《复变函数》第五章习题全解钟玉泉版
- 格式:doc
- 大小:795.00 KB
- 文档页数:10
《复变函数与积分变换》课程教学大纲课程名称:复变函数与积分变换课程代码:ELEA3035英文名称:Function of Complex Variable and Integral Transformation课程性质:专业必修课程学分/学时:2学分/36学时开课学期:第3学期适用专业:电气工程及其自动化先修课程:高等数学后续课程:自动控制原理、信号与系统、检测技术与仪表开课单位:机电工程学院课程负责人:杨歆豪大纲执笔人:周纯大纲审核人:余雷一、课程性质和教学目标(在人才培养中的地位与性质及主要内容,指明学生需掌握知识与能力及其应达到的水平)课程性质:《复变函数与积分变换》的理论和方法广泛应用于电气工程、通讯工程、自动化等相关学科,并且已经成为解决众多理论和实际问题的强有力工具,成为了电气工程及其自动化专业一门重要的基础理论课程,而高等数学的是它的必须的先修课程。
对于本专业而言,是学习《自动控制原理》、《现代控制理论》、《线性系统理论》、《信号与系统》等许多相关课程的必须先修课程之一。
教学目标:通过本课程的讲授和学习,使学生在学习高等数学的基础上,系统的掌握《复变函数与积分变换》中必要的基础理论和常用的计算方法,培养学生比较熟练的运算能力,能比较熟练运用复变函数、积分变换的方法来有效地比较系统地解决一些问题。
并且逐步培养能够建立比较复杂系统数学模型的能力,在此基础上,进一步地提升分析问题、解决问题的水平和能力。
并为后续的专业基础课程、专业课程的学习,以及将来从事教学、科研及其它实际工作打下必要相当水准的理论知识基础。
本课程的具体教学目标如下:1.熟练掌握复数与复变函数、解析函数、复变函数积分、复级数、留数、傅里叶变换和拉普拉斯变换的基本概念、基本理论、基本方法和某些相关的应用,为进一步学习打下坚实的理论基础。
2.大致了解理想典型电子线性器件的时域和频域的数学模型,为后续课程比较复杂的线性电气系统或者比较复杂的线性力学系统的数学模型的建立、分析和控制做好理论、学识上准备。
《复变函数》课程教学纲要一、课程概述(一)课程学时与学分课程代码:1302,开课专业:数学与应用数学(师范)专业,第5学期开课;课程总学时68学时,4学分。
(二)课程性质复变函数论是数学专业的一门重要的专业基础课。
它是数学分析、高等代数等课程的进一步延伸,又是近代分析学的基础。
它的思想方法是许多后续课程得以展开的保证。
属于院专业必修课。
(三)教学目的开设本课程的基本目的是使学生掌握复变函数的基本理论和方法,进一步培养学生的逻辑思维能力,扩展学生视野,为掌握复变函数在自然科学中的广泛应用奠定良好的数学基础。
(四)本课程与其他课程的联系与分工本课程是在学生学习了数学分析、高等代数及其概率论与数理统计的基础上开设的,并在之后开设离散数学,数值分析等进一步的数学课程的本科学习中起到基础和工具的作用,是学习数学和应用数学专业的必备课程。
二、课程教学的基本内容与要求(一)教学要求复变函数论是微积分学在复数域上的推广和发展,通过复变函数论的学习能使学生对微积分学的某些内容加深理解,提高认识。
复变函数论在联系和指导中学数学教学方面也有重要的作用,学生通过复变函数论的学习对中学数学的某些知识有比较透彻的理解与认识,从而增加做好中学数学教育工作的能力。
(二)课程总学时数与课程学时分配1、总学时: 174=68(学时)2、学时分配表章次内容学时引言复变函数论的基本思想 1第一章复数与复变函数8第二章解析函数9第三章复变函数的积分9第四章解析函数的幂级数表示法9第五章解析函数的洛朗展开与孤立奇点9第六章留数理论及其应用7第七章共形映射9第八章解析延拓7合计68(三)教学内容绪论复变函数论的基本思想第一章复数与复变函数(一)教学目的及要求1、理解复数、区域、单连通区域、复连通区域、逐段光滑曲线、无穷远点、扩充复平面等概念。
2、理解复数的性质、会应用模和辐角的性质,会作点集的图形。
3、进一步认识复数域的结构,并联系中学的复数教学。
第六章共形映射(The Conformal mapping)第一讲授课题目:§6.1共形映射的概念;§6.2共形映射的基本问题教学内容:导数的几何意义、共形映射的概念、解析函数的保域性与边界对应原理、共形映射的存在唯一性.学时安排:2学时.教学目标:1、理解导数的几何意义;2、弄清共形映射的概念;3、掌握解析函数的保域性与边界对应原理、共形映射的存在唯一性;教学重点:解析函数的保域性与边界对应原理;教学难点:解析函数的保域性与边界对应原理;教学方式:多媒体与板书相结合.P习题六:1-3作业布置:164板书设计:一、导数的几何意义;二、共形映射的概念;三、解析函数的保域性与边界对应原理;四、共形映射的存在唯一性参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社;2、《复变函数与积分变换学习辅导与习题全解》,高等教育出版;3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005年5月4、《复变函数与积分变换》苏变萍陈东立编,高等教育出版社,2008年4月课后记事:1、基本掌握共形映射的概念;2、不能灵活运用解析函数的保域性与边界对应原理;教学过程:§6.1共形映射的概念(The conception of conformal mapping)一、导数的几何意义(Geometric meaning of derivative )1、解析变换的保域性(Transform domain of security analysis )解析函数所确定的映射是共形映射.它是复变函数论中最重要的概念之一,与物理中的概念有密切的联系,而且对物理学中许多领域有重要的应用.如应用共形映射成功地解决了流体力学与空气动力学、弹性力学、磁场、电场与热场理论以及其他方面的许多实际问题.我们主要研究单叶解析函数的映射性质.注1:单叶函数是一个单射的解析函数.例 1 函数α+=z w 及z w α=是z 平面上的单叶解析函数它们把z 平面映射成w 平面,其中α是复常数,并且对于第二个映射0≠α.例 2 z e w =在每个带形,2Im π+<<a z a 内单叶解析,并且把这个带形区域映射成w 平面上除去从原点出发的一条射线而得的区域,,其中a 是任意实常数.