高等数学一第二章极限与连续历年试题模拟试题课后习题
- 格式:doc
- 大小:125.00 KB
- 文档页数:18
第二章极限与连续[单选题]1、若x0时,函数f(x)为x2的高阶无穷小量,则=()A、0B、C、1D、∞【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】本题考察高阶无穷小.根据高阶无穷小的定义,有.[单选题]2、与都存在是函数在点处有极限的().A、必要条件B、充分条件C、充要条件D、无关条件【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限.[单选题]3、().A、B、1C、D、0【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]4、如果则().A、0B、1C、2【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】根据重要极限,[单选题]5、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】分子分母同除以,即[单选题]().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]7、设,则(). A、B、2C、D、0【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】[单选题]8、当时,与等价的无穷小量是(). A、C、D、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】由于故与等价,推广,当时,[单选题]9、时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】由于,故与等价,推广,当时,[单选题]函数的间断点是().A、x=6、x=-1B、x=0、x=6C、x=0、x=6、x=-1D、x=-1、x=0【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】由于,所以的间断点是x=0,x=6,x=-1. [单选题]11、设,则是的().A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】,即的左右极限存在且相等,但极限值不等于函数值,故为可去型间断点.[单选题]12、计算().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】[单选题]13、计算().B、C、D、1【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]14、().A、1B、﹣1C、2D、﹣2【从题库收藏夹删除】【正确答案】B【您的答案】您未答题析】[单选题]15、下列各式中正确的是().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】A,当时,极限为,错误;B,,错误;C,,错误,D正确. [单选题]16、函数的间断点个数为().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】在x=0和x=1处,无定义,故间断点为2个.[单选题]17、下列变量在的变化过程中为无穷小量的是()A、B、C、D、arctanx【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】,.[单选题]18、()A、0B、1C、不存在,但不是∞D、∞【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]19、函数,则x=0是f(x)的( )A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】故为可去间断点.[单选题]20、().A、-1B、2C、1D、0【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】为有界函数,故原式=. [单选题]21、().A、B、C、D、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】[单选题]22、下列极限存在的是().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】当x趋近于0时,为有界函数,故极限存在. [单选题]23、下列变量在的变化过程中为无穷小量的是().A、B、C、D、【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】,,,不存在,[单选题]极限=( )A、0B、2/3C、3/2D、9/2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]25、函数f(x)=的所有间断点是( )A、x=0B、x=1C、x=0,x=-1D、x=0,x=1【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】x=1时,分母为0,无意义。
第二章 极限与连续例1 对于数列}{n x ,若)(,),(,212∞→→∞→→-k a x k a x k k ,证明 )(,∞→→n a x n 证明:,0>∀ε因为),(,12∞→→-k a x k 所以存在正整数1K ,当1K k >时,有ε<--||12a x k (1)因为),(,2∞→→k a x k 所以存在正整数2K ,当2K k >时,有ε<-||2a x k (2)取}2,12m ax {21K K N -=,则当N n >时,(1)、(2)同时成立。
若1112},12{K K N n k n >-≥>-∈,ε<-||a x n 若222},2{K K N n k n >≥>∈,ε<-||a x n 所以,0>∀ε,N ∃当N n >时,ε<-||a x n 成立, 由定义得 )(,∞→→n a x n 。
