药物化学重点
- 格式:doc
- 大小:93.00 KB
- 文档页数:1
天然药物化学重点P17 从药材中提取天然活性成分的方法有溶剂法。
水蒸气蒸馏法。
升华法。
将固体药材按提取用溶剂的极性递增方式,用不同溶剂,如石油醚or汽油(可提出油脂、醋、叶绿色、挥发油、游离甾体、三萜类化合物)、氯仿or乙酸乙酯(可提出游离生物碱。
有机酸。
黄酮。
香豆素的苷元等中等极性化合物)、丙酮or乙醇、甲醇(可提出苷类。
生物碱盐。
鞣质等极性化合物)和水(提出氨基酸、糖类、无机盐等水溶性成分)依次进行提取。
得到的各个部分经活性测试确定有效部分后再做进一步分离。
P18 常见溶剂的极性强弱顺序:石油醚(低沸点?高沸点)<二硫化碳<四氯化碳<三氯乙烯<苯<二氯甲苯<氯仿<乙醚<乙酸乙酯<丙酮<乙醇<甲醇<乙腈<水<吡啶<乙酸溶剂法分类:浸渍法,渗漉法,煎煮法,回流提取法,连续回流提取法,超临界流体萃取技术,超神波提取技术超声波作用于液体介质引起介质的振动,当振动处于稀疏状态时,在介质中形成许多小空穴们这些小空穴的瞬间闭合,可引起高达几千个大气压的压力,同时局部温度可上升到千度高温,这一现象称为空化现象。
P19 中草药有效成分的分离与精制:根据物质溶解度差别进行分离,根据物质在两相溶剂中的分配比不同时进行分离,根据物质的吸附性差别进行分离P20 在药材浓缩水提取液中加入数倍量高浓度乙醇,以沉淀出去多糖、蛋白质等水溶性杂质(水/醇法);在浓缩乙醇提取液中加入数倍量水稀释,放置以沉淀除去树脂、叶绿素等水不溶性杂质(醇/水法);在乙醇浓缩液中加入数倍量乙醚(醇/醚法)或丙酮(醇/丙酮法)可使皂苷沉淀洗出,而脂溶性的树脂等类杂质则留存在母液中等。
液-液萃取与分配系数K值 K=Cu/Cl分离难以与分离因子β :β=Ka/Kbβ?100仅作一次简单萃取就可实现基本分离;但100,β?10,则需萃取10-12次;β?2时,要想实现基本分离,须作100次以上萃取才能完成;β?1,则Ka?Kb,意味着两者性质极其相近,即使作任意次分配也无法分离。
药物化学重点笔记 Company number【1089WT-1898YT-1W8CB-9UUT-92108】中枢神经系统药物第一节镇静催眠药药名异戊巴比妥(Amobarbital )结构与化学名 5-乙基-5-(3-甲基丁基)-2,4,6-(1H,3H,5H)嘧啶三酮类型巴比妥类、环丙二酰脲(巴比妥酸)的衍生物物理性质白色结晶性粉末化学性质弱酸性(pKa为可做成钠盐作注射用;水解性:其钠盐水溶液放置易水解,故本类药物的钠盐注射液应做成粉针剂,临用前配制。
鉴别反应与硝酸银试液作用-生成银盐沉淀,沉淀溶于过量氨试液中与吡啶和硫酸铜溶液作用-生成紫蓝色络盐体内代谢肝脏,50%羟基化后再与葡萄糖醛酸化合物结合,经肾排出药物用途中效催眠药合成 R1 =异戊基,R2 =乙基巴比妥类构效关系:1.丙二酰脲的衍生物,5位碳原子的总数在4-8,药物有适当的脂溶性,有利于药效发挥。
碳数超过8,具有惊厥作;2.引入亲脂基团,将C-2上的氧以硫代替,硫喷妥钠酸性降低,脂溶性增大,起效快、短。
3.在酰亚胺氮引入甲基,也可降低酸性和增加脂溶性,起效快;两个氮上都引入甲基,产生惊厥。
苯巴比妥:5-乙基-5-苯基-2,4,6-(1H,3H,5H)嘧啶三酮苯巴比妥的用法注意事项:1. 久用能成瘾2. 肝功能严重减退者慎用。
3. 注射剂用注射用水配成5-10%溶液,现配现用。
静注宜缓慢。
给药过程中应注意观察病人的呼吸及肌肉松弛程度,以恰能抑制惊厥为宜。
结构与作用时间长短的关系:与5位上的取代基的氧化性质有关:•5位取代基为饱和直链烷烃或芳烃不易被氧化而吸收,作用时间长•5位取代基为支链或不饱和时,代谢迅速,主要以代谢产物形式排出体外, 镇静、催眠作用时间短。
影响药效的另外两个因素1. 解离常数:以分子形式透过生物膜;以离子形式产生作用2. 脂水分配系数:脂溶性和水溶性的相对大小。
P = C0/Cw一定的脂水分配系数:保证药物既能在体液中转运,又能透过血脑屏障到达作用部位溶于水:在体液中转运;溶于脂:透过细胞膜结构与化学名 1-甲基-5-苯基- 7-氯-1,3-二氢-2H-1,4-苯并二氮杂卓-2-酮类型苯并二氮杂卓类物理性质无色或白色结晶粉末,易溶于丙酮,氯仿,溶于乙醇,不溶于水化学性质水解性:4,5位开环为可逆性,不影响生物利用度鉴别反应溶于稀盐酸,加碘化铋钾,产生橙红色沉淀。
1.药物化学是一门发现与发明新药、合成化学药物、阐明药物化学性质、研究药物分子与机体细胞之间的相互作用规律的的综合性学科。
研究内容包含化学科学和必须涉及生命科学的内容。
研究任务:为有效利用现有化学药物提供理论基础;研究化学药物的合成原理和路线选择和设计适合国情的产业化工艺;创制新药,发现具有进一步开发前景的先导化合物及新药。
2.以受体(可乐定)、酶(卡托普利)、离子通道、核酸作为药物的作用靶点。
3.苯二氮卓类药物的结构特征:具有苯环和七元亚胺内酰胺环骈合的苯二氮卓母核,其中1,4-苯二氮卓类的催眠镇静作用最强。
4.地西泮的结构…..俗名安定。
化学性质:4,、5位开环位可逆性水解,不影响药物的生物利用度;可进行生物碱的一般反应,加碘化铋钾试液,产生橙红色沉淀。
代谢过程:主要在肝脏代谢,代谢途径为N-1位去甲基、C-3位的氧化,代谢产物仍有活性。
形成的3-羟基化的代谢产物以与葡萄糖醛酸结合的形式排出体外。
5.巴比妥类药物的结构…..分类:长时效,中时效,短时效,超短时效。
鉴别方法:巴比妥类药物与铜盐在有机胺-水溶液中可产生类似双缩脲的颜色反应,如与吡啶-硫酸铜溶液作用生成紫色络合物,含硫巴比妥药物经反应后显绿色。
构效关系…..6.盐酸氯丙嗪的结构…..化学性质:易被氧化渐变色,遇光分解生成自由基,自由基与体内一些蛋白质作用时发生过敏反应;水溶液加硝酸后可能形成自由基或醌式结构而显红色,与三氯化铁试液作用显稳定的红色。
临床用途:常用于治疗精神分裂症和躁狂症,大剂量时可应用于镇吐,强化麻醉及人工冬眠等。
构效关系:活性与2位取代基的吸电子性成正比;2位引入S取代基,脂溶性增加,镇静作用增加,锥体副作用降低;10位N 与侧链碱性氨基间相隔3个直链C原子时作用最强。
…….区别:经典的抗精神病药物是DA受体阻断剂,能阻断中脑-边缘系统及中脑-皮质通路的DA受体,减低DA功能,从而发挥抗精神病作用。
同时也导致了运动功能障碍锥体外系的副作用;非经典抗精神病药特异性地作用于中脑皮质的多巴胺神经元,对治疗精神病有效,而较少产生锥体外系副作用,基本不发生迟发性运动障碍。