引理(Lemma ):设函数)(z f 在0z z =解析,并且)(00z f w =.设...)3,2,1(0)(,0)(...)('')('0)(0)1(00=≠====-p z f z f z f z f p p ,那么0)(w z f -在0z 有p 阶零点,并且对充分小的正数ρ,存在着一个正数μ,使得当μ<-<||00w w 时,w z f -)(在ρ<-<||00z z 内有p 个一阶零点.证明:由已知条件可知0)(w z f -在0z 有p 阶零点.由于)(z f 不恒等于零,作以0z 为心的开圆盘ρ<-|:|0z z D ,其边界为C ,使得)(z f 在C D D ⋃=上解析,并且使得0)(w z f -及)(z f '除去0z z =外在D 上无其它零点.有0|)(|min 0>=-∈μw z f Cz 取w ,使μ<-<||00w w .由儒歇定理,比较w z f -)(及0)(w z f -在内D 的零点的个数.由于),())(()(00w w w z f w z f -+-=-而当C z ∈时,0|||)(|00>->≥-w w w z f μ可见w z f -)(及0)(w z f -在D 内的零点个数同为p (每个n 阶零点作n 个零点).因为0w w ≠,所以0z z ≠,而0]')([0≠-≠z z w z f . 所以w z f -)(在D 内的每个零点都是一阶的.由此引理可证明下面定理定理(Theorem)6.1、设函数)(z f 在区域D 内单叶解析,则D z ∈∀,有 .0)('≠z f注2:这个定理的逆定理不成立,例如z e w =的导数在z 平面上任意一点不为零,而z e w =在整个z 平面上不是单叶的.定理(Theorem)6.2设函数)(z f w =在0z z =解析,并且0)('0≠z f ,那么)(z f 在0z 的一个邻域内单叶解析.定理(Theorem)6.3设函数)(z f w =在区域D 内解析,并且不恒等于常数,则)(1D f D =是一个区域.注3:如果)(z f w =在区域D 内单叶解析,根据定理6.3,它把区域D 双射成区域)(D f .于是)(z f 有一个在)(D f 内确定的反函数)(w z ϕ=.定理(Theorem)6.4设函数)(z f 在区域D 内单叶解析,则)(z f w =在)(D f 内存在单叶解析的反函数)(w z ϕ=,且 .)('1)('z f w =ϕ 证明:考虑以下思路:)(0D f w ∈∀,有D z ∈∀0,1)()(000000z z w w w w z z w w w w --=--=--ϕϕ 因为当0w w →时,)()(00z z w z ϕϕ=→=,所以,)('1)()(lim 1lim 1)()(lim 0000000000z f z z z f z f z z w w w w w w z z z z w w =⎪⎪⎭⎫ ⎝--=⎪⎪⎭⎫ ⎝⎛--=--→→→ϕϕ即可给出定理的证明.2、导数的几何意义(Geometric meaning of derivative)设函数)(z f w =是区域D 内的单叶解析函数.)(,000z f w D z =∈.则有0)('0≠z f .过0z 作一条简单光滑曲线C : ),()()()(b t a t iy t x t z z ≤≤+==]),[()(000b a t z t z ∈=.)(')(')('t iy t x t z dtdz +== 则)(0t z '存在,且0)(0≠'t z作过曲线C 上点)(00t z z =及)(11t z z =的割线,割线的方向向量为0101t t z z --,当1t 趋近于0t 时,向量0101t t z z --与实轴的夹角0101arg t t z z --存在极限,即为曲线C 在0z z =的切线的位置.已知,0)('lim 0010101≠=--→t z t t z z t t 所以,有),('arg arg lim 0010101t z t t z z t t =--→ 这就是曲线C 在)(00t z z =处切线与实轴的夹角,在这里幅角是连续变动的,并且极限式两边幅角的数值是相应地适当选取的. 函数)(z f w =把简单光滑曲线C 映射成一条简单曲线Γ: ),())((1t t t t z f w o ≤≤=由于())('))(('000t z t z f t w =',可见Γ也是一条光滑曲线;它在0w 的切线与实轴的夹角是()),('arg ))(('arg )('))(('arg arg 00000t z t z f t z t z f t w +==' 因此,Γ在0w 处切线与实轴的夹角及C 在0z 处切线与实轴的夹角相差)('arg 0t z .注4:这里的)('arg 0t z 与曲线C 的形状及在0z 处切线的方无关.另外在D 内过0z 另有一条简单光滑曲线)(:11t z z C =,函数)(z f w =把它映射成一条简单光滑曲线))((:11t z f w =Γ.和上面一样,1C 与1Γ在0z 及0w 处切线与实轴的夹角分别是)('arg 01t z 及),('arg ))(('arg )('))(('arg 01010101t z t z f t z t z f +=所以,在0w 处曲线Γ到曲线1Γ的夹角恰好等于在0z 处曲线C 到曲线1C 的夹角:),('arg )('arg )('))(('arg )('))(('arg 001000101t z t z t z t z f t z t z f -=-因此,用单叶解析函数作映射时,曲线间的夹角的大小及方向保持不变,我们称这个性质为单叶解析函数所作映射的保角性.下面再说明它的模的几何意义.因为,|||)()(|lim |)('|0000z z z f z f z f z z --=→ 由于|)('|0z f 是比值|||)()(|00z z z f z f --的极限,它可以近似地表示这种比值.在)(z f w =所作映射下,||0z z -及|)()(|0z f z f -分别表示z 平面上向量0z z -及w 平面上向量)()(0z f z f -的长度,这里向量0z z -及)()(0z f z f -的起点分别取在0z 及)(0z f .