∠AOD=28°,则∠BOC= ,∠AOC= .2.已知∠α与∠β互余,且∠α=40°,则∠β的补角为度.3.如图,已知AB∥CD,EF分别交AB、CD于点E、F,∠1=70°,则∠2的度数是.4.如图,AO⊥CO,BO⊥DO,∠AOD=150°,则∠BOC的度数是.5.如图,∠B的同位角是,内错角是,同旁内角是.6.如图,要使AB∥CD,只需要添加一个条件,这个条件是(填一个你认为正确的条件即可).7.下面生活中的物体的运动情况可以看成平移的是.(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)汽车玻璃上雨刷的运动;(5)从楼顶自由落下的球(球不旋转).8.分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.三、解答题1.如图所示,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线平行吗?为什么?2.将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.3.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.4.推理填空:如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2= .()又因为∠1=∠2,所以∠1=∠3.()所以AB∥.()所以∠BAC+ =180°()又因为∠BAC=70°,所以∠AGD= .5.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.6.已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.7.如图,AB∥ED,∠B=48°,∠D=42°,BC垂直于CD吗?下面给出两种添加辅助线的方法,请选择一种,对你作出的结论加以说明.重庆初一初中数学月考试卷答案及解析一、选择题1.如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=70°,则∠BOD 的度数等于( )A .20°B .30°C .35°D .40°【答案】C【解析】根据角平分线定义求出∠AOC=∠EOC=35°,根据对顶角的定义即可求出∠BOD 的度数.解:∵OA 平分∠EOC ,∠EOC=70°,∴∠AOC=∠EOC=35°,∴∠BOD=∠AOC=35°.故选:C .【考点】对顶角、邻补角;角平分线的定义.2.如图,直线a ∥b ,直线c 是截线,如果∠1=65°,那么∠2等于( )A .165°B .135°C .125°D .115°【答案】D【解析】首先根据两直线平行,同位角相等可得∠1=∠3=65°,再根据邻补角互补可得∠2的度数.解:∵a ∥b ,∴∠1=∠3=65°, ∵∠3+∠2=180°, ∴∠2=180°﹣65°=115°,故选:D .【考点】平行线的性质.3.如果直线a 、直线b 都和直线c 平行,那么直线a 和直线b 的位置关系是( )A .相交B .平行C .相交或平行D .不相交【答案】B【解析】根据平行于同一条直线的两直线也平行可得答案.解:如果直线a 、直线b 都和直线c 平行,那么直线a 和直线b 的位置关系是平行,故选:B .【考点】平行线;相交线.4.已知:如图,下列条件中,不能判断直线L 1∥L 2的是( )A .∠1=∠3B .∠4=∠5C .∠2+∠4=180°D .∠2=∠3【答案】D【解析】依据平行线的判定定理即可判断.解:A、内错角相等,两直线平行,故正确;B、同位角相等,两直线平行,故正确;C、同旁内角互补,两直线平行,故正确;D、错误.故选D.【考点】平行线的判定.5.下列叙述中,正确的是()A.相等的两个角是对顶角B.一条直线有只有一条垂线C.从直线外一点到这条直线上的各点所连接的线段中,垂线段最短D.一个角一定不等于它的余角【答案】C【解析】根据对顶角的定义,垂线的性质,余角的定义作答.解:A、直角都相等,但不一定是对顶角,故本选项错误;B、一条直线有无数条垂线,故本选项错误;C、从直线外一点到这条直线上的各点所连接的线段中,垂线段最短是对的,正确;D、45°角等于它的余角,故本选项错误.故选C.【考点】垂线段最短;余角和补角;对顶角、邻补角;垂线.6.如图是一条管道的剖面图,如果要求管道经两次拐弯后的方向保持原来不变,那么管道的两个拐角∠α,∠β之间的关系是()A.∠α=∠βB.∠α+∠β=90°C.∠α+∠β=180°D.∠α+∠β=360°【答案】A【解析】若要管道经两次拐弯后的方向保持原来不变,则MN与BC必须平行,易证∠β=∠NMB,∠α=∠MBC,而∠NMB与∠MBC是内错角,要保证MN∥BC,则必须有∠NMB=∠MBC,即∠α=∠β.解:如图示,若要管道经两次拐弯后的方向保持原来不变,则MN∥BC,而MN∥AD,则∠β=∠NMB,同理可得∠α=∠MBC,若MN∥BC,则∠MBC=∠NMB,即∠α=∠β,所以要保证MN∥BC,则必须有∠α=∠β.故选A.【考点】平行线的判定.7.如果两条平行线被第三条直线所截得的八个角中,有一个角的度数已知,则()A.只能求出其余三个角的度数B.只能求出其余五个角的度数C.只能求出其余六个角的度数D.可以求出其余七个角的度数【答案】D【解析】根据平行线的性质得出即可.解:两条平行线被第三条直线所截,则同位角相等,内错角相等,同旁内角互补;以及邻补角互补;依此有一个角的度数已知,则可以求出其余七个角的度数.故选:D.【考点】同位角、内错角、同旁内角.二、填空题1.如图,直线AB、CD相交于点O,若∠AOD=28°,则∠BOC= ,∠AOC= .【答案】28°,152°.【解析】根据对顶角相等和邻补角的定义列式解答.解:∵∠AOD=28°,∴∠BOC=∠AOD=28°,∠AOC=180°﹣∠AOD=180°﹣28°=152°.故答案为:28°,152°.【考点】对顶角、邻补角.2.已知∠α与∠β互余,且∠α=40°,则∠β的补角为度.【答案】130.【解析】根据∠α与∠β互余,且∠α=40°,先求出∠β的度数,进一步求出∠β的补角.解:∵∠α与∠β互余,且∠α=40°,∴∠β=90﹣∠α=90°﹣40°=50°;∴∠β的补角为180°﹣50°=130度.故填130.【考点】余角和补角.3.如图,已知AB∥CD,EF分别交AB、CD于点E、F,∠1=70°,则∠2的度数是.【答案】110°.【解析】因为∠2与∠EFD互补,所以欲求∠2只要知道∠EFD的度数,∠EFD与∠1是同位角,根据平行线的性质即可解决.解:∵AB∥DC,∠1=70°,∴∠1=∠EFD=70°,∵∠2+∠EFD=180°,∴∠2=180°﹣70°=110°,故答案为110°.【考点】平行线的性质.4.如图,AO⊥CO,BO⊥DO,∠AOD=150°,则∠BOC的度数是.【答案】30°.【解析】根据垂直的定义,得∠AOC=∠DOB=90°,再结合图形的重叠特点求∠BOC的度数.解:∵OA⊥OC,OB⊥OD,∴∠AOC=∠DOB=90°,∴∠BOC=∠AOC+∠DOB﹣∠AOD=180°﹣150°=30°.故答案为30°.【考点】垂线;余角和补角.5.如图,∠B的同位角是,内错角是,同旁内角是.【答案】∠ACD;∠BCE;∠BAC和∠ACB【解析】同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.根据同位角和同旁内角的定义进行填空.解:∠B的同位角是∠ACD,内错角是∠BCE,同旁内角是∠BAC和∠ACB,故答案为:∠ACD;∠BCE;∠BAC和∠ACB【考点】同位角、内错角、同旁内角.6.