名词解释1、天然药物:来源于天然资源的药物,是药物的重要组成部分,亦是创新药物和先导物的重要来源2、天然药物化学:现代科学理论、方法和技术研究天然药物中化学成分、寻找药效成分的一门学科3、有效成分( Effective Constituents)指具有生理活性、有药效,能治病的成分。
4、有效部位:指含有一种主要有效成分或一组结构相近的有效成分的部位,称为有效部位。
如:总生物碱、总皂苷或总黄酮等。
5、无效成分(Inffective Constituents)指无生理活性、无药效,不能治病的成分。
6、有毒成分:指能导致疾病的成分。
7、有效部位(Effective Extracts)指含有一种主要有效成分或一组结构相近的有效成分的部位,称为有效部位。
如:总生物碱、总皂苷或总黄酮等。
8、提取常用方法:1.浸渍法2.渗漉法3.煎煮法 4 .回流提取法5.连续回流提取法9、利用分子中价键的伸缩及弯曲振动在波数4000~ 500cm-1 红外区域引起的吸收,而测得的吸收图谱叫红外光谱。
特征频率区4000~1600 cm-1 指纹区 1500~600 cm-110、常见官能团伸缩振动区:①O-H、N-H(3750~3000 cm-1)② C-H(3300~2700 cm-1)③ C≡C(2400~2100 cm-1)④C=O(1900~1650cm-1 )⑤ C=C(1690~1600 cm-1)11、已知物的鉴定,一般通过光谱图中吸收峰的位置、强度和峰形与已知化合物的标准红外光谱图相比较,可以判断被测定的化合物是否与已知化合物的结构相同。
红外光谱对未知结构化合物的鉴定,主要用于官能团的确认、芳环取代类型的判断。
12、质谱 (mass spectrometry),就是化合物分子经电子流冲击或用其他手段打掉一个电子后,形成正电离子,在电场和磁场的作用下,按质量大小排列而成的图谱。
13、核磁共振波谱是化合物分子在磁场中受到另一射频磁场的照射,当照射场的频率等于原子核在外磁场的回旋频率时,有磁距的原子核就会吸收一定的能量产生能级的跃迁,即发生核磁共振,以吸收峰的频率对吸收强度作图所得到的图谱。
第一章总论天然药物化学是运用现代科学理论与方法研究天然药物中化学成分的一门学科;其研究内容包括各类天然药物的化学成分主要是生理活性成分或药效成分的结构特点、物理化学性质、提取分离方法以及主要类型化学成分的结构鉴定等;一.中草药有效成分的提取从药材中提取天然活性成分的方法有溶剂法、水蒸气蒸馏法及升华法等;●溶剂提取法的原理:溶剂提取法是根据“相似相容”原理进行的,通过选择适当溶剂将中药中的化学成分从药材中提取出来的一种方法;考试时请这样回答哦常用溶剂极性有弱到强排列:石油醚<环己烷<苯<乙醚<氯仿<醋酸乙酯<正丁醇<丙酮<乙醇<甲醇<水丙酮,乙醇,甲醇能够和水任意比例混合;常用溶剂的性质:亲脂性有机溶剂、亲水性有机溶剂、水一般情况下,分子较小,结构中极性基团较多的物质亲水性较强;而分子较大,结构上极性基团少的物质则亲脂性较强;●天然药物中各类成分的极性·多糖、氨基酸等成分极性较大,易溶于水及含水醇中;·鞣质是多羟基衍生物,列为亲水性化合物;·苷类的分子中结合有糖分子,羟基数目多,能表现强亲水性;·生物碱盐,能够离子化,加大了极性,就变成了亲水性化合物;·萜类、甾体等脂环类及芳香类化合物因为极性较小,易溶于氯仿、乙醚等亲脂性溶剂中;·油脂、挥发油、蜡、脂溶性色素都是强亲脂性成分,易溶于石油醚等强亲脂性溶剂中总之,天然化合物在溶剂中的溶解遵循“相似相溶”规律;即极性化合物易溶于极性溶剂,非极性化合物易溶于非极性溶剂,分子量太大的化合物往往不溶于任何溶剂;溶剂提取法的关键是选择适宜的溶剂选择溶剂依据:根据溶剂的极性和被提取成分及其共存杂质的性质,决定选择何种溶剂各溶剂法分类见天然药物化学辅导教材P5三水蒸气蒸馏法只适用于具有挥发性、能随水蒸气蒸馏而不被破坏,与水不发生反应,且难溶或不溶于水的成分的提取;天然药物中的挥发油、某些小分子生物碱如麻黄碱、烟碱、槟榔碱以及某些小分子的酚性物质如牡丹酚等的提取可采用水蒸气蒸馏法;四升华法某些固体物质如水杨酸、苯甲酸、樟脑等受热在低于其熔点的温度下,不经过熔化就可直接转化为蒸气,蒸气遇冷后又凝结成固体称为升华;天然药物中有一些成分具有升华性质,能利用升华法直接中药材中提取出来;但天然药物成分一般可升华的很少;果蔬脱水新技术实质上升华脱水法;五超临界二氧化碳流体萃取法了解部分,见天然药物化学辅导教材P6三、中草药有效成分的分离与精制一根据物质溶解度不同进行分离1. 原理: 相似相溶2. 方法: 结晶法、试剂沉淀法、酸碱沉淀法、铅盐沉淀法、盐析法二根据物质分配系数的不同进行分离K = CU / CLCU:上相,CL:下相,K值与萃取次数成反比,即K值越大,萃取次数越少,反之越多;⑴分配系数K值与萃取次数的关系原理: 利用物质在两种互不相溶的溶剂中的分配系数的不同达到分离 ;分配系数K值:一种溶质在两相溶剂中的分配比;K值在一定的温度和压力下为一常数;⑵分离因子β值与分离难易的关系分离因子β:两种溶质在同一溶剂系统中分配系数的比值;b = KA / KB KA>KBb值越大,越易分离; b =1时,无法分离;⑶酸碱度pH值对分配比的影响溶剂系统PH的变化影响酸性、碱性、及两性有机化合物的存在状态游离型或离解型,从而影响在溶剂系统中的分配比;游离型------极性小的溶剂;离解型-------极性大的溶剂◆PH<3,酸性物质多呈游离型HA、碱性物质则呈离解型BH+;◆ PH>12,酸性物质呈离解型A-、碱性物质以游离型B存在;纸色谱法 PC以滤纸纤维为惰性载体的平面色谱支持剂:纤维素滤纸固定相:纤维素上吸附的水20-25%展开剂:与水不相混溶的有机溶剂或水饱和的有机溶剂Rf值: A、物质极性大, Rf值小; B、物质极性小, Rf值大;应用:适合于分离亲水性较强的物质;液-液分配柱色谱法固定相主要为化学键合柱色谱:将吸附固定液的载体装入色谱管中进行分离和检测混合物成分的色谱法;按是否加压分:常压柱色谱、加压柱色谱按相极性分:正相色谱、反相色谱载体:硅胶含水17%以上、硅藻土及纤维素等●正相色谱:固定相>流动相极性固定相:水、缓冲溶液流动相:氯仿、乙酸乙酯、丁醇等弱极性有机溶剂洗脱顺序:极性小的化合物先出柱,极性大的化合物后出柱应用:适用于水溶性或极性较大的化合物,如生物碱、苷、糖类、有机酸等;●反相色谱:固定相<流动相极性固定相:石蜡油,化学键合相如十八烷基硅胶键合相流动相:水、甲醇、乙腈等强极性有机溶剂洗脱顺序:极性大化合物,先出柱;极性小化合物,后出柱;应用:适合于脂溶性成分,如高级脂肪酸、油脂、游离甾体等;(三)..