当较小||0z z -时,|)()(|0z f z f -近似地表示通过映射后,|)()(|0z f z f -对||0z z -的伸缩倍数,而且这一倍数与向量0z z -的方向无关.我们把|)('|0z f 称为在点0z 的伸缩率.从几何直观上来看.设)(z f w =是在区域D 内解析的函数,0)(',),(,00000≠∈=∈z f D z z f w D z ,那么)(z f w =把z 平面上半径充分小的圆ρ=-||0z z 近似地映射成w 平面上圆),0(|)('|||00+∞<<=-ρρz f w w因此,解析函数在导数不为零的地方具有旋转角不变性和伸缩率不变性.二、共形映射的概念(The concept of conformal mapping) 定义(Definition)6.1对于区域D 内的映射)(z f w =,如果它在区域D 内任意一点具有保角性和伸缩率不变性,则称映射)(z f w =是第一类保角映射;如果它在区域D 内任意一点保持曲线的交角的大小不变,则称映射)(z f w =是第二类保角映射.定理(Theorem)6.5如)(z f w =在区域D 内解析,且0)(≠'z f 则)(z f w =所构成的映射是第一类保角映射. 定义(Definition)6.2设)(z f w =是区域D 内的第一类保角映射,如果当21z z ≠时,有()21)(z f z f ≠,,则称)(z f 为共形映射.例1z e w =在复平面上解析,且0)(≠='z z e e ,因此z e 在任何区域内都构成第一类保角映射,但它在复平面上不是共形映射,而在区域π4Im 0<<z 内,z e w =构成共形映射.§6.2共形映射的基本问题(The basic problem of conformal mapping)一、共形映射的基本问题(The basic problem of conformalmapping)对于共形映射,我们主要研究下列两个方面的问题.问题一 对于给定的区域D 和定义在D 上的解析函数()z f =ω,求像集()D f G =,并讨论()z f 是否将D 共形的映射为G .问题二 给定两个区域D 和G ,求一解析函数()z f =ω,使得()z f 将D 共形的映射为G .对于问题二,我们只需考虑能把D 变为单位圆内部即可.这是因为若存在函数()z f =ξ把D 变为1<ξ,而函数()ωξg =把G 变为1<ξ,则()()z f g 1-=ω把D 映射为G (下图).二、 解析函数的保域性与边界对应原理(Analytic functions of protection domain and the boundary correspondence principle )对于问题一,有下面两个定理.定理(Theorem)6.6(保域性定理) 设函数()z f 在区域D 内解析,且不恒为常数,则像集合()D f G =是区域.定理(Theorem)6.7 (边界对应原理)设区域D 的边界为简单闭曲线C ,函数()z f =ω在C D D Y =上解析,且将C 双方单值的映射成简单闭曲线Γ.当z 沿C 正向绕行时,相应的ω的绕行方向定为Γ的正向,并令G 是以Γ为边界的区域,则()z f =ω将D 共形的映射为G .注1:定理6.6说明了解析函数把区域变为区域, 注2:定理6.7为像区域的确定给出了一个一般性的方法. 注3:是Γ的方向.(如下图),区域D 在曲线C 的内部,在C 上沿逆时针方向取三个点321,,z z z ,函数()z f =ω将C 于321,,z z z 分别映射为Γ和321,,ωωω.若321,,ωωω也按逆时针方向排列,则像区域G 在Γ的内部.例1 设区域⎭⎬⎫⎩⎨⎧<<<<=10,2arg 0:z z z D π,求区域D 在映射3z =ω下的像区域G .解:(如下图),设区域D 的边界为321C C C ++,其中1C 的方程为θi e z =(θ从0到2π),相应的像曲线1Γ的方程为 ϕθωi i e e ==3(ϕ从0到23π); 2C 的方程为iy z =(y 从1到0),相应的像曲线2Γ的方程为()iv y i =-=3ω (v 从-1到0)3C 的方程为x z =(x 从0到1),相应的像区线3Γ的方程为u x ==3ω(u 从0到1).因此像区域为()b⎭⎬⎫⎩⎨⎧<<<<=23arg 0,10:πωωωG .三、 共形映射的存在唯一性(Conformal mapping of the existence and uniqueness)1、问题二函数的存在性:当区域D 是下面两种情况之一时,将不存在解析函数,使之保形地映射为单位圆内部.第一,区域是扩充复平面;第二,区域是扩充复平面除去一点(不妨设为∞点,如果是有限点z ,只需做一映射01z z -=ξ即可).无论哪一种情况,如果存在函数)(z f =ω将它们共形映射为1<ω,则)(z f 在整个复平面上解析,且1)(<z f .根据刘维尔定理(见§3.4))(z f 必恒为常数.这显然不是我们所要求的映射.2、问题二函数的唯一性: 一般说来是不唯一的,例如,对任意给定的常数0θ,映射0θωi ze =均把单位圆内部映射为单位圆内部.那么,到底在什么情况下,共形映射函数存在且唯一呢?黎曼(Riemann )在1851年给出了下面的定理,它是共形映射的基本定理.定理(Theorem)6.8(黎曼存在唯一性定理) 设D 与G 是任意给定的两个单连域,它们的边界至少包含两点,则一定存在解析函数)(z f =ω 把D 保形的映射为G .如果在D 和G 内在再分别任意指定一点0z 和0ω,并任給一实数)(00πθπθ≤<-,要求函数)(z f =ω满足00)(ω=z f 且00)(arg θ='z f 则映射)(z f =ω是唯一的.注4:黎曼存在唯一性定理肯定了满足给定条件的函数的存在唯一性,但没有给出具体的求解方法.2 1§6.3 分式线性映射分式线性函数及其分解、分式线性映射的保圆性、保行性、保对称点性、唯一决定分式线性映射的条件、两个典型区域间的映射.1、理解分式线性函数所构成的映射2、掌握分式线性映射的性质3、切实掌握两个典型区域间的映射分式线性映射的保圆性、保行性解析函数的保域性与边界对应原理分式线性映射的保对称点性、唯一决定分式线性映射的条件讲授法多媒体与板书相结合P习题六:4-9164一、分式线性函数及其分解二、分式线性映射的保圆性三、分式线性映射的保行性四、分式线性映射的保对称点性五、两个典型区域间的映射[1]《复变函数》,西交大高等数学教研室,高等教育出版社.