如图,要使AB∥CD,只需要添加一个条件,这个条件是(填一个你认为正确的条件即可).【答案】∠ABD=∠BDC (答案不惟一).【解析】当添加条件∠ABD=∠BDC.由内错角相等,两直线平行,得出AB∥CD即可.解:可以添加条件∠ABD=∠BDC (答案不惟一).理由如下:∵∠ABD=∠BDC,∴AB∥CD.故答案为:∠ABD=∠BDC (答案不惟一).【考点】平行线的判定.7.下面生活中的物体的运动情况可以看成平移的是.(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)汽车玻璃上雨刷的运动;(5)从楼顶自由落下的球(球不旋转).【答案】(2)(5).【解析】根据平移的性质,对题材中的条件进行一一分析,选出正确答案.解:(1)摆动的钟摆,方向发生改变,不属于平移;(2)在笔直的公路上行驶的汽车沿直线运动,属于平移;(3)随风摆动的旗帜,形状发生改变,不属于平移;(4)汽车玻璃上雨刷的运动,方向发生改变,不属于平移;摇动的大绳,方向发生改变,不属于平移;(5)从楼顶自由落下的球沿直线运动,属于平移.故可以看成平移的是(2)(5).故答案为:(2)(5).【考点】生活中的平移现象.8.分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.【答案】见解析【解析】从图中可以观察变化规律是,正方形每次绕其中心顺时针旋转90°,每个阴影部分也随之旋转90°.解:【考点】作图-旋转变换.三、解答题1.如图所示,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线平行吗?为什么?【答案】平行,原因见解析所截的同位角,利用同位角相等,两直线平行即可证得.【解析】把∠1与∠2看做是直线a,b被直线L2解:如图,∵∠1=∠2=90°,∴a∥b(同位角相等,两直线平行).【考点】平行线的判定.2.将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.【答案】见解析【解析】按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.解:【考点】作图-平移变换.3.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.【答案】∠2=60°,∠3=30°【解析】∠1与∠3是对顶角;∠2与∠3互为余角.解:由题意得:∠3=∠1=30°(对顶角相等)∵AB⊥CD(已知)∴∠BOD=90°(垂直的定义)∴∠3+∠2=90°即30°+∠2=90°∴∠2=60°【考点】垂线;对顶角、邻补角.4.推理填空:如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2= .()又因为∠1=∠2,所以∠1=∠3.()所以AB∥.()所以∠BAC+ =180°()又因为∠BAC=70°,所以∠AGD= .【答案】∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°.【解析】根据平行线的性质推出∠1=∠2=∠3,推出AB∥DG,根据平行线的性质得出∠BAC+∠DGA=180°,代入求出即可.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=110°,故答案为:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°.【考点】平行线的判定与性质.5.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.【答案】∠1=65°.【解析】根据角平分线的定义,两直线平行内错角相等的性质解答即可.解:∵∠EMB=50°,∴∠BMF=180°﹣∠EMB=130°.∵MG平分∠BMF,∴∠BMG=∠BMF=65°,∵AB∥CD,∴∠1=∠BMG=65°.【考点】平行线的性质;角平分线的定义;对顶角、邻补角.6.已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.【答案】∠C=65°.【解析】由∠ADE=∠B可判定DE∥BC,即可知∠DEC与∠C互补,即可求解.解:∵∠ADE=∠B,∴DE∥BC,∴∠DEC+∠C=180°,又∵∠DEC=115°,∴∠C=65°.【考点】平行线的判定与性质.7.如图,AB∥ED,∠B=48°,∠D=42°,BC垂直于CD吗?下面给出两种添加辅助线的方法,请选择一种,对你作出的结论加以说明.【答案】见解析【解析】根据两直线平行,内错角相等可得∠BCF=∠B,∠DCF=∠D,然后求出∠BCD=∠B+∠D,再根据垂直的定义解答;根据两直线平行,同旁内角互补求出∠BCG,∠DCG,再根据周角等于360°求出∠BCD,然后根据垂直的定义解答.解:过点C作CF∥AB,∵AB∥ED,∴AB∥CF∥ED,∴∠BCF=∠B,∠DCF=∠D,∴∠BCD=∠B+∠D,=48°+42°,=90°,∴BC⊥CD;过点C作CG∥AB,∵AB∥ED,∴AB∥CG∥ED,∴∠BCG=180°﹣∠B=180°﹣48°=132°,∠DCG=∠D=180°﹣∠D=180°﹣42°=138°,∴∠BCD=360°﹣∠BCG﹣∠DCG,=360°﹣132°﹣138°,=90°,∴BC⊥CD.【考点】平行线的性质.。
人教版七年级下册数学第一次月考试卷一、单选题1.如图,直线a 、b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°2.如图,AB ∥CD ,∠A=80°,则∠1的度数是( )A .70°B .100°C .110°D .130°3.已知:如图, AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A .相等B .互补C .互余D .互为对顶角 4.如图所示,下边的4个图形中,经过平移能得到左边的图形的是( )A .B .C .D . 5.下面的语句是假命题的是( )A .同旁内角互补B .钝角的补角是锐角C.垂线段最短D.直角的补角是直角⊥,则点O到PR所在直线的距离是线段()的长.6.如图,PO OR⊥,OQ PRA.OQ B.OR C.OP D.PQ7.如图,a∥b,∠1是∠2的3倍,则2∠等于()A.45︒B.90︒C.135︒D.150︒8.如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6 C.∠3+∠4+∠5+∠6=180°D.∠4=∠8 9.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.360°C.270°D.540°10.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cm B.2cm C.小于2cm D.不大于2cm二、填空题11.同一平面内,两条直线的位置关系有_____________________12.如图,△ABC沿着直线BC的平移,使点B移到点E,若∠ABC=40°,∠ACB=60°,则∠DEF= _________ .m n,∠2=50°,那么∠1=______°,∠3= ______°,∠4=______°.13.如图,//14.命题“两直线平行、同旁内角互补”中,题设是_________,结论是_______,此命题是_______命题.15.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.