根据物质吸附性差别进行分离吸附色谱法利用同一吸附剂对混合物中各成分吸附能力的不同而达到分离的色谱方法;吸附类型:1.物理吸附溶液分子与吸附剂表面分子的分子间作用力:硅胶、氧化铝及活性炭为吸附剂的吸附;相似者易吸附2.化学吸附:如黄酮等酚酸性物质被碱性氧化铝吸附,生物碱被酸性硅胶吸附等;3.半化学吸附:如聚酰胺与黄酮类、蒽醌类等化合物之间的氢键吸附;介于物理吸附与化学吸附之间;固-液吸附柱色谱将待分离混合物样品加在装有吸附剂的柱子中,再加适当的溶剂洗脱剂冲洗,由于吸附剂对各组分吸附能力不同,各组分在柱中向下移动的速度不同,吸附力最弱的组分随溶剂首先流出,通过分段定量收集洗脱液而使各组分得到分离;固-液吸附三要素:吸附剂、溶质、溶剂●吸附剂的种类及特点 1.极性吸附剂氧化铝、硅胶特点:a.对极性强的物质吸附能力强;b.溶剂极性减弱,则吸附剂对溶质的吸附能力增强;反之,则减弱;c.溶质即使被硅胶、氧化铝吸附,一旦加入极性较强的溶剂时,又可被置换洗脱下来;为避免化学吸附,酸性物质宜用硅胶、碱性物质宜用氧化铝作为吸附剂进行分离;通常在分离酸性或碱性物质时,洗脱溶剂中常加入适量的醋酸或氨、吡啶、二乙胺,以防止拖尾,改善分离效果;●非极性吸附剂活性炭特点:活性炭因为是非极性吸附剂,对非极性物质具有较强的亲和能力;在水中对溶质表现出强的吸附能力,溶剂极性降低,则活性炭对溶质的吸附能力也随之降低;故从活性炭上洗脱被吸附物质时,洗脱溶剂的洗脱能力将随溶剂极性的降低而增强;当用活性炭作吸附剂进行层析时,下列洗脱剂的洗脱能力由小列大为:水、l0%、20%、30%、50%、75%、95%的乙醇;聚酰胺吸附色谱法通过分子中的酰胺羰基与酚类、黄酮类化合物的酚羟基,或酰胺键上的游离胺基与醌类、脂肪酸上的羰基形成氢键缔合而产生吸附;●吸附强弱规律含水溶剂中a.形成氢键的基团数目越多,则吸附能力越强;形成氢键的能力与溶剂有关,一般在水中形成氢键的能力最强,在有机溶剂中较弱,在碱性溶液中最弱;c.分子中芳香化程度越高,则吸附性能越强;b.易形成分子内氢键的化合物,其吸附性能减弱;在聚酰胺柱色谱分离时,通常用水装柱,样品也尽可能作成水溶液上柱以利聚酰胺对溶质的充分吸附,形成较窄的原始谱带;随后用不同浓度的含水醇洗脱,并不断提高醇的浓度,逐步增强从柱上洗脱物质的能力;甲酰胺、二甲基甲酰胺及尿素水溶液因分子中均有酰胺基,作为第三者可以同时与聚酰胺及酚类等化合物形成氢键缔合,故有很强的洗脱能力;此外,水溶液中加入碱或酸均可破坏聚酰胺与溶质之间的氢键缔合,也有较强的洗脱能力;●各种溶剂在聚酰胺柱上的洗脱能力由弱至强排序为:水→甲醇→丙酮→氢氧化钠水溶液→甲酰胺→二甲基甲酰胺→尿素水溶液●应用 a.特别适合于酚类、醌类、黄酮类化合物的制备和分离;b.对生物碱、萜类、甾体、糖类、氨基酸等其它极性与非极性化合物的分离也有着广泛应用;c.用于提取物的脱鞣质处理大孔吸附树脂的吸附由于吸附性和分子筛原理,有机化合物吸附力的不同及分子量的不同,在大孔吸附脂上经一定的溶剂洗脱而分开; ①吸附性-----范德华引力或产生氢键的结果;②分子筛------本身多孔性结构所决定; 大孔吸附树脂:分为极性和非极性●影响因素:a.一般非极性化合物在水中易被非极性树脂吸附,极性化合物易被极性树脂吸附;糖是极性的水溶性化合物,与D型非极性树脂吸附作用很弱,据此经常用大孔吸附树脂将中药的化学成分和糖分离;b.物质在溶剂中的溶解度大,树脂对此物质的吸附力就小,反之就大;c.分子量小、极性小的化合物与非极性大孔吸附树脂吸附作用强;反之,与极性大孔吸附树脂吸附作用强;d.能与大孔吸附树脂形成氢键的化合物易吸附;●洗脱液的选择:最常用的水、乙醇、甲醇、丙酮、乙酸乙酯对非极性大孔树脂:洗脱液极性越小,洗脱能力越强;对极性大孔树脂:洗脱液极性越大,洗脱能力越强;●应用广泛应用于天然化合物如苷与糖类的分离、生物碱精制;主要用于水溶性大分子化合物的分离和精制:如多糖、蛋白质、多肽类化合物分离;四根据物质分子大小差别进行分离凝胶色谱法:将含有大小不同分子的混合物样品液,通过多孔性凝胶固定相,用洗脱剂将分子量由大到小的化合物先后洗脱的一种分离方法;五根据物质解离程度不同进行分离天然有机化合物中,具有酸性、碱性及两性基团的分子,在水中多呈离解状态,据此可用离子交换法或电泳技术进行分离;以下仅简单介绍离子交换法;●.原理:是以离子交换树脂作为固定相,用水或含水溶剂为流动相;当流动相流过交换柱时,溶液中的中性分子及不与离子交换树脂交换基团发生交换的化合物将通过柱子从柱底流出,而具有可交换的离子则与树脂上的交换基团进行离子交换并被吸附到柱上,随后改变条件,并用适当溶剂从柱上洗脱下来,即可实现物质分离;●结构及性质:离子交换树脂外观均为球形颗粒,不溶于水,但可在水中膨胀;●吸附规律:阳离子交换树脂——分离碱性成分;阴离子交换树脂——分离酸性成分●.应用:主要用于能产生离子型的成分如氨基酸、肽类、生物碱、有机酸、酚类等;四、结构研究法结构测定常用的波谱分析紫外-可见吸收光谱uv凡具有不饱和键的化合物,特别是存在共扼不饱和键的化合物,在紫外-可见光谱200-700 nm中有特征吸收峰,所以紫外光谱适用于鉴定不饱和键的有无,或用以推测这些不饱和键是否共扼; 红外光谱 IR红外光谱能充分反映官能团与波长的关系,所以对确定未知物的结构非常有用; 常见官能团伸缩振动区:①O-H、N-H 3750-3000 cm-1 ②C-H 3300-2700 cm-1③C≡C2400-2100 cm-1 ④C=O 1900-1650 cm-1 ⑤C=C 1690-1600 cm-1质谱 MS就是化合物分子经电子流冲击或用其他手段打掉一个电子后,形成正电离子,在电场和磁场的作用下,按质量大小排列而成的图谱;用质谱测定有机分子的分子量;核磁共振谱NMR1H–NMR和13C-NMR能提供分子中有关氢及碳原子的类型、数目、互相连接方式、周围化学环境以及构型、构象等结构信息;●氢谱H—NMR1H –NMR通过测定化学位移δ、质子数以及裂分情况重峰数及偶合常数J可以得出分子中1H 的类型、数目及相邻原子或原子团的信息;①化学位移:在有机化合物中虽同为氢核,如果它们所处的化学环境不同,则它们共振时所吸收的能量就稍有不同,在波谱上就显示出共振峰位置的移动;这种因化学环境变化引起的共振谱线的位移称为化学位移,用符号δ表示;②质子数:根据氢谱的上峰的积分面积并结合已知的分子式求得每个信号所相当的氢的个数,现在1H–NMR 可以直接给出每个信号代表的质子的个数,并可以直接获得分子中总的质子数;③信号的裂分及偶合常数J:磁不等同的两个或两组1H核在一定距离内会因相互自旋偶合干扰而使信号发生裂分,而出现ssinglet,单峰、ddoublet,双峰、ttriplet,三重峰、uartet,四重峰、mmultiplet,多重峰等;峰裂分数:n+1规律④裂分间的距离称为偶合常数J,单位Hz;其大小取决于间隔键的距离;间隔的键数越少,则J的绝对值越大;反之,越小;按间隔键的多少可分为偕偶J2 、邻偶J3及远程偶合J远 ;※一般相互偶合的两个或两组1H核信号其偶合常数相等Jab=Jba;课后作业一、名词解释1.