例 2 设Λ,,21x x 是使不等式),2,1(,41)1(,101Λ=>-<<+n x x x n n n 成立的任何实数,证明:.21lim =∞→n n x 证明:因为,41)1(,≤-∈∀x x R x 因此,)1()1(1+-<-n n n n x x x x 又由 1<n x 知,,01>-n x 所以,1+<n n x x 故数列}{n x 单调递增维向量有上界1,故n n x ∞→lim 存在。
设,lim a x n n =∞→则由41)1(1>-+n n x x 知,a 必满足,41)1(≥-a a 于是必有,21=a 即.21lim =∞→n n x例3 .][lim nnx n ∞→解:因为,][nx nx nx ≤<-1即,][x nnx n x ≤<-1由夹逼定理可得.][lim x nnx n =∞→例4 .!!limn p np n ∑=∞→1解:因为 ,!)!1(2!)!1()!2)(2(!!1n n n n n n p n np +-<+-+--<<∑=所以 ,!)!(!!11211+-<<∑=n n n p np .!!lim 11=∑=∞→n p np n例5 利用定义证明34lim 5=+→x x 。
高等数学函数极限连续练习题及解析第一篇:高等数学函数极限连续练习题及解析数学任务——启动——习题1一、选择题:(1)函数y=-x+arccosx+1的定义域是()2(A)x≤1;(B)-3≤x≤1(C)(-3,1)(D)xx<1⋂x-3≤x≤1(2)函数y=xcosx+sinx是()(A)偶函数(B)奇函数(C)非奇非偶函数(D)奇偶函数(3)函数y=1+cos{}{}π2x的最小正周期是()(A)2π(B)(4)与y=π(C)4(D)1 2x2等价的函数是()(A)x;(B)(x)(C)x)(D)23x⎧x-1-1<x≤0(5)f(x)=⎨,则limf(x)=()x0<x≤1x→0⎩(A)-1(B)1(C)0(D)不存在二、填空题:(1)若f ⎪=⎛1⎫⎝t⎭5+2t2,则f(t)=_________,ft2+1=__________.t()⎧⎪1(2)φ(t)=⎨⎪sinx⎩π⎫⎛π⎫3,则φ⎛φ⎪=______。
⎪=______,π⎝6⎭⎝6⎭x>30,1],则fx2的定义域为______,f(sinx)的定义域为x≤π(3)若f(x)的定义域为()______,f(x+a)(a>0)的定义域为___,f(x+a)+f(x-a)(a>0)的定义域为______。
1-4x2(4)lim。
=__________12x+1x→-2(5)无穷小量皆以______为极限。
三、计算题(1)证明函数y=11sin在区间(0,1]上无界,但当x→+0时,这个函数不是无穷大。
xx(2)求下列极限(1)lim2x3+3x2+5x→∞7x3+4x2-1(3)lim(tanx)tan2xx→π(5)limex-1xx→0(7)lim+xsinx-1x→0x2arctanx(2)lim1-cos2x x→0xsinx(4)lim(1+2n+3n1n n→∞(6)limtanx-sinxx→0sin32x ⎛1(8)limx ex-1⎫⎪x→∞⎝⎪⎭(3)设f(x)=⎨⎧1-xx<0,求limf(x)。
1、函数()12++=x xx f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大.错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()n n a 1-=,1)1(lim =-∞→n n ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小).正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim =αβ,是∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xx y =的无穷间断点.错误 =-→x x x 00lim1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值. 错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值二、填空题:1、设()x f y =的定义域是()1,0,则(1)()x e f 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<x e (2)∵1sin 102<-<x(3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sin lim ∞→=( x ).∵x x nx n xn n x n x n n n n =⋅==∞→∞→∞→sinlim 1sinlimsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f x x x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-).∵()b ax x xx --+-+∞→1lim2()()()bax x x b ax x x b ax x x x +++-+++---+-=+∞→111lim 222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim 1x x x bab ab x b ab a →+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()xx f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a 13、=∞→x x x sin lim ( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→x x x 101lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( k e ). ∵0sin 1lim sin lim =⋅=∞→∞→x x xx x x 111sinlim1sin lim ==∞→∞→xx x x x x 14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列 2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数∵()()11log 1)(log 22++=+-+-=-x x x x x f aa3、当0→x 时,1-x e 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x根据极限存在定理知:()x f x 0lim →不存在。