由∠CBE=______,可以判断AD∥BC,由∠CBE=______,可以判断AB∥CD,由∠ABC + ______=180°,可以判断AB∥CD.16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=____.三、解答题17.读句画图,如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R.18.推理填空:如图:①若∠1=∠2,则∥()若∠DAB+∠ABC=180°,则∥()②当∥时,∠ C+∠ABC=180°()当∥时,∠3=∠C ()19.如图,AB∥CD,∠3=115°,求∠1的度数.20.如图,已知∠1=50°,∠B=50°,∠D=50°,求∠C的度数21.如图,已知∠AGD=∠ACB,∠1=∠2.求证:CD∥EF22.如图,已知//AM BN ,60A ∠=︒.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠、分别交射线AM 于点C ,D .(1)①ABN ∠的度数是________;②//AM BN ,ACB ∴∠=∠________;(2)求CBD ∠的度数;(3)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.23.3是2x ﹣1的平方根,y 是8的立方根,z 是绝对值为9的数,求2x+y ﹣5z 的值.24.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.参考答案1.C【详解】∵直线a,b 相交于点O ,若∠1=40︒,∴∠2=(180-40)°=140 °;故选C.2.B【分析】根据平行线的性质求解即可;【详解】如图所示,∵AB ∥CD ,∴+2=180A ∠∠︒,又∵∠A=80°,∴2=100∠︒,又∵1∠与2∠是对顶角,∴1=100∠︒.故答案选B .【点睛】本题主要考查了平行线的性质应用,准确理解对顶角的性质是解题的关键.3.C【分析】根据互余的定义,结合图形解答即可.【详解】∵AB CD ⊥,∴∠BOC=90°,∴∠1+∠COE=90°.∵∠2=∠COE,∴∠1+∠2=90°,∴1∠与2∠互余.故选C.【点睛】本题考查了垂直的定义,对顶角的性质,以及余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.4.A【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:A、经过平移能得到左边的图形,故符合题意;B、经过平移和旋转才能得到左边的图形,故不符合题意;C、经过平移和轴对称变换才能得到左边的图形,故不符合题意;D、经过平移和旋转才能得到左边的图形,故不符合题意;故选:A.【点睛】本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.5.A【分析】根据直角、垂线段、锐角和平行线的性质判断即可.【详解】解:A、两直线平行,才会同旁内角互补,故原命题是假命题;B、钝角的补角是锐角,故原命题是假命题;C、垂线段最短,故原命题是假命题;D、直角的补角是直角,故原命题是假命题;故选:A.【点睛】本题考查了命题与定理的知识,解题的关键是了解直角、垂线段、锐角和平行线的性质,难度不大.6.A【分析】根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离,结合图形判断即可.【详解】解:∵OQ⊥PR,∴点O到PR所在直线的距离是线段OQ的长.故选A.【点睛】本题考查了点到直线的距离,熟记概念并准确识图是解题的关键.7.A【分析】根据两条直线平行,同位角相等和∠1是∠2的3倍以及邻补角的概念,得4∠3=180°,由此可以求出∠2=45°.【详解】解:如图,∵a∥b,∴∠2=∠3,而∠1是∠2的3倍,∴∠1是∠3的3倍,而∠1+∠3=180°,∴4∠3=180°,∴∠3=45°,∴∠2=45°.故选:A.【点睛】本题主要考查了平行线的性质以及邻补角的定义的运用,解决问题的关键是结合已知条件列方程进行求解.8.D【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.9.B【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【详解】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故选B.【点睛】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.10.D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.11.相交或平行【分析】根据在同一平面内,两条直线的位置关系可知.【详解】解:在同一平面内,两条直线有2种位置关系,它们是相交或平行.故答案为:相交或平行.【点睛】本题是基础题型,主要考查了在同一平面内,两条直线的两种位置关系.12.40°【分析】根据平移的性质可得AB∥DE,再根据平行线的性质可得∠DEF的度数.【详解】解:∵△DEF由△ABC平移得到,B和E为对应点,∴AB∥DE,∴∠DEF=∠ABC=40°.故答案为:40°.【点睛】本题考查了平移的性质以及平行线的性质,根据平移得出AB∥DE是解题的关键. 13.50 50 130【分析】∠1与∠2是对顶角,∠2与∠3是内错角,∠3与∠4是邻补角,据此回答.【详解】解:如图,∵∠2=50°,∴∠1=∠2=50°,∵m∥n,∴∠3=∠2=50°,∴∠4=180°-∠3=130°.故答案为:50;50;130.【点睛】本题考查了平行线性质定理,解题的关键是根据性质定理得出各对相等的角.14.两条直线平行, 同旁内角互补, 真.【解析】【分析】根据题设是前提条件,结论是由前提条件得到的结果作答即可得题设和结论,再判断命题真假即可.【详解】∵“两直线平行,同旁内角互补”可以写成:“如果两直线平行,那么同旁内角互补”,∴题设是两直线平行,结论是同旁内角互补,此命题是真命题,故答案为:两直线平行;同旁内角互补;真.【点睛】本题考查了命题中题设与结论的判断,真命题与假命题的判断,用到的知识点为:所有命题都可以写成“如果…那么…”,“如果”后面是题设,“那么”后面是结论.15.∠A ∠C ∠C【分析】根据平行线的判定直接完成填空.【详解】解:由∠CBE=∠A可以判断AD∥BC,根据是同位角相等,可得两条直线平行;由∠CBE=∠C可以判断AB∥CD,根据是内错角相等,可得两条直线平行;由∠ABC+∠C=180°,可以判断AB∥CD,根据是同旁内角互补,可得两条直线平行;故答案为:∠A,∠C,∠C.【点睛】此题考查了平行线的判定,关键是弄清两个角是哪两条直线被第三条直线所截而形成的角.16.54°【分析】两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.【详解】∵AB∥CD,∴∠BEF=180°−∠1=180°−72°=108°∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=12∠BEF=12×108°=54°∴∠2=∠BEG=54°.故答案为54°.17.(1)作图见解析;(2)作图见解析.【详解】试题分析:(1)过点P作∠PQA=∠DCA即可.(2)过点P作∠QPR=90°即可.试题解析:如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R.18.见解析【分析】①利用平行线的性质及判定,即先利用内错角相等,两直线平行得出AB∥CD,然后再根据同旁内角互补,两直线平行得出AD∥BC.