[2]《复变函数与积分变换学习辅导与习题全解》,高等教育出版社.[3]《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005.[4]《复变函数与积分变换》,苏变萍陈东立编,高等教育出版社,2008. 基本掌握分式线性函数所构成的映射第二讲授课题目:§6.3 分式线性映射;教学内容:分式线性函数及其分解、分式线性映射的保圆性、保行性、保对称点性、唯一决定分式线性映射的条件、两个典型区域间的映射.学时安排:2学时.教学目标:1、理解分式线性函数所构成的映射;2、掌握分式线性映射的性质;3、切实掌握两个典型区域间的映射;教学重点:分式线性映射的保圆性、保行性;教学难点:分式线性映射的保对称点性、唯一决定分式线性映射的条件;教学方式:多媒体与板书相结合.P习题六:4-9作业布置:164板书设计:一、分式线性函数及其分解;二、分式线性映射的保圆性;三、分式线性映射的保行性;四、分式线性映射的保对称点性;五、两个典型区域间的映射参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社;2、《复变函数与积分变换学习辅导与习题全解》,高等教育出版;3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005年5月;4、《复变函数与积分变换》苏变萍陈东立编,高等教育出版社,2008年4月;课后记事:基本掌握分式线性函数所构成的映射;教学过程:§6.2 分式线性映射(The fraction linearity mapping )形如:dz c baz w ++=的函数,称为分式线性函数.其中d c b a ,,,是复常数,而且0≠-bc ad .在0=γ时,我们也称它为整式线性函数. 一、 分式线性函数及其分解(Fractional linear function and its decomposition) 一般分式线性函数总可以分解为下列四种简单函数复合: (1)α+=z w (α为一个复数); (2)z e w i θ=(θ为一个实数); (3)rz w =(0>r ); (4)、zw 1=. 例2 将分式线性函数iz zw +=2分解为四种简单函数复合 解:⎪⎭⎫ ⎝⎛++=+-+=+=-i z e i z ii z z w i 1222222π,其复合过程为w z z z z z z z ez z iz i −−→−−→−−−→−−→−−→−++-242321143221π1、平移、旋转与相似映射 (1) 平移映射:α+=z w令iy x z +=,21ib b b +=,iv u w +=,则有1b x u +=,2b y v +=,它将曲线C 沿b 的方向平移到曲线γ(2)旋转映射:z e w i θ=令0θi e z =,则有)(0θθ+=i e w ,它将曲线C 绕原点旋转到曲线γ. (3 ) 相似映射:rz w =令θρi e z =,则有θρi e r w =,它将曲线C 放大(或缩小)到曲线γ 2、反演映射:zw 1=令θi re z =,则有)(1θ-=i e r w 即zw 1=,zw arg arg -=由zw 1=可知,当1<z 时,1>w ;当1>z 时,1<w 因此反演映射zw 1=的特点是将单位圆内部(或外部)的任一点映射到将单位圆外部(或内,部)且辐角反号.反演映射zw 1=可以分两步进行,第一步,将z 映射为z w 11=:zw 11=,且 z w arg arg 1=再将1w 映射为w 满足: 1w w=,且11arg arg w w -=定义 6.3设某圆的半径为B A R ,,为两点在从圆心出发地射线上,且2R B o A o =⋅,则称B A 与是关于圆周对称的.即设已给圆)0(|:|0+∞<<=-R R z z C ,如果两个有限点1z 及2z 在过0z 的同一射线上,并且20201||||R z z z z =--,那么我们说1z 及2z 是关于圆C 的对称点.因此,zw 1=可由单位圆对称映射与实轴对称映射复合而成. 二、分式线性映射的保行性(Fractional linear maps preserving feasibility)规定:在扩充复平面上,任一直线看成半径是无穷大的圆. 定理(Theorem)6.8 在扩充复平面上,分式线性函数把圆映射成圆.证明:由于分式线性函数所确定的映射是平移、旋转、相似映射及zw 1=型的函数所确定的映射复合而得,但前三个映射显然把圆映射成圆,所以只用证明映射z w 1=也把圆映射为圆即可. 由此可得如下定理定理(Theorem)6.9分式线性函数在扩充复平面上是共形映射.三、分式线性映射的保圆性(Fractional linear maps preserving circle of)定理(Theorem)6.10扩充 z 平面上任何圆,可以用一个分式线性函数映射成扩充 w 平面上任何圆. 证明:由映射zw 1=把圆映射为圆可证明此定理. 注1:圆C 上的点是它本身关于圆C 的对称点;注2:规定0z 及∞是关于圆C 的对称点;注3 :利用此定理也可以解释关于直线的对称点.例1 求实轴在映射iz i w +=2下的像曲线. 解:在实轴上取三点∞=1z ,02=z ,13=z ,则对应的三个像点为01=w ,22=w ,i w +=13,所以像曲线为11=-w ,上半平面被映射到圆的内部,而下半平面被映射到圆的外部.四、分式线性映射的保对称点性(Fractional linear maps of symmetric point of)引理:不同两点1z 及2z 是关于圆C 的对称点的必要与充分条件是通过1z 及2z 的任何圆与圆C 直交.定理(Theorem)6.11设点1z 及2z 关于圆C 的对称,则在分式线性映射下,它们的像点1w 及2w 关于圆C 的像曲线Γ对称.证明:设Γ'是过1w 及2w 的任意一个圆,则其原像C '是过1z 及2z 的圆.