【最新整理,下载后即可编辑】习题2-11. 观察下列数列的变化趋势,写出其极限: (1) 1n n x n =+ ; (2)2(1)n n x =--;(3)13(1)nn x n=+-; (4)211n x n=-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。
(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。
(3)1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+-所以lim 3n n x →∞=。
(4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。
(2) 错误 例如数列{}(-1)n 有界,但它不收敛。
(3) 正确。
(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。
*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3)323125lim -=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=. (2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n nε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3)对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n . 习题2-21. 利用函数图像,观察变化趋势,写出下列极限: (1)21lim x x →∞ ; (2) -lim x x e →∞; (3) +lim x x e -→∞; (4) +lim cot x arc x →∞; (5) lim2x →∞;(6) 2-2lim(1)x x →+; (7) 1lim(ln 1)x x →+; (8) lim(cos 1)x x π→- 解:(1)21lim 0x x →∞= ;(2) -lim0x x e →∞=;(3) +lim 0x x e -→∞=; (4) +lim cot 0x arc x →∞=; (5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=; (7) 1lim(ln 1)1x x →+=; (8) lim(cos 1)2x x π→-=- 2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。
1第一章函数、极限与连续一、选择题1.函数)(x f 的定义域为[]10,,则函数51()51(-++x f x f 的定义域是().A.⎥⎦⎤⎢⎣⎡-54,51B.⎥⎦⎤⎢⎣⎡56,51C.⎦⎤⎢⎣⎡54,51D.[]1,02.已知函数()62+x f 的定义域为[)4,3-,则函数)(x f 的定义域是().A.[)4,3-B.[)14,0C.[]14,0D.⎪⎭⎫⎢⎣⎡--1,293.函数211ln ++-=x xy 的定义域是().A.1≠x B.2-≥x C.2-≥x 且1≠x D.[)1,2-4.下列函数)(x f 与)(x g 是相同函数的是().A.11)(+⋅-=x x x f ,1)(2-=x x g B.2)(π=x f ,x x x g arccos arcsin )(+=C.x x x f 22tan sec )(-=,1)(=x g D.1)(=x f ,x x x g 22cos sin )(+=5.下列函数)(x f 与)(x g 是相同函数的是().A.x x g x x f lg 2)(,lg )(2==B.2)(,)(x x g x x f ==C.33341)(,)(-=-=x x x g x x x f D.xx x g x f 22tan sec )(,1)(-==6.若1)1(2-=-x x f ,则)(x f =().A.2)1(+x x B.2)1(-x x C.)2(+x x D.)1(2-x x 7.设xx f cos 2)(=,xx g sin 21)(⎪⎭⎫⎝⎛=,在区间⎪⎭⎫ ⎝⎛20π,内成立().A.)(x f 是增函数,)(x g 是减函数B.)(x f 是减函数,)(x g 是增函数C.)(x f 和)(x g 都是减函数D.)(x f 和)(x g 都是增函数28.函数)1lg()1lg(22x x x x y -++++=().A.是奇函数B.是偶函数C.是非奇非偶函数D.既是偶函数,也是奇函数9.下列函数中()是奇函数.A.1cos sin +-=x x y B.2xx a a y -+=C.2211x x y +-=D.)1)(1(+-=x x x y 10.函数x x x f sin )(2=的图形().A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x y =对称11.下列函数中,()是奇函数.A.2ln(1)x +B.)x C.sin x x D.x xe e-+12.若()f x 是奇函数,且对任意实数x ,有(2)()f x f x +=,则必有(1)f =().A.1-B.0C.1D.213.偶函数的定义域一定是().A.