②根据两直线平行,同旁内角互补求得两角互补.再根据两直线平行,内错角相等求得∠3=∠C.【详解】解:①若∠1=∠2,则AB∥CD(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);当AD∥BC时,∠3=∠C(两直线平行,内错角相等).故答案为:AB∥CD;内错角相等,两直线平行;AD∥BC;同旁内角互补,两直线平行;AB∥CD;两直线平行,同旁内角互补;AD∥BC;两直线平行,内错角相等.【点睛】此题主要考查了平行线的性质及判定.(1)①两直线平行,同位角相等.②两直线平行,内错角相等.③两直线平行,同旁内角互补.(2)①同位角相等,两直线平行.②内错角相等,两直线平行.③同旁内角互补,两直线平行.19.65°【分析】根据平行线的性质和邻补角的定义即可解答.【详解】解:∵AB∥CD,∴∠3+∠2=180°,∠2=∠1,∴∠1=∠2=180°-∠3=180°-115°=65°.【点睛】本题考查了平行线的性质和邻补角,熟练掌握平行线的性质是解题的关键.20.130°【分析】根据题意可得∠1=∠B,得到AD∥BC,再根据平行线的性质得到∠C.【详解】解:∵∠1=∠B=50°,∴AD∥BC,∴∠C=180°-∠D=180°-∠50°=130°.【点睛】本题考查了平行线的判定和性质,解题的关键是根据题意得到AD∥BC.21.见解析【分析】根据平行线的判定首先得出DG∥CB,再利用平行线的性质得出∠3=∠2,进而得出CD∥EF.【详解】解:证明:∵∠AGD=∠ACB,∴DG∥CB,∴∠3=∠1,∵∠1=∠2,∴∠3=∠2,∴CD∥EF.【点睛】此题主要考查了平行线的判定与性质,熟练掌握相关的定理是解题关键.22.(1)①120°,②∠CBN;(2)60°;(3)不变,∠APB:∠ADB=2:1.【解析】【分析】(1)由平行线的性质:两直线平行同旁内角互补和内错角相等可得;(2)由(1)知∠ABP+∠PBN=120°,再根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=120°,即∠CBD=∠CBP+∠DBP=60°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;【详解】解:(1)①∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;②∵AM∥BN,∴∠ACB=∠CBN,故答案为:120°,∠CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-60°=120°,∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°;(3)不变,∠APB:∠ADB=2:1.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.23.-33或57.【分析】根据平方根和立方根的计算方法先求x和y,再根据绝对值的求法计算出z的值,最后再求2x+y﹣5z的值.【详解】解:∵3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,∴2x-1=9,y=2,z=±9,∴x=5.当z=9时,2x+y-5z=2×5+2-5×9=-33.当z=-9时,2x+y-5z=2×5+2-5×(-9)=57.【点睛】此题重点考察学生对平方根,立方根,绝对值的理解,熟练掌握它们的定义和计算方法是解题的关键.x=±.24.(1)23a b-的平方根为4±;(2)3【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b =+由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩ 解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.。
人教版数学七年级下册第一次月考试题一、选择题(每小题3分,共30分)1.同一平面内如果两条直线不重合,那么他们( ) A .平行B .相交C .相交或垂直D .平行或相交2.两条直线被第三条直线所截,若∠1与∠2 是同旁内角,且∠1=70º,则 ( ) A. ∠2=70º B. ∠2=110ºC. ∠2=70º或∠2=110ºD.∠2的度数不能确定 3.如图AB ∥CD ,则∠1=( ) A .75° B .80° C .85° D .95°4.如图,△ABC 经过怎样的平移得到△DEF ( )A .把△ABC 向左平移4个单位,再向下平移2个单位B .把△ABC 向右平移4个单位,再向下平移2个单位 C .把△ABC 向右平移4个单位,再向上平移2个单位D .把△ABC 向左平移4个单位,再向上平移2个单位5.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是( ) A .1B .2C .3D .46. 2)7.0(-的平方根是( )A. -0.7B. ±0.7C. 0.7D. 0.49 7.若3a -=387,则a 的值是( ) A.87 B. 87- C. 87± D. 512343- 8.如图,数轴上点P 表示的数可能是( )A.10 B 5 C 3 D 2 9.下列等式正确的是( )12341-PA.43169±= B.311971=- C.393-=- D.31)31(2=- 10.有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确说法的个数是( ) A. 1 B. 2 C. 3 D. 4 二、填空题(每小题3分,共24分)11.如果一个角的补角是150°,那么这个角的余角是 度.12.小明从点A 沿北偏东60°的方向到B 处,又从B 沿南偏西25°的方向到C 处,则小明两次行进路线的夹角为 .13.把“同角的余角相等”写成“如果…,那么…”的形式为 .14.把一张长方形纸条按图中那样折叠后,若得到∠AOB′=70°,则∠OGC= . 15. 9的平方根是_______16. 若1.1001.102= 1.0201=_______ . 17. 25-的相反数是_______ 18. 比较大小:35 6 ; 三、解答题(共66分)19.(8分)如图:已知∠B=∠BGD ,∠DGF=∠F ,求证:∠B+∠F=180°. 请你认真完成下面的填空. 证明:∵∠B=∠BGD ( 已知 ) ∴AB ∥CD ( ) ∵∠DGF=∠F ;( 已知 ) ∴CD ∥EF ( ) ∵AB ∥EF ( ) ∴∠B+∠F=180°( ).20.(8分)已知:如图,AC 平分∠DAB ,∠1=∠2 求证:AB ∥CD21. 计算(每小题5分,共10分)(1) 2243+ (2)32-+223-22. 求下列各式中的x .(每小题5分,共10分)(1) 2491690x -= (2) 3(0.7)0.027x -=-23.(10分)如图,直线AB ,CD ,EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=28°,求∠BOE ,∠AOG 的度数.24.(10分)一个正数x 的两个平方根是2a-3与5-a ,求x 的值.25. (10分)完成下面的证明:已知,如图,AB ∥CD ∥GH ,EG 平分∠BEF ,FG 平分∠EFD求证:∠EGF=90°参考答案一、(30分)1-5,DDCCD 6-10,BBBDB 二、(24分)11题60 12题35度 13题如果两个角是同一个角的余角,那么它们相等。