天然药物化学:是指运用现代科学理论与方法研究天然药物中化学成分的一门学科;其学习内容包括天然药物化学的化学成分的结构特点、物理化学性质、提取分离以及主要类型化学成分的结构鉴定等等;2.有效成分:是指具有生理活性有药效、能治病的成分; 有效部位:是指具有一种主要有效成分或组成相似的有效成分的部位;无效成分:没有生理活性、没有药效、不能治病的成分4.溶剂提取法、系统溶剂提取法略第二章糖和苷概述糖是多羟基醛或酮类化合物及其聚合物;苷的共性是糖和苷键;第一节单糖的立体化学一、单糖结构式的表示方法:优势构象式、Haworth、FischerFischer投影式⑴主碳链上下排列,取代基左右排列;⑵羰基一端在上方;⑶主碳链上下两端价键和所结合的基团指向纸面后方,水平方向的价键和与之相结合的基团指向纸面前方;※因此,Fischer投影式只能在纸面上转动n180n=1,2,3…或转n90°,而不能使之翻转二、单糖的氧环各种糖之间的转化三、单糖的绝对构型Fischer投影式:看距羰基最远的不对称C-OH,OH向右———D型; OH向左———L型;Haworth投影式:看不对称C-R的朝向旋转R面上———D型; R面下———L型;四、单糖的端基差向异构单糖成环后形成了一个新的手性碳原子,该碳原子为端基碳,形成一对异构体为端基差向异构体,有α、β两种构型;Fischer投影式:看距羰基最远的不对称C-OH与C1-OH关系同侧——α型异侧——β型;Haworth投影式:看距羰基最远不对称C-R与C1-OH关系旋转异侧———α型;同侧———β型;五、单糖的构象呋喃糖的五元氧环基本为一平面;吡喃糖的六元氧环有船式和椅式两种构象,以椅式C为主;根据C椅式的存在形式又可分为C1式和1C式;直立键和平伏键的具体写法:①在C1式中位于C4、C2面上和C1、C3、 C5面下的基团为竖键;②平伏键e键与环上的键隔键平行; ③横键或竖键在环的面上面下交替排列;·α-L、β-D ,C1式 ,C1-OH在e键平伏键·α-D、β-L ,C1式 ,C1-OH在a键直立键第二节糖和苷的分类糖类物质根据其能否水解和分子量的大小分为单糖、低聚糖、多糖一.单糖类天然单糖以五碳糖、六碳糖最多,多数在生物体内呈结合状态,只有葡萄糖、果糖等少数以单糖存在;结构见课本p57二.低聚糖由2-9个单糖通过苷键结合而成的直链或支链聚糖称为低聚糖;·按单糖个数可以分为二糖、三糖等·按是否具有还原性分为还原糖和非还原糖·具有游离醛基或通基的糖为还原糖;如果二糖都以半缩醛或半缩酮上的羟基通过脱水缩合而成的聚糖没有还原性,为非还原糖;三、多聚糖由十个以上的单糖通过苷键连接而成的糖;①植物多糖:淀粉、纤维素、果聚糖、半纤维素、树胶、粘液质②动物多糖:糖原、甲壳素、肝素、硫酸软骨素、透明质酸四、苷类苷是由糖及其衍生物的半缩醛或半缩酮的羟基与非糖物质苷元脱水形成的一类化合物;新生成的化学键即位苷键;知道各类特点即可第三节糖和苷的性质一、糖和苷的物理性质●溶解性糖:小分子极性大,水溶性好,随着聚合度增高,水溶性下降;多糖难溶于冷水,或溶于热水成胶体溶液,难溶于高浓度的乙醇;单糖极性 > 双糖极性 ;①苷——亲水性其大小与连接糖的数目、性质有关;※ C-苷在水或有机溶剂中的溶解度都较小;②苷元——为亲脂性; 可溶于乙醚、氯仿等有机溶剂中;●味觉①单糖~低聚糖——甜味; ②多糖——无甜味;随着糖的聚合度增高,则甜味减小;③苷类——苦人参皂苷、甜甜菊苷等;●旋光性:数值上相接近的一个便是与之有相同苷键的一个;利用旋光性→测定苷键构型※糖有旋光性;天然存在的单糖左旋、右旋的均有,但以右旋的较多;※苷类具有旋光性,天然苷类多呈左旋;苷类水解后,由于生成的糖常是右旋的,因而使混合物呈右旋;二、糖和苷的化学性质●氧化反应:单糖分子中有醛酮、伯醇、仲醇和邻二醇等结构①其易氧化程度为:醛酮基>伯醇基>仲醇基 . ②反应速度:顺式>反式因顺式易形成环式中间体.③对固定在环的异边并无扭曲余地的邻二醇羟基不反应;④.反应在水溶液中进行或含水溶液;⑤反应定量进行;●糠醛酚醛缩合反应;也叫Molish反应-----是糖的检识反应,也是苷类的检识反应;现象:界面处紫色环; ※碳苷和糖醛酸与Molish试剂往往不反应;第四节苷键的裂解1、按裂解的程度可分:全裂解和部分裂解;2、按所用的方法可分:均相水解和双相水解;3、按照所用催化剂的不同可分:酸催化水解、碱催化水解、酶解、过碘酸裂解、乙酰解等;●酸催化水解:阳碳离子酸水解难易程度规律有利于苷键原子质子化和中间体形成的因素均有利于水解;①按苷键原子的不同,苷类水解从易到难的顺序为:N-苷> O-苷> S-苷> C-苷;注意:N碱性最强,最易质子化,所以N-苷最易水解;②N-苷的N原子在酰氨及嘧啶环上,很难水解由于受到强的吸电子效应,碱性几乎消失;③酚苷及烯醇苷比其它醇苷易水解;如苯酚苷因苷元部分有供电结构;④.2,6-二去氧糖苷>2-去氧糖苷>6-去氧糖苷>2-羟基糖苷>2-氨基糖苷由于氨基、羟基均可与苷键原子争夺质子⑤呋喃糖苷>吡喃糖苷因五元呋喃环中各取代基处在重叠位置,水解时形成中间体使张力减小;酮糖多为呋喃糖结构,醛糖多为毗喃糖结构,故酮糖苷较醛糖苷易水解;⑥.