包含原点的区间B.关于原点对称 C.),(+∞-∞D.以上三种说法都不对14.若)(x f 是奇函数,)(x ϕ是偶函数,且)]([x f ϕ有意义,则)]([x f ϕ是().A.偶函数B.奇函数C.非奇非偶函数D.奇函数或偶函数15.函数xx f 1sin )(=是其定义域内的什么函数().A.周期函数B.单调函数C.有界函数D.无界函数16.若()f x 在(,)-∞+∞内单调增加,()x ϕ是单调减少,则[()]f x ϕ在(,)-∞+∞内().A.单调增加B.单调减少C.不是单调函数D.无法判定单调性17.函数xxe e y -+=的图形对称于直线().A.y x=B.y x=-C.0x =D.0y =318.下列函数中周期为π的是().A.xy 2sin =B.xy 4cos = C.xy πsin 1+= D.()2cos -=x y 19.下列函数是周期函数的是().A.)sin()(2x x f =B.xx f 1cos)(=C.xx f πcos )(=D.xx f 1sin)(=20.设1cos )(-=x x f 的定义域和周期分别为().A.πππ2,,22=∈+=T Z k k x B.ππ2,,2=∈=T Z k k x C.ππ=∈=T Z k k x ,,D.πππ=∈+=T Z k k x ,,221.下列结论不正确的是().A.基本初等函数在其定义域内是连续的B.基本初等函数在其定义区间内是连续的C.初等函数在其定义域内是连续的D.初等函数在其定义区间内是连续的22.下列说法正确的是().A.无穷小的和仍为无穷小B.无穷大的和仍为无穷大C.有界函数与无穷大的乘积仍为无穷大D.收敛数列必有界23.下列说法不正确的是().A.两个无穷小的积仍为无穷小B.两个无穷小的商仍为无穷小C.有界函数与无穷小的乘积仍为无穷小D.在同一变化过程中,无穷大的倒数为无穷小24.若无穷小量α与β是等价的无穷小,则αβ-是()无穷小.A.与β同阶不等价的B.与β等价的C.比β低阶的D.比β高阶的25.当0→x 时,4x x +是32x x +的().A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小26.当0→x 时,x x sin 2-是x 的().A.高阶无穷小B.低阶无穷小C.同阶无穷小但不等价D.等价无穷小27.设232)(-+=xxx f ,则当0=x 时,有().4A.)(x f 与x 是等价无穷小B.)(x f 是x 同阶但非等价无穷小C.)(x f 是比x 高阶的无穷小D.)(x f 是比x 低阶的无穷小28.设x x f -=1)(,31)(x x g -=,则当1→x 时().A.)(x f 是比)(x g 高阶的无穷小B.)(x f 是比)(x g 低阶的无穷小C.)(x f 与)(x g 是同阶但不等价的无穷小D.)(x f 与)(x g 是等价无穷小29.当0→x 时,与x 不是等价无穷小量的是().A.2sin xx -B.xx 2sin -C.3tan x x -D.xx -sin 30.当0→x 时,下列函数为无穷小量的是().A.x x sin B.xx sin 2+C.)1ln(1x x+D.12-x 31.当0→x 时,是无穷大量的有().A.xx 1sin 1B.xx sin C.2xD.xx 21-32.当0→x 时,下列函数不是无穷小量的是().A.x x x x tan cos 2-B.21sin xx C.x x x sin 3+D.xx )1ln(2+33.下列等式正确的是().A.1sin lim=∞→x xx B.11sinlim =∞→xx C.11sinlim =∞→xx x D.11sin lim=∞→xx x 34.设函数()f x 在闭区间[1,1]-上连续,则下列说法正确的是().A.1lim ()x f x →+必存在B.1lim ()x f x →必存在C.1lim ()x f x →-必存在D.1lim ()x f x →-必存在35.=→xx 102lim ().A.0B.∞+C.∞D.不存在36.下列各式中正确的是().A.0cos lim0=→xxx B.1cos lim0=→xxx C.0cos lim=∞→xxx D.1cos lim=∞→xxx537.若(sin )3cos 2f x x =-,则(cos )f x =().A.3sin 2x+B.32sin 2x-C.3cos 2x+D.3cos 2x -38.设21()arcsin 3lim ()1x x f x f x x x→∞=++,则lim ()x f x →∞等于().A.2B.21C.2-D.21-39.设x xx f )31()2(-=-,则=∞→)(lim x f x ().A.1e-B.2e-C.3e-D.3e40.极限lim sinx x xπ→∞=().A.1B.πC.2eD.不存在41.当0x →时,1xe 的极限是().A.0B.+∞C.-∞D.不存在42.当5x →时,5()5x f x x -=-的极限是().A.0B.∞C.1D.不存在43.设x x x f 21)(-=,则=→)(lim 0x f x ().A.1B.不存在C.2eD.2e-44.若0→x 时,kx x x ~2sin sin 2-,则=k ().A.1B.2C.3D.445.若52lim22=-++→x bax x x ,则().A.1=a ,6=b B.1-=a ,6-=b C.1=a ,6-=b D.1-=a ,6=b 46.=+-∞→x x xx arctan 1lim ().A.2πB.2π-C.1D.不存在647.=+→xx x )1ln(lim0().A.1-B.1C.∞D.不存在但非∞48.已知22lim 222=--++→x x bax x x ,则b a ,的值是().A.8,2-==b a B.b a ,2=为任意值C.2,8=-=b a D.b a ,均为任意值49.=-+-+++∞→11)2(3)2(3lim n n nn n ().A.31B.31-C.∞D.050.xx x x 1011lim ⎪⎭⎫⎝⎛+-→的值等于().A.2eB.2e-C.1D.∞51.