七年级下学期月考数学试题考试时间:120分钟试卷满分:150分第Ⅰ卷(本卷满分100分)一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1.在同一平面内,两条直线的位置关系是A.平行.B.相交.C.平行或相交.D.平行、相交或垂直2.点P(-1,3)在A.第一象限.B.第二象限.C.第三象限.D.第四象限.3.下列各图中,∠1与∠2是对顶角的是4.如图,将左图中的福娃“欢欢”通过平移可得到图为A.B.C.D.5.下列方程是二元一次方程的是A.2xy=.B.6x y z++=.C.235yx+=.D.230x y-=.6.若0xy=,则点P(x,y)一定在A.x轴上.B.y轴上.C.坐标轴上.D.原点.7.二元一次方程21-=x y有无数多组解,下列四组值中不是..该方程的解的是A.12xy=⎧⎪⎨=-⎪⎩.B.11xy=-⎧⎨=-⎩.C.1xy=⎧⎨=⎩.D.11xy=⎧⎨=⎩.8.甲原有x元钱,乙原有y元钱,若乙给甲10元,则甲所有的钱为乙的3倍;若甲给乙10元,则甲所有的钱为乙的2倍多10元.依题意可得A.103(10)102(10+10x yx y+=-⎧⎨-=+⎩).B.10310210x yx y+=⎧⎨-=+⎩.12B.12A.12C.1 2D.C .3(10)2(10)x y x y =-⎧⎨=+⎩.D .103(10)102(10)10x y x y -=+⎧⎨+=-+⎩.9.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.10.下列命题中,是真命题的是 A .同位角相等. B .邻补角一定互补. C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直.二、填空题(共10小题,每小题3分,共30分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置. 11.剧院里5排2号可以用(5,2)表示,则7排4号用 表示.12.如图,已知两直线相交,∠1=30°,则∠2=__ _. 13.如果⎩⎨⎧-==13y x ,是方程38x ay -=的一个解,那么a =_______.14.把方程3x +y –1=0改写成含x 的式子表示y 的形式得 .15.一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是____________.16.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是 ,结论是 .17.如图,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.18.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于 . 19.如图,EG ∥BC ,CD 交EG 于点F ,那么图中与∠1相等的角共有______个.20.已知x 、y 满足方程组21232x y x y +=⎧⎨-=⎩,则3x +6y +12 +4x -6y +23的值为 .EC第9题图三、解答题(共40分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 21.(每小题4分,共8分)解方程组:(1)⎩⎨⎧y =2x -3,3x +2y =8; (222.(本题满分8分)如图,∠AOB 内一点P :(1)过点P 画PC ∥OB 交OA 于点C ,画PD ∥OA 交OB 于点D ; (2)写出两个图中与∠O 互补的角; (3)写出两个图中与∠O 相等的角.23.(本题8分)完成下面推理过程:如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD .理由如下: ∵∠1 =∠2(已知),且∠1 =∠CGD (______________ _________), ∴∠2 =∠CGD (等量代换).∴CE ∥BF (___________________ ________). ∴∠ =∠C (__________________________). 又∵∠B =∠C (已知),∴∠ =∠B (等量代换).∴AB ∥CD (________________________________).24.(本题8分)如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.25.(本题8分)列方程(组)解应用题:一种口服液有大、小盒两种包装,3大盒、4小盒共装108瓶,2大盒、3小盒共装76瓶.大盒与小盒每盒各装多少瓶?第Ⅱ卷(本卷满分50分)四、解答题(共5题,共50分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 26.(每小题5分,共10分)解方程组:(1)33(1)022(3)2(1)10x y x y -⎧--=⎪⎨⎪---=⎩ (2)04239328a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩27.(本题8分)如图,在三角形ABC 中,点D 、F 在边BC 上,点E 在边AB 上,点G 在边AC 上,AD ∥EF ,∠1+∠FEA =180°.求证:∠CDG =∠B .28.(本题10分)29.(本题10分)江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆.(1)设原计划租45座客车x 辆,七年级共有学生y 人,则y = (用含x 的式子表示);若租用60座客车,则y = (用含x 的式子表示);(2)七年级共有学生多少人?(3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?30.(本题12分)E第27题七年级数学试卷参考答案第Ⅰ卷(本卷满分100分)一、1. C2. B3. B4.C5. D6. C7. D8.A9. A10. B二、11. (7,4) 12. 30°13. -1 14.y=1-3x15.(3,2)16.两直线都平行于第三条直线,这两直线互相平行17.互补18.(3,3)19.2 20.4三、21.(1)21xy=⎧⎨=⎩(2)1212xy=⎧⎨=⎩(每小题过程2分,结果2分)22.(1)如图…………………………………………2分(2)∠PDO,∠PCO等,正确即可;……………………………5分(3)∠PDB,∠PCA等,正确即可.……………………………8分23.对顶角相等……………………………2分同位角相等,两直线平行……………………………4分BFD两直线平行,同位角相等……………………………6分BFD内错角相等,两直线平行……………………………8分24.∵EF∥AD,(已知)∴∠ACB+∠DAC=180°.(两直线平行,同旁内角互补) …………2分∵∠DAC=120°,(已知)∴∠ACB=60°.……………………………3分又∵∠ACF=20°,∴∠FCB=∠ACB-∠ACF=40°.……………………………4分∵CE平分∠BCF,∴∠BCE=20°.(角的平分线定义)……5分∵EF ∥AD ,AD ∥BC (已知),∴EF ∥BC .(平行于同一条直线的两条直线互相平行)………………6分 ∴∠FEC =∠ECB .(两直线平行,同旁内角互补)∴∠FEC=20°. ……………………………8分 25.解:设大盒和小盒每盒分别装x 瓶和y 瓶,依题意得……………1分 341082376x y x y +=⎧⎨+=⎩……………………………4分解之,得2012x y =⎧⎨=⎩ ……………………………7分答:大盒和小盒每盒分别装20瓶和16瓶.