在吡喃糖苷中由于C5-R会对质子进攻苷键造成一定的位阻,故R愈大,则愈难水解;五碳糖苷>甲基五碳糖苷>六碳糖苷>七碳糖苷>糖醛酸苷⑦当苷元为小基团——横键的苷键比竖键易水解,横键上原子易于质子化当苷元为大基团——苷键竖键比横键易水解;苷的不稳定性促使其水解●碱催化水解通常苷键对碱稳定,但某些特殊的苷如:酯苷、酚苷、与羰基共轭烯醇苷——易被碱水解●酶催化水解反应反应条件温和、专属性高、能够获得原苷元常用的苷键水解酶:杏仁苷酶—水解—β-六碳醛糖苷键纤维素酶—水解—β-D-葡萄糖苷键麦芽糖酶—水解—α-D-葡萄糖苷键转化糖酶—水解—β-果糖苷键●过碘酸裂解反应Smith降解法·特点:反应条件温和、易得到原苷元;可通过产物推测糖的种类、糖与糖的连接方式以及氧环大小;·适用范围:苷元不稳定的苷和碳苷得到连有一个醛基的苷元,不适合苷元上有邻二醇羟基或易被氧化的基团的苷;·所用试剂为:NaIO4、NaBH4·产物:多元醇、羟基乙醛、苷元·碳苷是很难用酸催化水解的,而用Smith裂解获得连有一个醛基的苷元;第五节糖及苷的提取分离一、提取▲糖苷类具多羟基,极性较大,易溶于水,难溶于低极性有机溶剂,但苷类化合物的溶解度则因苷元性质不同而有较大差异;▲糖的提取方法:根据它们对水和醇的溶解度不同而采用不同的方法;如单糖包括小分子低聚糖可用水或50 %醇提取;多糖根据可溶于热水,而不溶于醇的性质提取;依据:①多糖溶于热水中,采用水煎煮法提取;②多糖不溶于醇,采用逐步提高醇的浓度、使多糖分级在醇中析出,以达到纯化和分离;▲苷类提取常用的方法:※若提取的是原生苷,需抑制或破坏酶的活性,采用热乙醇或沸水提取;※若提取次生苷可用酶解方法,酶解后用适当浓度醇或乙酸乙酯提取;※若提取苷元可先酸水解或酶解,再用低极性有机溶剂乙醚或氯仿提取;抑制或破坏酶活性的方法:①在中药中加入一定量的碳酸钙②采用甲醇、乙醇或沸水提取③在提取过程中还须尽量勿与酸和碱接触;否则,得到的不是原生苷,而是已水解失去一部分糖的次生苷,甚至是苷元;二、分离●活性炭柱层析:活性碳为非极性吸附剂,吸附量大、分离率高;对于糖的吸附力:多糖 > 低聚糖 > 单糖方法以活性碳装柱→上样→水洗脱单糖→递增浓度乙醇洗脱二糖、三糖、低聚糖、直至总苷被依次洗脱;●凝胶柱层析:利用分子筛原理;对于不同聚合度的糖类及其水溶性成分的分离特别有效,方法快速、简单、条件温和;洗脱顺序:随分子量由大及小依次流出;●离子交换柱色谱①除去水提液中的酸、碱性成分和无机离子;②制成硼酸络合物——强碱性阴离子交换树脂不同浓度的硼酸盐洗脱●季铵盐沉淀法●.分级沉淀法●蛋白质去除法三、糖和苷的检识利用糖的还原性和糖的脱水反应所产生的颜色变化、沉淀生成等现象来进行理化检识,利用纸色谱和薄层色谱进行色谱检识;●理化检识①.Molish反应:检识糖或苷类化合物;若在两液面间有紫色环产生,则含有糖或苷类化合物;②.Fehling试剂反应:检验还原糖存在;③.Tollen反应:检验还原糖存在;●色谱检识★纸色谱 PC ★薄层色谱 TLC比较下列成分苷元相同Rf值的大小:苷元<单糖苷<双糖苷特点:增加糖在固定相中溶解度,使硅胶吸附能力下降,利于斑点集中,可增加样品载样量;显色剂:除纸层析外,还有—硫酸/乙醇液、茴香醛-硫酸试剂、苯胺-二苯胺磷酸试剂;思考:1.写出Smith裂解反应的反应式;2.写出D-葡萄糖、L-鼠李糖、D-葡萄糖醛酸、芸香糖的结构式;3.苷键具有什么性质,常用哪些方法裂解苷类的酸催化水解与哪些因素有关水解难易有什么规律4.苷键的酶催化水解有什么特点;第三章苯丙素类概述:苯丙素是一类含有一个或几个C6-C3单位的天然成分;第一节苯丙酸类结构特点: C6-C3结构,具有酚羟基取代的芳香羧酸;熟悉常见苯丙酸类型结构:对羟基桂皮酸、咖啡酸、阿魏酸、芥子酸;第二节香豆素类是顺邻羟基桂皮酸的内酯,具有芳香气味;其基本骨架为苯骈α-吡喃酮,7-位常有羟基或醚基;部分香豆素在生物体内以邻羟基桂皮酸苷的形式存在,酶解后苷元邻羟基桂皮酸立即内酯化而成香豆素;一、香豆素的结构类型●简单香豆素类七叶内酯只在苯环上有取代的香豆素类;取代基包括羟基、甲氧基、亚甲二氧基和异戊烯氧基等;多数在7位上有含氧官能团的存在;异戊烯氧基除直接在O上外,在6和8位出现多电负性高●呋喃香豆素类---环合时脱去3个C 苯环上的异戊烯基与邻位酚羟基环合成呋喃环 ;①线型6 ,7呋喃骈香豆素型:C6-异戊烯基和C7-OH环合补骨脂内酯。
天然药物化学复习重点第一章总论天然药物中化学成分的分类1. 有效成分: 天然药物中具有一定的生物活性、能起到防治疾病作用的单体化合物。
2. 有效部位:为具有一定生物活性的多种单体化合物的混合物。
如人参总皂苷、银杏总黄酮、灵芝多糖等。
一次代谢产物:糖、蛋白质、脂质、核酸等对植物机体生命活动来说不可缺少的物质。
二次代谢产物:生物碱、萜、香豆素、黄酮、醌类等对维持植物生命活动不起重要作用,且并非在所有植物中都能产生。
由一次代谢产物产生,常为有效成分。
一、提取法:1. 溶剂提取法(solvent extraction)原理:相似相溶理想溶剂(ideal solvents ):(1)对有效成分溶解度大;(2)对无效成分溶解度小;(3)与有效成分不起化学反应;(4)安全,成本低,易得。
二分离方法1. 根据溶解度差别进行分离1.1 结晶法(纯化时常用)条件:合适的溶剂;浓度;温度1.2 沉淀法:a 溶剂沉淀法:改变极性,如水提醇沉法b 酸碱沉淀法:改变pH ,处理酸、碱、两性成分;c 沉淀试剂:如铅盐沉淀法,酸性、酚性成分加中性PbAc2 ,形成沉淀。
2.2酸碱性成分的分离一pH-梯度萃取法按酸碱性强弱不同分离酸性、碱性、中性物质,改变pH 值使酸碱成分呈不同状态。
3.2 硅胶、氧化铝:①被分离物质吸附力与结构的关系被分离物质极性大,吸附力强,Rf 值小,洗脱难,后被洗脱下来。
官能团极性大小排列顺序:-COOH > Ar-OH > R-OH > R-NH2, RNHR ', RNR ' R " > R-CO-NR'R"> RCHO > RCOR ' > RCOOR ' > ROR ' >RH②溶剂(洗脱剂)的极性与洗脱力的关系洗脱剂极性越大, 洗脱力越强.3.3 聚酰胺①吸附力与结构的关系a形成氢键的基团数目越多,吸附力越强;b. 形成分子内氢键者,吸附力减少;c•芳香化程度越高或共轭键越多,吸附力越强;d.芳香苷苷元> 苷,单糖苷> 双糖苷> 叁糖苷②溶剂的洗脱能力水<含水醇<醇<丙酮<NaOH/H2O<甲酰胺<二甲基甲酰胺<尿素/H203.4 大孔吸附树脂(macro-reticular resin)①组成:苯乙烯,二乙烯苯和致孔剂②分离原理:吸附(范德华力和氢键)和分子筛作用(多孔性结构)③树脂类型:非极性、中极性和极性三种。
中枢神经系统药物第一节镇静催眠药药名异戊巴比妥(Amobarbital )结构及化学名5-乙基-5-(3-甲基丁基)-2,4,6-(1H,3H,5H)嘧啶三酮类型巴比妥类、环丙二酰脲(巴比妥酸)的衍生物物理性质白色结晶性粉末化学性质弱酸性(pKa为7.8)可做成钠盐作注射用;水解性:其钠盐水溶液放置易水解,故本类药物的钠盐注射液应做成粉针剂,临用前配制。