设xx g x3e 1)(2-=,当0≠x 时,)()(x g x f =,若)(x f 在0=x 处连续,则)0(f 的值是().A.0B.32-C.1D.3152.设函数⎪⎪⎩⎪⎪⎨⎧<+=>-=0,1sin 0,10,1e )(2x a x x x x x x f x 在点0=x 处连续,则常数=a ().A.1-B.1C.2-D.253.若)(x f 在点0x 点连续,则=+→)2(sin lim 00h x f h ().A.)2(sin 0h x f +B.)(sin 0x f C.)(sin 0x f D.不存在54.函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点有().7A.3个B.1个C.0个D.2个55.设0=x 是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<+=0,1sin 0,00,11)(1x x x x x ex f x 的().A.跳跃间断点B.可去间断点C.第二类间断点D.连续点56.11)(11+-=xxe e xf ,则0=x 是)(x f 的().A.可去间断点B.跳跃间断点C.第二类间断点D.连续点二、填空题57.函数xxx f -+=11ln21)(的定义域是_________.58.函数2ln arcsin +=x xy 的定义域为_________.59.函数xx y 1arctan3+-=的定义域是_________.60.设)(x f 的定义域[]1,0=D ,则)(sin x f 的定义域_________.61.若函数()f x 的定义域为[1,0]-,则函数(cos )f x 的定义域为_________.62.若函数()f x 的定义域为[0,1],则函数(arctan 2)f x 的定义域为_________.63.设2(1)32f x x x +=-+,则f =_________.64.函数nn x a y 12)(-=的反函数是_________.65.函数)0(≠-++=bc ad dcx bax y 的反函数是_________.66.函数x y 3sin 2=⎪⎭⎫ ⎝⎛≤≤-66ππx 的反函数是_________.867.函数3arccos2xy =的反函数是_________.68.______28153lim 233=+-++∞→n n n n n n .69._______43867lim 22=+-+∞→n n n n .70.⎪⎭⎫⎝⎛++++∞→n n 21...41211lim =_________.71.2)1(...321limnn n -++++∞→=_________.72.35)3)(2)(1(limn n n n n +++∞→=_________.73._______lim 2210=+→x x x e.74._______1lim432=-+++∞→nn n n n n .75._______43...21lim 2=++++∞→nn nn .76._______1!!sin lim=+∞→n n n .77.=⎪⎭⎫⎝⎛++++++∞→πππn n n n n n 222...221lim _________.78.设012lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x x ,则=a _________,=b _________.79._______4421lim 22=⎪⎭⎫ ⎝⎛---→x x x .80._______2)2sin(lim22=---→x x x x .81._______63sin lim=∞→xxx .982.m n x x x )(sin )sin(lim 0→(m n ,为正整数,且m n >)=.83._______1cos 1lim 20=--→x e x x .84._______4tan 8arcsin lim0=→xxx .85._______81221lim 32=⎪⎭⎫ ⎝⎛---→x x x .86.xxx x 30sin sin tan lim-→=.87.)1(lim 2x x x x -++∞→=.88.)1sin 1)(11(tan sin lim32-+-+-→x x xx x =.89.若2)1sin(1lim 21=--+→x ax x x ,则_________=a .90.若0x →时函数tan sin x x -与nmx 是等价无穷小,则=m ,n =.91.当∞→x 时,函数)(x f 与21x是等价无穷小,则_______)(3lim 2=∞→x f x x .92.当0→x 时,函数112-+ax 与x 2sin 是等价无穷小,则_______=a .93.当∞→x 时,函数)(x f 与x4是等价无穷小,则_______)(2lim =∞→x xf x .94.若1x →时,2(1)1mx x --是比1x -高阶的无穷小,则m 的取值范围是.95.11232lim +∞→⎪⎭⎫⎝⎛++x x x x =_________.96.40)21(lim -→=-e x x kx ,则_________=k .1097.nn n x x f ⎪⎭⎫⎝⎛+=∞→sin 1lim )(,则=')(x f .98.4lim e a x a x xx =⎪⎭⎫ ⎝⎛+-+∞→,则_______=a .99._______1lim 23=⎪⎭⎫ ⎝⎛++∞→x x x x .100.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.101.设函数⎪⎩⎪⎨⎧≥<<+≤+=1,10,0,2)(2x bx x a x x x x f 在),(+∞-∞内连续,则___________,==b a .102.)(lim 2)sin 21()(031x f x x f x x→++=,求()=x f .103.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.104.设2211xx x x f +=⎪⎭⎫ ⎝⎛-,则=)(x f .105.