……………………8分第Ⅱ卷(本卷满分50分)26.(1)92x y =⎧⎨=⎩ ; (2)325a b c =⎧⎪=-⎨⎪=-⎩(过程3分,结果2分) 27.证明:∵AD ∥EF ,(已知)∴∠2=∠3.(两直线平行,同位角相等)……………………………2分 ∵∠1+∠FEA=180°,∠2+∠FEA=180°,……………………………3分 ∴∠1=∠2.(同角的补角相等)……………………………4分 ∴∠1=∠3.(等量代换)∴DG ∥AB .(内错角相等,两直线平行)……6分∴∠CDG=∠B .(两直线平行,同位角相等)……………………………8分 28.解:(1)画图略, ……………………………2分A 1(3,4)、C 1(4,2).……………………………4分(2)(0,1)或(―6,3)或(―4,―1).……………………………7分 (3)连接AA 1、CC 1; ∵1117272AC A S ∆=⨯⨯= 117272AC C S ∆=⨯⨯= ∴四边形ACC 1 A 1的面积为:7+7=14.也可用长方形的面积减去4个直角三角形的面积:11472622121422⨯-⨯⨯⨯-⨯⨯⨯=.答:四边形ACC 1 A 1的面积为14.……………………………10分29.(1)4515x +; 60(1)x -; ……………………………2分解:(2)由方程组451560(1)y x y x =+⎧⎨=-⎩ ……………………………4分解得5240x y =⎧⎨=⎩ ……………………………5分答:七年级共有学生240人.……………………………6分 (3)设租用45座客车m 辆,60座客车n 辆,依题意得 4560240m n += 即3416m n +=其非负整数解有两组为:04m n =⎧⎨=⎩和41m n =⎧⎨=⎩故有两种租车方案:只租用60座客车4辆或同时租用45座客车4辆和60座客车1辆. ……………………………8分 当0,4m n ==时,租车费用为:30041200⨯=(元); 当4,1m n ==时,租车费用为:220430011180⨯+⨯=(元); ∵11801200<,∴同时租用45座客车4辆和60座客车1辆更省钱.………………10分30.解:(1)∵221(24)0a b a b ++++-=,又∵2210,(24)0a b a b ++≥+-≥,∴2210(24)0a b a b ++=+-=且 . ∴ 210240a b a b ++=⎧⎨+-=⎩ ∴ 23a b =-⎧⎨=⎩即2,3a b =-=. ……………………………3分(2)①过点C 做CT ⊥x 轴,CS ⊥y 轴,垂足分别为T 、S .∵A (﹣2,0),B (3,0),∴AB =5,因为C (﹣1,2),∴CT =2,CS =1,△ABC 的面积=12 AB ·CT =5,要使△COM 的面积=12 △ABC 的面积,即△COM 的面积=52 ,所以12 OM ·CS =52,∴OM =5.所以M 的坐标为(0,5).……………6分 ②存在.点M 的坐标为5(,0)2-或5(,0)2或(0,5)-.………………9分(3)OPD DOE∠∠的值不变,理由如下:∵CD ⊥y 轴,AB ⊥y 轴 ∴∠CDO=∠DOB=90°∴AB ∥AD ∴∠OPD=∠POB∵OF ⊥OE ∴∠POF+∠POE=90°,∠BOF+∠AOE=90° ∵OE 平分∠AOP ∴∠POE=∠AOE ∴∠POF=∠BOF∴∠OPD=∠POB=2∠BOF∵∠DOE+∠DOF=∠BOF+∠DOF=90° ∴∠DOE=∠BOF ∴∠OPD =2∠BOF=2∠DOE ∴2OPDDOE∠=∠.……………………………12分。
七年级数学下册第一次月考试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第二章《整式的乘法》班级 姓名 得分第Ⅰ卷一、选择题(本大题共10小题,共40.0分)1. 已知{x =−1y =2是二元一次方程组{3x +2y =m nx −y =1的解,则m −n 的值是( )A. 1B. 2C. 3D. 42. 下列运算中,结果正确的是( )A. (a +b)2=a 2+b 2B. (−a 2b)3=a 6b 3C. (a 3)2=a 6D. a 6÷a 2=a 33. 方程2x +y =5与下列方程构成的方程组的解为{x =3y =−1的是( )A. x −y =4B. x +y =4C. 3x −y =8D. x +2y =−14. 《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”这一章里,二元一次方程组是由算筹(算筹是中国古代用来记数、列式和进行演算的一种工具)来记录的.在算筹记数法中,以“立”“卧”两种排列方式来表示单位数目,表示两位数时,个位用立式,十位用卧式.如图(1),从左到右列出的算筹数分别表示x 、y 的系数与相应的常数项,根据图(1)可列出方程组{3x +y =177x +4y =23,则根据图(2)列出的方程组是( )A. {x +5y =32x +2y =14 B. {x +5y =112x +4y =9 C. {x +5y =212x +2y =9D. {x +5y =12x +2y =95. 下列运算正确的是( )A. a 3⋅a 2=a 6B. (−a 2)3=a 6C. a 7÷a 5=a 2D. −2mn −mn =−mn6. 下列等式中正确的个数是( )①a 5+a 3=a 10②(−a)6⋅(−a)3⋅a =a 10③−a 4⋅(−a)5=a 20④(−a)5÷a 2=−a 3A. 1个B. 2个C. 3个D. 4个7. 同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( )A. 120kmB. 140kmC. 160kmD. 180km8. 若x 2−2(m −3)x +16是完全平方式,则m 的值等于( )A. −1B. 7C. 7或−7D. 7或−19. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( ) A. {y −x =4.5y −12x =1B. {x −y =4.5y −12x =1C. {x −y =4.512x −y =1D. {y −x =4.512x −y =110. 若a =999999,b =119990,则下列结论正确是( ) A. a <bB. a =bC. a >bD. ab =1第Ⅱ卷二、填空题(本大题共8小题,共32.0分) 11. 计算:0.252019×42020=______.12. 若|a +b −1|+(a −b +3)2=0,则a 2−b 2=______.13. 在括号内填写一个二元一次方程,使所成方程组{5x −2y =1( )的解是{x =1y =2,______.14. 如图所示的正方形和长方形卡片若干张,拼成一个长为(a +3b)、宽为(a +b)的矩形,需要B 类卡片______张.15. 已知x −1x =7,则x 2+1x 2=______.16. 若方程组{2x +3y =75x −y =9的解是方程3x +my =−1的一个解,则m =______.17. 对于非负整数n ,满足方程x +y +2z =n 的非负整数(x,y ,z)的组数记为a n .则a 2017的值是 .18. 若m 2−n 2=6,且m −n =3,则m +n =___. 