鉴别反应及硝酸银试液作用-生成银盐沉淀,沉淀溶于过量氨试液中及吡啶和硫酸铜溶液作用-生成紫蓝色络盐体内代谢肝脏,50%羟基化后再及葡萄糖醛酸化合物结合,经肾排出药物用途中效催眠药合成 R1 =异戊基,R2 =乙基巴比妥类构效关系:1.丙二酰脲的衍生物,5位碳原子的总数在4-8,药物有适当的脂溶性,有利于药效发挥。
碳数超过8,具有惊厥作;2.引入亲脂基团,将C-2上的氧以硫代替,硫喷妥钠酸性降低,脂溶性增大,起效快、短。
3.在酰亚胺氮引入甲基,也可降低酸性和增加脂溶性,起效快;两个氮上都引入甲基,产生惊厥。
苯巴比妥:5-乙基-5-苯基-2,4,6-(1H,3H,5H)嘧啶三酮苯巴比妥的用法镇静催眠麻醉口服口服肌注0.015-0.03g 0.03-0.09g 0.1-0.2g一日三次睡前服术前1/2-1小时注意事项:1. 久用能成瘾2. 肝功能严重减退者慎用。
3. 注射剂用注射用水配成5-10%溶液,现配现用。
静注宜缓慢。
给药过程中应注意观察病人的呼吸及肌肉松弛程度,以恰能抑制惊厥为宜。
长时中时短时超短时巴比妥,苯巴比妥异戊巴比妥,环己烯巴比妥司可巴比妥,戊巴比妥海索巴比妥,硫喷妥钠结构及作用时间长短的关系:及5位上的取代基的氧化性质有关:• 5位取代基为饱和直链烷烃或芳烃不易被氧化而吸收,作用时间长• 5位取代基为支链或不饱和时,代谢迅速,主要以代谢产物形式排出体外, 镇静、催眠作用时间短。
影响药效的另外两个因素1. 解离常数:以分子形式透过生物膜;以离子形式产生作用2. 脂水分配系数:脂溶性和水溶性的相对大小。
1、药物(drug):药物是人类用来预防、治疗、诊断疾病、或为了调节人体功能,提高生活质量,保持身体健康的特殊化学品。
2、药物化学(medicinal chemistry):药物化学是一门发现与发明新药、研究化学药物的合成、阐明药物的化学性质、研究药物分子与机体细胞(生物大分子)之间相互作用规律的综合性学科.3、锥体外系反应(effects of extrapyramidal system,EPS):指震颤麻痹,静坐不能、急性张力障碍和迟发性运动障碍等神经系统锥体外系的症状,常是抗精神病药物的副反应。
4、构效关系(structure- activity relationship,SAR):在同一基本结构的一系列药物中,药物结构的变化,引起药物活性的变化的规律称该类药物的构效关系。
其研究对揭示该类药物的作用机制、寻找新药等有重要意义。
5、血脑屏障(blood-brain barrier;BBB):为保护中枢神经系统,使其具有更加稳定的化学环境,脑组织具有特殊的构造,具有选择性的摄取外来物质的能力,被称作血脑屏障。
通常脂溶性高的药物易通过血脑屏障,而离子化的药物不能通过。
6、拟胆碱药(cholinergic drugs):是一类具有与乙酰胆碱相似作用的药物。
按作用环节和机制的不同,主要可分为胆碱受体激动剂和乙酰胆碱酯酶抑制剂两种类型。
7、乙酰胆碱酯酶抑制剂(AChE inhibitors):通过对乙酰胆碱酯酶的可逆性抑制,增强乙酰胆碱的作用。
不与胆碱受体直接作用,属于间接拟胆碱药。
在临床上主要用于治疗重症肌无力和青光眼,及抗早老性痴呆。
溴新斯的明。
8、局部麻醉药(local anesthetics):在用药局部可逆性地阻断感觉神经冲动的发生和传导,在意识清醒的条件下引起感觉消失或麻醉的药物。
普鲁卡因。
9. 钙通道阻滞剂(calcium channel blocker):钙通道阻滞剂是一类能在通道水平上选择性地阻滞Ca2+经细胞膜上钙离子通道进入细胞内,减少细胞内Ca2+浓度,使心肌收缩力减弱、心率减慢、血管平滑肌松弛的药物。
名词解释bioalkylating agents生物烷化剂:是指在体内能形成缺电子活泼中间体或者其他具有活泼的亲电性基团的化合物,进而与生物大分子中含有丰富电子的基团进行亲电反应共价结合,使其丧失活性或使DNA分子发生断裂的一类药物。
INN国际非专有药名:新药开发者在新药研究时向世界卫生组织申请,由世界卫生组织批准的药物的正式名称并推荐使用。
antimetabolic agents抗代谢药物:是一类重要的抗肿瘤药物,通过抑制DNA合成中所需的叶酸、嘌呤、嘧啶及嘧啶核苷途径,从而抑制肿瘤细胞的生存和复制所必需的代谢途径,导致肿瘤细胞死亡HMG-CoA还原酶抑制剂:通过抑制HMG-CoA还原酶的活性,阻碍HMG-CoA还原为羟甲戊酸,使内源性胆固醇合成减少,从而调节调节血脂的药物.B-内酰胺酶抑制剂:是针对细菌对B-内酰胺抗生素产生耐药机制而研究发现的一类药物。
B—内酰胺酶是细菌产生的保护性酶,使某些B-内酰胺抗生素在未到达细菌作用部位之前将其水解失活,这是细菌对B-内酰胺抗生素产生耐药性的主要机制。
B-内酰胺酶抑制剂对B-内酰胺酶有很强的抑制作用,本身又具有抗菌活性,通常和不耐药的B-内酰胺抗生素联合应用以提高疗效,是一类抗菌增效剂。
例:克拉维酸钾。
AChE inhibitors乙酰胆碱酯酶抑制剂:又称抗胆碱酯酶药,通过抑制乙酰胆碱酯酶,使其催化水解乙酰胆碱的能力受到抑制,导致Ach在突出间隙积聚,从而延长并增强Ach的作用。
因不与胆碱能受体直接相互作用,属于间接拟胆碱药,在临床上主要用于治疗重症肌无力和青光眼以及抗老年痴呆例:溴新斯的明。
soft drugs软药:容易代谢失活的药物,是药物在完成治疗作用后,按预定的代谢途径和可以控制的速率分解、失活并迅速排除体外从而避免药物的蓄积毒性。
例:苯磺阿曲库铵。
钙通道阻滞剂:是在细胞膜生物通道水平上选择性地阻滞Ga+经细胞膜上的钙离子通道进入细胞内,减少细胞内Ga+浓度的药物,例:硝苯地平。
化学院药物化学考试重点总结化学院药物化学考试重点总结苯巴比妥:巴比妥类镇静催眠药构效关系(解释影响因素)1.5位双取代才有活性,总碳数4-8最好2.3位有甲基取代起效快3.2位硫取代起效快影响药物作用的因素:1)解离常数及油水分配系数的影响;2)体内代谢对药物的影响。
(1)解离常数及油水分配系数的影响。
药物要在体液中转运,又要通过脂质的生物膜达到作用部位发挥药效,要求药物一定的油水分配系数和适宜的解离度。
解离常数及油水分配系数的不同导致药物吸收速度不同、到达作用部位药量不同,影响药物作用强度快慢不同。