由1z 及2z 是关于圆C 对称,有C '与C 正交,由保角性Γ'与Γ正交,即过1w 与2w 的任意圆Γ'与Γ正交,因此1w 及2w 关于圆C 的像曲线Γ对称.五、唯一决定分式线性映射的条件(The only decision the conditions of fractional linear maps)定理(Theorem)6.12 在z 平面上任意三个不同的点321,,z z z 以及扩充 w 平面上任意三个不同的点321,,w w w ,存在唯一的分式线性函数,把321,,z z z 分别映射成321,,w w w .证明:在z 平面上,考虑已给各点都是有限点的情形.设所求分式线性函数(也称为分式线性变换)是d cz b az w ++=那么,由dcz b az w d cz b az w d cz b az w ++=++=++=222222111,, 得))(())(())((1111d cz d cz d cz b az d cz b az w w ++++-++=-))(())((11d cz d cz bc ad z z +++-= 同理,有:))(())((131313d cz d cz bc ad z z w w +++-=-,))(())((232323d cz d cz bc ad z z w w +++-=-,))(())((222d cz d cz bc ad z z w w +++-=-, 因此,有231321231321::z z z z z z z z w w w w w w w w ----=----, 将上式整理后可以解出形如dcz b az w ++=的分式线性函数.显然得这样的分式线性函数是唯一的. 由此,我们可以解出分式线性函数.由此也显然得这样的分式线性函数也是唯一的.推论1:如果k z ,或k w 中有一个为∞,则只需要将对应点公式中含有∞的项换为1.推论2:设)(z f w =是一分式线性映射,且)(11z f w =及)(22z f w =,则它可表示成2121z z z z k w w w w --=-- (k 为复常数) 特别:当01=w ,∞=2w 时,有 21z z z z k w --= (k 为复常数) 六、 两个典型区域间的映射(Mapping between the twotypical regions)例1 求一分式线性映射把上半平面0Im >z 保形映射成单位圆盘内部1<w .解:所求映射一方面把0Im >z 内某一点0z 映射成0=w ,另一方面把0Im =z 映射成1=w .由于线性映射把关于实轴0Im =z 的对称点映射成为关于圆1=w 的对称点,所求映射不仅把0z 映射成0=w ,而且把0z 映射成∞=w .因此这种映射形如:0z z z z k w --= (k 为待定的复常数) 当z 是实数时,有,1||00=--z z z z 对应1=w ,所以,1||=k 于是θi e k =,其中θ是一个实常数.因此所求的映射一般为:,00z z z z e w i --=θ 由于z 是实数时,1=w ,因此它把直线0Im =z 映射成圆1=w ,从而把上半平面0Im >z 映射成1<w ,取i z -0,0=θ,得所求映射为:iz i z w +-= 例2 求一分式线性映射把单位圆内部1<z 保形映射成单位圆盘内部1<w .解:在|z |<1内任取一点0z ,映射成00=w ,并且把1=z 映射成1=w .由于0z 与01z 关于圆1=z 对称,所以这种映射把01z 映射成∞=w .因此这种映射形如:01001/1z z z z k z z z z k w --=--= (01z k k -=为待定的复常数) 当|z|=1时,有),(1000z z z z z z z z z -=-=- 于是,1|||1|||||1001==--=k z z z z k w 因此θi e k =1,其中θ是一个实常数.所求的映射为:,100z z z z e w i --=θ2 1§6.4几个初等函数构成的共形映射幂函数、指数函数、综合举例1、掌握幂函数构成的共形映射2、掌握指数函数构成的共形映射函数构成的共形映射指数函数构成的共形映射讲授法多媒体与板书相结合P习题六:4-9164一、幂函数构成的共形映射二、指数函数构成的共形映射三、综合举例[1]《复变函数》,西交大高等数学教研室,高等教育出版社.[2]《复变函数与积分变换学习辅导与习题全解》,高等教育出版社.[3]《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005.[4]《复变函数与积分变换》,苏变萍陈东立编,高等教育出版社,2008. 基本掌握幂函数构成的共形映射,指数函数构成的共形映射掌握不好第三讲授课题目:§6.4几个初等函数构成的共形映射;教学内容:幂函数、指数函数、综合举例学时安排:2学时.教学目标:1、掌握幂函数构成的共形映射;2、掌握指数函数构成的共形映射;教学重点:函数构成的共形映射;教学难点:指数函数构成的共形映射;教学方式:多媒体与板书相结合.P习题六:4-9作业布置:164板书设计:一、幂函数构成的共形映射;二、指数函数构成的共形映射;三、综合举例;参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社;2、《复变函数与积分变换学习辅导与习题全解》,高等教育出版;3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005年5月;4、《复变函数与积分变换》苏变萍陈东立编,高等教育出版社,2008年4月;课后记事:基本掌握幂函数构成的共形映射,指数函数构成的共形映射掌握不好;§6.4几个初等函数构成的共形映射(Conformal mapping composed of several elementary functions)一、 幂函数(Power function)()整数2≥=n z w n容易得到:函数n z w =将角形域)2(000nπθθθ≤<<共形映射为角形域00θϕn <<(如下图).因此通俗地讲,幂函数的特点是扩大角形域.相应地,根式函数n z w =作为幂函数的逆映射,则是将角形域)2(000nπθθθ≤<<共形映射为角形域00θϕ<<.同样,我们也通常说,根式函数的特点是缩小角形域.