三、解答题(本大题共7小题,共78.0分) 19. (10分)计算:(1)(15x 2y −10xy 2)÷5xy (2)(2x −1)2−(2x +5)(2x −5)20. (10分)某商场按定价销售某种商品时,每件可获利40元;按定价的八折销售该商品5件与将定价降低30元销售该商品3件所获得的利润相等,求该商品每件的进价和定价分别是多少元?21. (10分)郑州市自2019年12月1日起推行垃圾分类,广大市民对垃圾桶的需求剧增.为满足市场需求,某超市花了7900元购进大小不同的两种垃圾桶共800个,其中,大桶和小桶的进价及售价如表所示.(1)该超市购进大桶和小桶各多少个?(2)当小桶售出了300个后,商家决定将剩下的小桶的售价降低1元销售,并把其中一定数量的小桶作为赠品,在顾客购买大桶时,买一赠一(买一个大桶送一个小桶),送完即止.请问:超市要使这批垃圾桶售完后获得的利润为1550元,那么小桶作为赠品送出多少个?22.(10分)三个圆的位置如图所示,m,n分别是两个较小的圆的直径,m+n是最大的圆的直径.求图中阴影部分的面积.23.(12分)已知:a+b=4.(1)求代数式(a+1)(b+1)−ab值;(2)若代数式a2−2ab+b2+2a+2b的值等于17,求a−b的值.24.(12分)我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?25.(14分)学期即将结束,为了表彰优秀,班主任王老师用W元钱购买奖品.若以2支钢笔和3本笔记本为一份奖品,则可买60份奖品;若以2支钢笔和6本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x.(2)若用这W元钱全部购买笔记本,总共可以买几本?(3)若王老师用这W元钱恰好能买30份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有).请求出所有可能的a,b值.答案1.D2.C3.A4.C5.C6.A7.B8.D9.B 10.B 11.4 12.−313.x +y =3,本题答案不唯一 14.4 15.51 16.−7 17.1019090 18.219.解:(1)原式=15x 2y ÷5xy −10xy 2÷5xy=3x −2y ;(2)原式=4x 2+4x +1−(4x 2−25) =4x 2+4x +1−4x 2+25 =4x +26.20.解:设进价为x 元,定价为y 元根据题意得:{y −x =40(80%y −x)×5=(y −30−x)×3 解得:{x =130y =170答:该商品每件的进价和定价分别是130元,170元21.解:(1)设购进大桶x 个,小桶y 个,依题意,得:{x +y =80018x +5y =7900,解得:{x =300y =500.答:该超市购进大桶300个,小桶500个. (2)设小桶作为赠品送出m 个,依题意,得:300×(20−18)+300×(8−5)+(500−300−m)(8−5−1)−5m =1550,解得:m =50.答:小桶作为赠品送出50个.22.解:若以(m +n)、m 、n 为直径的圆分别用S 圆(m+n)、S 圆m 、S 圆n 表示.由图知:S 阴影=S 圆(m+n)−S 圆m −S 圆n=π×(m +n 2)2−π×(12m)2−π×(12n)2 =π4×(m +n)2−π4×m 2−π4n 2 =π4[(m +n)2−m 2−n 2] =π4×2mn =12πmn .23.解:(1)原式=ab +a +b +1−ab =a +b +1,当a +b =4时,原式=4+1=5;(2)∵a 2−2ab +b 2+2a +2b =(a −b)2+2(a +b), 当a +b =4时, (a −b)2+2×4=17, ∴(a −b)2=9, 则a −b =3或−3.24.解:(1)设需要购买的消毒液x 瓶,酒精y 瓶,根据题意得:{x +y =4024x +20y =900,解得:{x =25y =15.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元), 节省的钱数为900−770=130(元). 答:从北国超市购买这些物品可节省130元.25.解:(1)由题意得:60(2x +3y)=40(2x +6y),化简得:x =32y .(2)60(2x +3y)÷y =360(本). 答:总共可以买360本;(3)由题意得:60(2x +3y)=30(ax +by),把x =32y 代入得:32a +b =12 解得此方程的正整数解为{a =2b =9,{a =4b =6,{a =6b =3.。
1 2015-2016学年重庆市万盛区关坝中学七年级(下)第一次月考数学试卷 一、选择题:(每小题4分,共48分) 1.点P(﹣3,2)位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.下列各图中,∠1与∠2是对顶角的是( )
A. B. C. D.
3.下列各数中:,﹣3.5,0,,π,0.1010010001„,是无理数的有( ) A.1个 B.2个 C.3个 D.4个 4.下列说法中正确的是( ) A.36的平方根是6 B.8的立方根是2 C.的平方根是±2 D.9的算术平方根是﹣3 5.如图,已知a∥b,∠1=70°,则∠2=( )
A.40° B.70° C.110° D.130° 6.体育课上,老师测量跳远成绩的依据是( ) A.平行线间的距离相等 B.两点之间,线段最短 C.垂线段最短 D.两点确定一条直线 7.如图,不能判定AD∥BC的条件是( )
A.∠B+∠BAD=180° B.∠1=∠2 C.∠D=∠5 D.∠3=∠4 8.对于点A(3,﹣4)与点B(﹣3,﹣4),下列说法不正确的是( ) A.将点A向左平移6个单位长度可得到点B B.线段AB的长为6 C.直线AB与y轴平行 D.点A与点B关于y轴对称 9.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) A.第一次向左拐40°,第二次向右拐40° B.第一次向右拐140°,第二次向左拐40° C.第一次向右拐140°,第二次向右拐40° 2
D.第一次向左拐140°,第二次向左拐40° 10.如图,AC⊥BC,AD⊥CD,AB=a,CD=b,则AC的取值范围( )
A.大于b B.小于a C.大于b且小于a D.无法确定 11.如图,图中A、B两点的坐标分别为(﹣3,5)、(3,5),则C的坐标为( )
A.(﹣1,7) B.(1,2) C.(﹣3,7) D.(3,7) 12.将正奇数按下表排成5列: 第一列 第二列 第三列 第四列 第五列 第1行 1 3 5 7 第2行 15 13 11 9 第3行 17 19 21 23 第4行 29 27 25 „ 根据上面规律,2015应在( ) A.第252行第1列 B.第252行第2列 C.第253行第1列 D.第253行第2列
二、填空题:(每小题4分,共24分) 13.据新华社报道,2010年我国粮食产量将达到540 000 000 000千克,用科学记数法可表示为______千克. 14.命题:“内错角相等,两直线平行”的题设是______,结论是______. 15.若(a+1)2+=0,则a﹣b的值为______. 16.在平面直角坐标内,将△ABC平移得到△DEF,且点A(﹣2,3)平移后与点D(1,2)重合,则△ABC内部一点M(3,﹣1)平移后的坐标为______. 17.已知点A(a,0)和点B(0,5),且直线AB与坐标轴围成的△AOB的面积等于10,则a的值是______. 18.有许多代数恒等式可以用图形的面积来表示,如图①,它表示(2m+2n)(m+n)=2m2+3mn+n2.观察图②,请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系是______.