如巴比妥酸解离常数较大,在生理条件下,99%以上呈离子型,无镇静催眠作用,苯巴比妥和己锁巴比妥分子型分别为50%和91%,能发挥镇静催眠作用,但己锁巴比妥比苯巴比妥作用快。
油水分配系数过大,则有惊厥作用。
如5位双取代总碳数超过8,导致化合物有惊厥作用。
(2)体内代谢对药物的影响。
药物在体内代谢快,作用时间就短,反之较长。
5位取代基的氧化是巴比妥类药物的主要代谢途径,当取代基为饱和直链烷烃或芳烃时不易代谢作用时间长,如苯巴比妥;为支链烷烃或不饱和烃基时易代谢作用时间短,如环己烯巴比妥。
地西泮(安定):苯二氮类镇静催眠药苯妥因钠:抗癫痫药普罗加比:前药型的拟氨基丁酸类抗癫痫药盐酸氯丙嗪:吩噻嗪类抗精神病药氟奋乃静:抗精神病药氯普噻吨:噻吨类抗精神病药舒必利:苯甲酰胺类抗精神病药吗啡:生物碱类镇痛药,含酚羟基和胺,为两性化合物哌替啶:哌啶类合成镇痛药咖啡因:黄嘌呤类生物碱、中枢兴奋药:硫酸阿托品:抗胆碱药合成CHO+CHONH2+COOCH3OCOOCH3AcOOClNH3COOCNNCOOCH3ONONOAcOHOOOOOH麻黄碱:拟肾上腺素药临床用途:用于支气管哮喘、鼻塞等苯海拉明:氨基醚类组胺H1受体拮抗剂(乘晕宁组成,优点)马来酸氯苯那敏(扑尔敏):丙胺类组胺H1受体拮抗剂氯雷他定:三环类组胺H1受体拮抗剂,非镇静性抗组胺药普鲁卡因:局麻药合成ONa2Cr2O7O2NOOO2NN1Fe,HCl2HClH2NH2SO4O2NOONOHHON二甲苯.HCl 利多卡因(局麻药和抗心律失常)硝苯地平:二氢吡啶类(DHP)钙拮抗剂利舍平(利血平)作用于交感神经末梢的抗高血压药卡托普利:血管紧张素转化酶抑制剂奎尼丁普鲁卡因胺利多卡因:抗心律失常药普萘洛尔:β-受体阻滞剂、合成;OClOONH2OH+OHOHNHClOHOHN.HCl美托洛尔:选择性β1-受体阻滞剂氢氯噻嗪:磺胺类及苯并噻嗪类利尿药甲苯磺丁脲:磺酰脲类口服降血糖药第六章抗溃疡药雷尼替丁:呋喃类H2受体拮抗剂奥美拉唑(洛赛克):质子泵抑制剂昂丹司琼:止吐药甲氧普胺、多潘立酮(吗丁啉):促动力药,止吐药第七章阿斯匹林:水杨酸类解热镇痛药作用原因:解热、镇痛、抗炎机制都与抑制前列腺素(Prostaglandine,PG)在体内的生物合成有关。
1、药物化学研究内容(1)、发现和设计新药是药物化学的首要任务。
(2)、研究化学药物的合成及稳定性,寻找最佳的生产工艺。
(3)、研究药物的化学结构特征、理化性质、稳定性,为其他学科提供服务。
(4)、研究药物的药理作用、毒副作用、体内代谢。
(5)、研究药物的构效关系、药物与靶点的作用,通过各种途径和技术寻找先导化合物,利用现代信息学和计算机技术,进行计算机辅助药物设计,为新药研究提供更合理的信息。
2 新的化学实体(NCE)指以前的文献中没有报道过,并能以安全、有效的方式治疗疾病的新化合物。
具有知识产权的创新药物。
3 先导化合物(Lead Compound)又称原型物,是指具有一定活性的独特结构的化合物,可以用来进行结构改造从而获得预期药理作用的药物。
4 新药: 在我国规定,国内没有上市销售的药物为新药,它包括了具有知识产权的创新药物和国内没有上市而国外已上市的药物。
5 词干西泮azepam 卡因caine 头孢cef 西林cillin 地平dipine 霉素mycin 洛尔olol 沙星oxacin 西汀oxetine 洛芬profen 沙坦sartan 替丁tidine巴比妥类1结构及分类是巴比妥酸(R1=R2=H=R3)的衍生物,由取代的丙二酸二乙酯与脲缩合制得的环状酰脲——丙二酰脲的衍生物。
2鉴别:(1)、与过量硝酸银反应生成二银盐沉淀(2)、与吡啶和硫酸酮形式有色络合物3构效关系:(1)5-位上两个活泼氢都被取代,才具有催眠镇静生理活性。
(2)二个取代基的总碳数以4-8为最好,2个N上均引入甲基,脂溶性过强,引起惊厥。
(3)分子中C2位上氧变换为硫,则脂溶性增加,起效和失效都快。
地西泮(安定)Diazepam1化学性质:水解性2代谢:肝脏代谢N-1位去甲基和C-3位的氧化本类药物代谢:本类药物代谢主要在肝中进行,代谢途径相似:(1)、氮去甲基2、C3-羟基化3、苯核酚-OH化4、氮氧化合物还原(5)1、2位开环和4、5位开环盐酸氯丙嗪(冬眠灵、氯普吗嗪)1化学性质:①、还原性含有噻嗪母核,易被氧化易氧化,在空气中,日光中放置渐渐变;水溶液(注射液)在日光下作用引起变质,pH值下降。
在生成中加抗氧化剂保存。
②、鉴别反应1、硝酸能形成自由基或醌式结构而显红色,这是吩噻嗪类化合物的共有反应,现用于鉴别。
2、加FeCl3——稳定红色。
3、与苦味酸成结晶盐,mp 175~179。
2临床应用:本品具有多方面的药理作用,安定作用较强;(作用多,选择性差)临床上用于治疗精神分裂症和狂躁症,亦用于镇吐,强化麻醉人工冬眠。
3副作用:主要是帕金森综合症,不能静坐,或者运动障碍。
锥体外系副作用,变颤、僵硬、口干、便秘、心悸、过敏反应。
4构效关系吩噻嗪环上2位取代引起分子不对称性,导致10位侧链倾向于2位取代的苯环一侧,这是该类药物产生活性的重要结构特征。
(1)吩噻嗪环具有高度立体专属性(受体要求),作用于多巴胺受体(2)N10位上侧链以3个碳最为合适,若侧链上第二碳原子上有支链,生理活性会有差异,取代后的化合物产生的光学异构体不同,活性左旋>右旋,而且该碳链的自由旋转是必需的,若受空间位阻,活性降低。
(3)2一位取代是唯一能增强活性的位置。
X-取代基的性质决定了环系的电子密度,亦涉及到N和S原子周围的电子密度,化合物的活性与X取代基吸电子能力成正比。
抗抑郁药1分类(1)单环氧化酶抑制剂(MAOIS):吗氯贝胺(2)去甲肾上腺素重摄取抑制剂(三环类):丙咪嗪(3)选择性5-羟色胺重摄取抑制剂(SSRIS):氟西汀吗啡1化学性质(1)酸碱性:(2)还原性(易氧化):分子中酚-OH(A环),N-CH3(D环)易氧化,其结果:双吗啡(Dimorphine)或伪吗啡(Pseudomorphine)和N-氧化吗啡。
吗啡盐类的水溶液在酸性条件下稳定,在中性或碱性下易被氧化。
故配制吗啡注射液时,应调整pH 3-5,还可以充入氮气、加焦亚硫酸钠、亚硫酸氢钠等抗氧化剂,使保持稳定(3)不稳定性(脱水及分子重排):生成阿扑吗啡,阿扑吗啡具有邻苯二酚的结构,极易被氧化,可用稀硝酸氧化成邻苯二醌而显红色用作鉴别4)鉴别反应:A:铁氰化钾+三氯化铁作用,铁氰化钾可使吗啡氧化成双吗啡,本身还原为亚铁氰化钾,再与三氯化铁作用则生成;亚铁氰化钾(普鲁士蓝)而显蓝色。