注意:如果是扇形域(即模有限),则模要相应的扩大或缩小,这一点往往容易忽略.例1 区域{}0Re ,0Im ,1:>><=z z z z D 求一共形映射,将D 变为上半平面.解: 如下图,首先由21z z =将D 变为上半单位圆域.接着由分式线形映射11211z z z -+=将其变为第一象限,最后由映射22z =ω将其变为上半平面.因此所求映射为22211⎪⎪⎭⎫ ⎝⎛-+=z z ω. 二、指数函数(Exponential function)z e w =容易得到 :函数z e w =将带形域()π2Im 0≤<<h h z 共形映射为角形域h w <<arg 0(图6.20).因此可以简单的说,指数函数的特点是将带形域变成角形域.相应的,对数函数z w ln =作为指数函数的逆映射,则是将角形域()π2arg 0≤<<h h w 变成带形域h z <<Im 0.例2 求一共形映射,将带形域⎭⎬⎫⎩⎨⎧<<=ππz z D Im 2:映射为上半平面.解: 如下图,首先由平移映射i z z 21π-=将带形域D 变为带形域2Im 01π<<z ,再由相似映射122z z =变为带形域2Im 02π<<z ,最后由指数函数2z e w =变为上半平面.因此所求的映射为⎪⎭⎫⎝⎛-=i z ew 22π.三、综合举例(Comprehensive example )例3 设区域{}0Im ,1:><=z z z D ,求一个共形映射,将区域D 保形映射成上半平面.解: 作一分式线性映射11'-+=z z w 把-1及+1分别映射成w '平面上的0及∞两点,于是把1=z 及0Im =z 映射成w '平面上在原点互相直交的两条直线.z 平面上的实轴映射成w '平面上的实轴; 0=z 映射成1-='w ,半圆的直径AC 映射成w '平面上的负半实轴;平面-z O)1(-B )(i D -)0(A C平面-'w C)1(-D )1(B )0(A C平面-w圆1=z 映射成w '平面上的虚轴;又由于i z =映射成i i i w -=-+=11'半圆ADC 映射成w '平面上的下半虚轴.由在保形映射下区域及其边界之间的对应关系,已给半圆盘映射到w '平面上的的区域:第三象限23'arg ππ<<w . 作映射2'w w =当w '在第三象限中变化时,w arg 在π2及π3之间变化.因此w '平面上的第三象限就映射成w 平面上的上半平面. 因此,所求共形映射为:22)11('-+==z z w w . 例4 求一个共形映射,把z 平面上的带形π<<z Im 0保形映射成w 平面上的单位圆1<w .解:由于指数函数z e w ='把w 平面上的已给带形保形映射成w '平面上的上半平面. 取w '平面上关于实轴的对称点-i 及i ,那么函数iw iw w +-='', 把的w '平面上的上半平面保形映射成w 平面上的单位圆1<w . 因此,所求共形映射为:ie i e w z z +-=Oi-i平面-'w 平面-z。
《数学物理方法A》教学大纲(Methods of Mathematical Physics )一.课程编号: 040422二.课程类型:必修.学时/学分: 48学时/3学分适用专业: 通信与信息类强化班先修课程: 高等数学, 线性代数, 普通物理三.课程的性质与任务:数学物理方法是我校通信与信息类强化班的一门必修课程。
通过本课程的学习, 使学生初步掌握复变函数和数学物理方程的基本理论与方法, 培养学生的理论思维能力和分析问题、解决问题的能力。
为学生学习有关后继课程以及进一步扩大数学知识面奠定必要的数学基础。
四、教学的主要内容及学时分配(一)教学的主要内容复变函数部分:1.复数与复变函数复数及其代数运算, 复数的几何表示, 复数的乘幂与方根, 复平面上的点集, 复变函数的概念, 复变函数的极限和连续性2.解析函数解析函数的概念, 函数解析的充要条件, 初等函数3.复变函数的积分复变函数积分的概念、存在条件、性质与计算方法, Cauchy基本定理及其推广-复合闭路定理, Cauchy积分公式、解析函数的高阶导数, 解析函数与调和函数的关系4.级.复数项级数、幂级数,Taylor级数,Laurent级.5.留数孤立奇点及其分类、函数的零点与极点的关系, 留数的定义、留数定理、留数的计算规则, 留数在定积分计算上的应用数学物理方程部分:1.典型方程和定解条件1)三类典型方程(波动方程、热传导方程和位势方程)及其定解问题的提出;2)偏微分方程的一些基本知识与定值问题的适定性概念。
2.分离变量法(驻波法)1)分离变量法的基本步骤;2)非齐次方程齐次边界条件的固有函数法;3)非齐次边界条件的处理;4)施特姆-刘维尔方程的固有值问题简介。
3.达郎贝尔法(行波法)1)一维波动方程初值问题的达郎贝尔公式;2)非齐次波动方程的齐次化原理。
4.积分变换法1)傅立叶积分变换的概念及基本性质;2)应用傅立叶变换法解微分方程定值问题;3)拉普拉斯变换的概念和基本性质;4)拉普拉斯变换法在解微分方程中的应用。
复变函数与积分变换课程教学大纲课程编号:09J70360课程中文名称:复变函数与积分变换课程英文名称: Functions of a Complex Variable and Integral Transforms开课学期:春、秋季学分/学时:2.5/40先修课程:数学分析/高等数学,课程名称,数学分析/高等数学,线性代数建议后续课程:傅立叶变换适用专业/开课对象:工科,2年级本科生团队负责人:责任教授:执笔人:滕岩梅核准院长:一、课程的性质、目的和任务《复变函数与积分变换》是工科院校最重要的基础课之一,是工科电气、电子、通讯、自动化、勘查、测绘等许多专业的必修课,也是物理、力学、石油工程等专业一些后继课程的必要基础,其内容丰富,实用性强。
复变函数理论这个新的数学分支统治了十九世纪的数学,当时被公认是最丰饶的数学分支和抽象科学中最和谐的理论之一。
二十世纪初,复变函数理论又有了很大的进展,开拓了复变函数理论更广阔的研究领域。
复变函数的理论和方法在数学、自然科学和工程技术中有着广泛的应用,是解决诸如电磁学、热学、流体力学、弹性理论中的平面问题的有力工具,它的基础内容已成为理工科很多专业的必修课程。
积分变换主要是傅立叶变换和拉普拉斯变换,它是通过积分运算把一个函数变成另一个函数的变换。