三、解答题(每小题7分,共14分) 3
19.计算: (1)+|1﹣|+﹣; (2)已知4x2﹣16=0,求x的值. 20.如图,已知:∠1=∠2,∠3=108°,求∠4的度数.
四、解答题(本大题4个小题,每小题10分,共40分) 21.已知a,b,c实数在数轴上的对应点如图所示,化简.
22.如图,已知∠1+∠2=180°,∠DAE=∠BCF. (1)求证:AE∥CF; (2)若∠BCF=70°,求∠ADF的度数.
23.如图,△ABC在直角坐标系中 (1)点A坐标为(______,______),点C坐标为(______,______ ). (2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,画出平移后的图形. (3)三角形ABC的面积是______. 4
24.某彩电厂为响应国家家电下乡号召,计划生产A、B两种型号的彩电,两种型号的彩电生产成本和售价分别为:A型每台成本800元,售价1000元,B型每台成本1000元,售价1300元,经预算,彩电厂若投入成本64000元,两种彩电全部出售后,可获利18000元. (1)请问彩电厂生产A、B两种型号的彩电各多少台? (2)彩电厂计划将这两种彩电售出后获得的全部利润购买两种物品:体育器材和实验设备支援某希望小学.若体育器材每套6000元,实验设备每套3000元,把钱全部用尽且两种物品都购买的情况下,请写出所有的购买方案.
五、解答题(本大题2个小题,每小题12分,共24分) 25.阅读材料: 关于x的方程:
x+的解为:x1=c,x2=
x﹣(可变形为x+)的解为:x1=c,x2= x+的解为:x1=c,x2= x+的解为:x1=c,x2= „ 根据以上材料解答下列问题:
(1)①方程x+的解为______
②方程x﹣1+=2+的解为______ (2)解关于x方程:x﹣(a≠2) 26.如图(1),直线AB∥CD,点P在两平行线之间,点E在AB上,点F在CD上,连结PE,PF. (1)∠PEB,∠PFD,∠EPF满足的数量关系是______,并说明理由. (2)如图(2),若点P在直线AB上时,∠PEB,∠PFD,∠EPF满足的数量关系是______(不需说明理由) (3)如图(3),在图(1)基础上,P1E平分∠PEB,P1F平分∠PFD,若设∠PEB=x°,∠PFD=y°.则∠P1=______(用x,y的代数式表示),若P2E平分∠P1EB,P2F平分∠P1FD,可得∠P2,P3E平分∠P2EB,P3F平分∠P2FD,可得∠P3„,依次平分下去,则∠Pn=______. (4)科技活动课上,雨轩同学制作了一个图(5)的“飞旋镖”,经测量发现∠PAC=28°,∠PBC=30°,他很想知道∠APB与∠ACB的数量关系,你能告诉他吗?说明理由. 5 6
2015-2016学年重庆市万盛区关坝中学七年级(下)第一次月考数学试卷 参考答案与试题解析
一、选择题:(每小题4分,共48分) 1.点P(﹣3,2)位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【考点】点的坐标. 【分析】根据平面直角坐标系中各个象限的点的坐标的符号特点可知:点P(﹣3,2)位于第二象限. 【解答】解:因为点P(﹣3,2)的横坐标为负,纵坐标为正,所以其在第二象限,故选B.
2.下列各图中,∠1与∠2是对顶角的是( ) A. B. C. D. 【考点】对顶角、邻补角. 【分析】根据对顶角的定义对各选项分析判断后利用排除法求解. 【解答】解:A、∠1与∠2不是对顶角,故A选项错误; B、∠1与∠2是对顶角,故B选项正确; C、∠1与∠2不是对顶角,故C选项错误; D、∠1与∠2不是对顶角,故D选项错误. 故选:B.
3.下列各数中:,﹣3.5,0,,π,0.1010010001„,是无理数的有( ) A.1个 B.2个 C.3个 D.4个 【考点】无理数. 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【解答】解:无理数有:,π,0.1010010001„共3个. 故选C.
4.下列说法中正确的是( ) A.36的平方根是6 B.8的立方根是2 C.的平方根是±2 D.9的算术平方根是﹣3 【考点】平方根;算术平方根;立方根. 【分析】根据立方根、平方根和算术平方根的定义判断即可. 【解答】解:A、36的平方根是±6,错误; B、8的立方根是2,正确; C、的平方根是±,错误; D、9的算术平方根是3,错误; 故选B 7
5.如图,已知a∥b,∠1=70°,则∠2=( ) A.40° B.70° C.110° D.130° 【考点】平行线的性质. 【分析】先根据对顶角的性质求出∠3的度数,再由平行线的定义即可得出结论. 【解答】解:∵∠1与∠3是对顶角,∠1=70°, ∴∠3=∠1=70°, ∵a∥b, ∴∠2=∠3=70°. 故选B.
6.体育课上,老师测量跳远成绩的依据是( ) A.平行线间的距离相等 B.两点之间,线段最短 C.垂线段最短 D.两点确定一条直线 【考点】垂线段最短. 【分析】此题为数学知识的应用,由实际出发,老师测量跳远成绩的依据是垂线段最短. 【解答】解:体育课上,老师测量跳远成绩的依据是垂线段最短. 故选:C.
7.如图,不能判定AD∥BC的条件是( )
A.∠B+∠BAD=180° B.∠1=∠2 C.∠D=∠5 D.∠3=∠4 【考点】平行线的判定. 【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可. 【解答】解:A、∵∠B+∠BAD=180°, ∴BC∥AD,本选项不合题意; B、∵∠1=∠2, ∴BC∥AD,本选项不合题意; C、∵∠D=∠5, ∴AB∥CD,本选项不符合题意; D、∵∠3=∠4,