可待因无此反应。
B:中性三氯化铁试液:盐酸吗啡的水溶液与中性三氯化铁试液反应显蓝色;C:甲醛硫酸试液(吗啡的特征反应):与甲醛硫酸反应显蓝紫色(Marquis)反应;D:与钼酸硫酸试液(吗啡的特征反应):与钼酸硫酸试液反应呈紫色,继变为蓝色,最后变为绿色(Frohde反应)。
2衍生物(1)3位酚-OH醚化(烃基化):可待因活性下降,成瘾性下降(2)羟基(酚、醇)的酰化(酯化)当C-3,C-6二个羟基都被酰化形成的二乙酰化物—海洛因活性增加,成瘾性增加。
(3)双氢化合物——C-7-C-8 双键还原,氢化饱和,6为羟基氧化C6-OH脱氢成酮C6-OH 转变为C6-CO 双氢吗啡酮活性增加,成瘾性增加。
(4)N-取代基的改变:N---取代基改变,一般作用下降(1)N---去甲基,活性下降成瘾性也小(2)N---氧化物,无镇痛活性(3)N---季胺碱,无镇痛活性(4)烃基取代时,苯乙基取代是个例外,镇痛作用是吗啡的6倍。
3 分析吗啡和合成镇痛药的化学结构共同特征:(1)分子中具有一芳香结构的疏水性平面(一个平坦的芳环)与受体平面结合以范德华;引力相吸(2)一个叔氮原子的碱性中心,在生理PH条件下,大部分电离为阳离子(季胺正离子),正电中心与受体阴离子部分结合,碱性中心和平坦结构在同一平面;(静电引力)(3)含有哌啶或类似于哌啶的空间结构。
而烃基部分在立体构型中突出于平观的前方,联结他们两者之间的烃链部分在立体构型中应突出于平面的前方,叔氮原子间隔二个碳原子与一个季碳原子相连并形成半刚性的立体构型与空穴部位相契合。
普鲁卡因1化学性质(1)、还原性:重氮化反应(2)、水解性(3)、沉淀反应:生物碱2构效关系(1)亲脂部分:可以改变的范围很大,可为芳烃及芳杂环,必须有一定亲脂性,局麻作用多以苯环衍生物为强,苯环被下列环取代,均可产生麻醉作用,但不及苯环衍生物,但吡啶环和喹啉环无局麻作用。
一般认为邻对位给电子基因增强局麻作用而吸电子基则反之。
(2)中间连接部分:中间连接部分与局麻药的作用时间及稳定性有关。
也带来了不同的结构的类型。
中间链中的n以2~3个为好,碳链增长,或引入支链,位阻增大,水解不易发生,局麻作用增强,作用时间延长,但毒性增大。
(3)亲水部分:这一部分为氨基部分,通常叔胺基,以叔氨基最常见。
一般伯胺基由于不稳定,刺激性强,故不适用;季铵有简箭毒样作用而不被采用。
叔胺基中的两个烷基一般相同,烷基以3~4个碳原子时作用最强。
二乙胺基,哌啶基或四氢吡咯基表现了基本相同的活性;叔胺也可以脂环取代,例如吡咯、哌啶β-受体阻滞剂分类:(1)非选择性β-受体阻滞剂eg普茶洛尔,缺点是抑制心脏功能,对支气管疾病者可诱发哮喘。
(2)选择性β1-受体阻滞剂eg比索洛尔(美地洛尔):降低药物的副作用,较少地发生支气管痉挛,适宜哮喘病人使用。
该类药物对心脏的β1受体具有高度选择性,对外周受体拮抗作用较弱。
(3)非典型的β受体阻滞剂eg拉贝洛尔兼有α受体阻滞剂或血管扩张作用的β受体阻滞剂,尤其适用于治疗重症高血压。
(4)超短效β-受体阻滞剂,eg,艾可洛尔钙通道阻滞剂(硝苯地平)构效关系:1、1.4-二氢吡啶是活性必需,环上氮不被取代时活性最佳,若改变为吡啶则活性消失。
2、2.6一位取代基应为低级烷烃。
3、3.5一位取代基为酯基是活性必需。
若变换成乙酰基或-CN(氰基)则活性大为降低。
C3、C5位为不同酯基为手性中心,酯基大小对活性影响不大,但不对酯基影响作用部位。
4、C4为手性碳时,有立体选择作用,即异构之间活性有较大的差别。
C4位苯环上取代以邻、间位有吸电子基团时活性较佳,对位取代活性下降。
因为涉及电子及立体效应的缘故。
C4以取代苯基最强,改为杂环作用变弱。
血管紧张素转换酶抑制剂(ACEI,-pril,普利)1分类1、含巯基的ACE抑制剂,例如,卡托普利2、含羧基的ACE抑制剂:例如,依那普利3、含次膦酸基ACE抑制剂:例如,福辛普利2作用机制(1)抑制ACE,即抑制AngII的生成而起作用,对血管、肾有直接影响。
(2)通过交感神经系统及醛固酮分泌而发生间接作用。
(3)减少缓激肽的降解。
3药理作用1、阻止AngⅡ的生成2、保护缓激肽的活性3、保护血管内皮细胞,有抗动脉粥样硬化作用4、抗心肌缺血与心肌保护作用5、增强胰岛素敏感性4化学性质:卡托普利与福辛普利是呈酸性的药物,而其他的ACE抑制剂均是两性的血管紧张素II受体拮抗剂:氯沙坦1药理作用1、降压作用2、减轻左室心肌肥厚作用3、肾脏保护作用4、脑血管保护作用:羟甲戊乙酰辅酶A还原酶抑制剂洛伐他汀:结构特点:由三部分组成六氢萘环(母核)、四氢吡喃基(六元内酯环)以及2-甲基丁酸酯基抗肿瘤药氮芥:氮芥在水溶液中很不稳定;——在pH7以上的水溶液中会分解而失活环磷酰胺:理化性质:白色结晶性粉末,失水液化可溶于有机溶剂,可溶于水水溶液不稳定,遇热更易分解抗代谢药VS烷化剂:抑制DNA合成代谢,致肿瘤细胞死亡与生物大分子中的富电子基团发生共价结合(烷基化),使其丧失活性的药物。
特点:1、抗代谢药物的抗瘤谱相对烷化剂较窄。
2、由于抗代谢药物的作用点各异,交叉耐药性较少。
3、抗代谢药物结构上与代谢物很相似,大多数抗代谢物正是将代谢物的结构作细微的改变而得的。
抗菌药物作用机制1、抑制细菌细胞壁(β-内酰胺类)2、干扰蛋白质合成(氨基糖苷类/四环素类)3、作用于细菌细胞膜(多烯类、多粘菌素)4、干扰核酸的复制(利福霉素)耐酸青霉素:酰胺侧链α-位若有吸电子基,由于诱导效应,可阻碍电子转移,不能产生青霉二酸。
耐霉青霉素:酰胺侧链接有较大空间位阻的基团,可减小受酶的影响。
耐酶耐酸青霉素:引入兼有吸电子和空间位阻的基团,可耐酶耐酸(苯唑西林钠)。
广谱青霉素:含芳核侧链a-位引入亲水基团,具有广谱性,侧链引进杂环,有利于广谱及耐酶耐酸,C2-羧基酯化,提高生物利用度(阿莫西林)。
半合成青霉素的方法:1. 酰氯法2. 酸酐法3. DCC法4. 固相酶法。
中间体:6-氨基青霉烷酸6-APA7-氨基头孢烷酸(7-ACA)头孢菌素比青霉素稳定1、由于头孢菌素母核中的“四元环骈六元环”的稠合体系的张力比青霉素母核的环张力小;2、另外,头孢菌素分子结构中C-2、C-3的双键可与N-1的未共用电子对共轭。
头孢菌素可以进行结构改造的位置有四处:①7-酰胺基部分,是抗菌谱的决定性基团;②7-α氢原子,能影响对β-内酰胺酶的稳定性;③环中的硫原子,对抗菌效力有影响;④3-位取代基,能影响抗菌效力和药物动力学的性质。