积分变换的理论与方法不仅在数学的许多分支中,而且在自然科学和工程技术领域中均有着广泛的应用,已经成为不可缺少的运算工具。
通过对该课程的学习,既为后继专业课程的学习奠定了基础,亦为数学应用开拓了空间,同时对培养学生的逻辑思维能力、分析解决问题能力、数学建模能力尤为重要。
学习本课程必须先修高等数学课程。
二、课程内容、基本要求及学时分配第一章复数(5学时)1.复数及其代数运算;复数的几何表示;复数的乘幂与方根;2.区域;曲线;复球面。
基本要求:1.掌握复数的三种表示式及运算。
2.了解区域,单连域,多连域的概念。
3.了解复球面与无穷远点。
《复变函数》教学大纲(专科)说明1.本大纲适用于数学与应用数学专业专科的教学2.本课程的性质:复变函数论与其他数学分支有着密切的联系,它作为一个强有力的工具可用来解决如解析数论,微分方程,概率论与数理统计,计算数学,拓扑学,微分几何等数学分支中所提出的有关理论及实际问题,在工程技术中也有广泛的应用。
是高等师范院校数学专业的必修课程。
是专科学生数学分析已学习的基础上,在复数域内研究解析函数特性的一门课程,有利于提高专科学生的数学素养。
3.本课程的教学目的和要求:本课程的教学目的是阐明复变函数论中一些最基本的概念,方法和理论,使学生对数学分析的某些内容加深理解和提高认识,为学生今后进一步学习其他数学知识奠定基础。
在教学上,要从专科学生实际情况出发,重点讲授复变函数与复数域,复变函数的概念;解析函数及柯西—黎曼条件;研究解析函数的积分方法和级数方法,在可能情况下,简要介绍解析函数的参数理论和几何理论。
4.教学时数安排如下表课程时数安排本课程总学时有72学时,各部分学时安排如下:5.教材选用《复变函数论》(第二版)仲玉泉编,高等教育出版社出版。
教学内容和教学要求第一章复数与复变函数(一)教学内容第一节复数,复数域,复平面,复数的模与辐角,复数的乘幂与方根,共轭复数,复数在几何上的举例。
第二节复平面上的点集,平面点集的几个基本概念,区域与曲线。
第三节复变函数,复变函数的概念,复变函数的极限与连续性。
第四节复球面与无穷远点,复球面,扩充复球面上的几个概念。
(二)教学要求1.熟练掌握复数的各种表示方法以及四则运算,乘幂和共轭运算。
2.了解复平面上点集的概念,了解区域的概念,单连域,多连域的划分。
3.了解简单闭曲线,光滑曲线的定义,能用复数的方程式不等式表示一些常见的区域与曲线。
4.掌握复变函数的概念理解映射的含义,理解复变函数与两个实二元函数之间的关系。
5.了解复变函数的极限与连续性概念,知道它们与实一元函数极限与连续的异同。
第五章 解析函数的洛朗展开与孤立奇点(一)1.解:(1):1)10<<z ,∑∞=---=-⋅+=-+0222221111)1(1n n z z z z z z z z z2)111<⇒+∞<<z z , ∑∞=++=-⋅+=-+032321211111)1(1n n z z zz z z z z (2)222121121()1212112f z z z z z z -=-=--+-+ =20012()(1)22n n n n n z z ∞∞+==---∑∑ (3)()f z =2(1)z e z z +231......!nz z z z n z z+++++=+ =2151 (26)z z z +-- 2.解:(1)2222])2)()1([)(41)1(1n n n n i i z i z z ∑∞=----=+ )20()2))(1()1()(412<-<-+---=∑∞=i z i i z n i z nn n n(2))0(1)!2(1!102212+∞<<⋅+==∑∑∞=∞-=+-z zn z n e z n n n n z(3) 令1zξ=,则21(1...)112ze eeξξξξξ-+++--==234542(1...)(1...)23!4!5!2ξξξξξξξ=-+-+--+345(1...)(1...)(1) (2)3!4!ξξξ---=23451 (2)385114ξξξξξ--+--=234511111141...8235z z z z z --+--+3.证明:根据洛朗定理,可设)0()]1(sin[0+∞<<=+∑∞=z z c z z t n nn其中 ⎰=+±=+=11),1,0()]1(sin[21ξξξξξπ n d t i c n n这里 )20(,1πθξξθ≤≤==i e于是 θθπθππθθπθθθd ed ie e e e t i c in i n i i i n ⎰⎰+=+=+-2020)1()cos 2sin(21)](sin[21 4.解:(1)因为函数为有理函数,且分子,分母无公共零点,因此分母的零点就是函数的极点,令分母0)4(2=+z z ,得0=z 以及i 2±,分别是分母的一级和二级零点,从而分别是函数的一级和二级极点,又因0)4(12∞→+-z z z z ,所以∞=z 为可去奇点.(2)由定理5.4(3)知函数z z cos sin +的m 级零点,就是zz cos sin 1+的m 级极点,且分母零点的极限点必为函数的极限点,因为)4sin(2cos sin π+=+z z z则令0cos sin =+z z ,得),1,0(4 ±=-=k k z ππ且又因),1,0(0)1(2cos 2])4sin([4±=≠-=='+-=k k z z k k z ππππ故),1,0(4±=-=k k z ππ各为分母z z cos sin +的一级零点即为zz cos sin 1+的一级极点.又因∞→-=4ππk z ,即∞=z 是极点的极限点,即为函数的非孤立奇点.(3)因i k z π)12(+=时,分母01=+z e ,且 01)1()12(≠-='++=ik z z e π所以i k z π)12(+=是分母的一级零点,而此时分子0)1()12(≠-+=ik z z e π故i k z π)12(+=各为函数的一级极点,因分母,分子在平面解析,所以除此之外在平面上无其他奇点. (4)令分母为0,解得)i 1(22z -±=,即为所给函数的极点. 且因,0])i z [(,0])i z [()i 1(22z 32)i 1(22z 32≠'+='+-±=-±=故)i 1(22z -±=均为所给函数的三级极点. 