=
C������������ =左边,
故原式成立.
迁移应用
一 二三四
知识精要
典题例解
迁移应用
三、简单组合问题 解简单的组合应用题时,要先判断它是不是组合问题,取出元素只是组成一组,与顺序无关则是组合问题;取出 元素排成一列,与顺序有关则是排列问题.只有当该问题能构成组合模型时,才能运用组合数公式求出其种数. 在解题时还应注意两个计数原理的运用,在分类和分步时,注意有无重复或遗漏.
种,从4名C女62教师中选2名的选法有 种,根据分步乘法计数C原42理,共有选法
C62
×
C42
=
6×5 ×
2×1
42××31=90(种).
一 二三四
知识精要
典题例解
迁移应用
1.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )
A.60种
B.63种
C.65种
D.66种
同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为( )
A.360
B.520
C.600
D.720
答案:C
解析:分两类:第1类,甲、乙中只有一人参加,则有
=2×10×24=480(种)选法.
C21 × C53 × A44
一 二三四
知识精要
典题例解
【例1】 判断下列问题是排列问题还是组合问题,并分别求出对应的方法数.
迁移应用
(1)把当日动物园的4张门票分给5个人,每人至多分一张,而且票必须分完,有多少种分配方法?
(2)从2,3,5,7,11这5个质数中,每次取2个数分别作为分子和分母构成一个分数,共能构成多少个不同的分数?
答)