又因0z )1z (132∞→+,所以∞=z 为可去奇点. (5)因为zzz 222cos sin t an =,分子分母均在z 平面解析且无公共零点,所以分母的零点即为z 2tan 的极点,令0cos 2=z ,解得 0)(cos ,222='+=+=ππππk z z k z),1,0(0)(cos 22 ±=≠''+=k z k z ππ所以2ππ+=k z 是z 2cos 的二级零点,从而是z 2tan 的二级极点.(6) ++-=+2)(!2111cosi z i z 所以i z -=为其本性奇点,又因 11coslim =+∞→iz z ,所以∞=z 为可去奇点. (7)因21)2(22sin lim cos 1lim 2202==-→∞→z z z z z z 故0=z 为可去奇点, ∞=z 为本性奇点.(8)因为当且仅当i k z π2=时,分母0)1(,012≠'-=-=i k z z z e e π,所以i k z π2=为分母的一级零点,而分子是常数1,因此i k z π2=为其一级奇点. 5.解:先判断各函数的奇点类型. (1) 0=z ,∞=z 为奇点.(2) 0=z ,∞=z 为奇点.(3) 0=z 不是孤立奇点,是极点的极限点.(4)分母的零点是πk z =,这是ctgz 的极点,且01)(sin ≠-='πk z所以πk z =是分母的一级零点,因此是ctgz 的一极点,而∞=z 不是孤立奇点,是极点的极限点.由三个函数均为单值函数,由洛朗定理,在孤立奇点的去心邻域内均能展开成洛朗级数,在非孤立奇点的邻域内则不能.6.解:(1)当m n ≠时,a 为()()f z g z +的max(,)m n 级极点,为,f g 的m n +级极点,为fg的m n -()m n >级极点与n m -()m n <级零点 (2)当m n =时,a 为f g +的至多m 级极点(此时各种情况均有可能产生) 例:11,()()()kk m mf zg z k N z a z a +-=+=+∈-- a 为,f g 的m n +级极点,为fg的可去奇点. 7.证明:因)(z f 不恒等于零,如果a z =为)(z f 的零点,a z =只能为)(z f 的孤立奇点.(反证)如果a z =不是)(/)(),()(),()(z f z z f z z f z ϕϕϕ⋅±的本性奇点,则由上题的结论知,)(z ϕ就以a z =为可去奇点或极点,矛盾.8.解:(1) 1()(1)zzz e f z z e +-=-,奇点为0z =为一级极点, 2(1,2,...)z k i k π==±±为一级极点,z =∞为非孤立奇点(2) 0z =为函数的本性奇点, z =∞为函数的本性奇点. (3) z =∞是可去奇点, 0z =为本性奇点.(4) 0z =,z =∞为本性奇点. (5) 1=z 为本性奇点, i k z π2=为一级极点, z =∞为非孤立奇点.9.证明:因)(z f 在z 平面上解析,则)(z f 必为整函数,而整函数只以z =∞点为孤立奇点,而)(z f 在z =∞点解析,故z =∞点只能是)(z f 的可去奇点,由定理5.10知, )(z f 为常数.10.证明:(反证)设)(z f w =为整函数且非常数,若值全含于一圆之外,即存在0,00>εw ,使得对任何z ,恒有00)(ε>-w z f ,则有非常数整函数)(1)(w z f z g -=,所以在z 平面上任何点z ,分母不等于0,从而)(z g 在z 平面上解析,即为整函数.又因)(z f 非常数,所以)(z g 非常数,其值全含于一圆1)(ε<z g 之内,与刘维尔定理矛盾.11.证明:由题意,)(z f 在0z 的去心邻域内的洛朗展开式可设为∑∞=--≠-+-=01001)0()()(n n n c z z c z z c z f令01)()(z z c z f z g --=-,因01),(z z cz f --在r z ≤上除去0z 外解析,所以)(z g 在r z ≤上除去0z 外解析.又可知∑∞=-=00)()(n n n z z c z g )(z f 在0z 的邻域内解析,故)(z g 在r z ≤上解析.函数)(z g 在r z <内的泰勒展开式为∑∑∞=∞=+-+=0111)(n n n n nn z z c z a z g而直接法又给出∑∑∞=∞===00)(!)0()(n n n n nn z b z n g z g从而][0110101001z c z b z c z b z a a n n nn n n-++-+--=因为∑∞==0)(n nn z b z g 在r z ≤上解析,所以当0z z =时,级数∑∞=00n nn z b 是收敛的,一般项)(00∞→→n z b nn ,故即知01limz a a n nn =+∞→.(二)1.解:(1)不能(2)能,指定点不是所给函数的支点 (3)不能 (4)不能(5)能,指定点不是所给函数的支点2.解:不正确。
因为)(z f 在1=z 处的去心邻域应是1|1|0<-<z ,而+∞<-<|1|1z 正好是以1为中心的无穷远点的去心领域。
所以根据题中的洛朗展式,只能判定∞=z 是)(z f 的可去奇点。
3.证明:由孤立奇点的定义,又有)(z f 在点a 解析,故知a 为)(z g 的孤立奇点,且)()()()(lim)(lim a g a f az a f z f z g az az ='=--=→→,故a 为)(z g 的可去奇点。
故在a 业解析。
4.证明:本题为第3题的特例。
5.证明:由定理5.4的条件(2)ma z z z f )()()(-=λ,其中)(z λ在点a 邻域内解析,且0)(≠a λ为)(z f 以a 为m 阶极点的特征,则0)()()()(lim )()(lim ≠==--=-→→αλλa a z z a z z f a z mmaz m az6.证明:令)()()(z f a z z g k -=。
由题设,)(z g 在R a z a k <-<-||0:}{内有界。
由定理5.3(3),a 为)(z g 的可去奇点,则a 为)(z g 的解析点。
又由定理5.4(2),若a 为)(z f 的m 级极点,则在点a 的某去心邻域内能表成ma z z z f )()()(-=λ,其中)(z λ在点a 邻域内解析,且0)(≠a λ。