函数⎪⎩⎪⎨⎧=≠+=010,1sin 1)(x x xx x f 的连续区间是.106.若函数()⎪⎩⎪⎨⎧>+≤+=0,21ln 0,)(12x x x x a x f x 在0=x 处连续,则=a .107.极限02sin 3lim[sin]x x x x x→+=.108.极限3sin 2lim[sin ]x xx x x→∞+=.109.若⎪⎩⎪⎨⎧=≠-+=-0,0,316sin )(3x a x x e x x f ax 在0=x 连续,则_______=a .110.函数⎪⎩⎪⎨⎧><<-±===2,420,42,0,2)(2x x x x x x f 的间断点有_________个.111.函数653)(2+--=x x x x f 的第二类间断点是_________.112.函数)5)(32(86)(22-----=x x x x x x f 的间断点是.113.设⎪⎩⎪⎨⎧≤+>=,0,,0,1sin )(2x x a x x x x f 要使)(x f 在),(+∞-∞内连续,则=a .114.设⎪⎩⎪⎨⎧<+=>+=0,20,0,)(2x b x x a x e x x f 在点0=x 处连续,则=a ,=b .115.设⎪⎩⎪⎨⎧≤>=0,0,3sin )(x x x x x x f ,则点0=x 是)(x f 的第类间断点.116.设⎪⎩⎪⎨⎧≤<-+>=-,01),1ln(,0,)(11x x x e x f x 则点0=x 是)(x f 的第类间断点;点1=x 是)(x f 的第类间断点.117.若函数=)(x ϕ,则函数)(x f 为奇函数这里⎪⎪⎩⎪⎪⎨⎧<=>++=0, )( 0, 0 0 ),1ln()(2x x x x x x x f ϕ118.⎩⎨⎧<-≥=00 )(22x x x x x f ,则)(x f 是(奇/偶)函数.119.⎩⎨⎧>+≤-=0 10 1)(x x x x x f ,则)(x f 是(奇/偶)函数.三、计算题120.设函数1)1(2++=x x x f 0>x ,求)(x f .121.设函数2211xx x x f +=⎪⎭⎫ ⎝⎛+,求)(x f .122.设xx f -=11)(,求))((x f f .123.设23)1(2+-=+x x x f ,求)(x f .124.已知x x g xx f -==1)(,1)(,求))((x g f .125.设x x x f 2)1(2-=-,求)1(+x f .126.求函数321)(2-+=x x x f 的连续区间.127.设函数)(x f 的定义域为)0,1(-,求函数)1(2-x f 的定义域.128.设x xx f +=12arccos )(,求其定义域.129.设)(x f 的定义域为[]1,0,求)(cos x f 的定义域.130.已知⎩⎨⎧≤<≤≤=+21,210,)1(2x x x x x ϕ,求)(x ϕ.131.设⎩⎨⎧<+≥+=0,40,12)(2x x x x x f ,求)1(-x f .132.判断函数x x x f 32(32()(-++=的奇偶性.133.判断11-+=x x a a x y 的奇偶性.134.设)21121)(()(-+=x x f x F ,已知)(x f 为奇函数,判断)(x F 的奇偶性.135.求函数x x y 44sin cos -=的周期.136.求函数2cos sin x x y +=的周期.137.求函数x y 3sin 2=)66(ππ<<-x 的反函数.138.求函数)1ln(2-+=x x y 的反函数.139.xx x 3113sin lim +-∞→.140.633lim 6--+→x x x .141.2203)1ln(lim x x x +→.142.x xx 4cos 12sin 1lim 4-+→π.143.2321lim 4--+→x x x .144.123lim 221-+-→x x x x .145.25273lim 33+-++∞→x x x x x .146.)cos 3(11lim 32x x x x +++∞→.147.2021cos lim x x x -→.148.2021lim x ex x -→.149.3222......21lim nn n +++∞→.150.)3(lim 2x x x x -++∞→.151.xx x ln 1lim 21-→.152.20cos 1lim x x x -→.153.38231lim x x x +---→.154.⎪⎪⎭⎫ ⎝⎛+-++⨯+⨯∞→)12)(12(1...531311lim n n n .155.n n 11lim +∞→.156.114sin lim 0-+→x xx .157.)(lim 22x x x x x --++∞→.158.156223lim 22+-++∞→n n n n n .159.nx mxx sin sin lim 0→.160.⎪⎭⎫ ⎝⎛-→x x x x ln ln 1lim 1.161.145lim 1---→x xx x .162.⎪⎪⎭⎫ ⎝⎛--→11lim 31x x x .163.xx x --→πππ1cos )(lim .164.20cos 1lim x mx x -→.165.11sinlim -+∞→x x x x x .166.)15(lim 323x x x x -+-∞→.167.)cos 1(cos 1lim 0x x x x --+→.168.28lim 38--→x x x .169.n n n 31...9131121...41211lim ++++++++∞→.170.xx x x x 6sin 4cos lim ++∞→.171.)1(lim 2x x x x -+∞→.172.⎪⎪⎭⎫⎝⎛-+→114sin lim 0x x x .173.174lim 22++→x x x .174.2220)1()41ln(lim x x e x -+→.175.115)2(5)2(lim ++∞→+-+-n n nn n .176.xx e 1011lim +→.177.若123lim 22=-+-→x ax x x ,求a .178.已知01lim 2=⎪⎪⎭⎫ ⎝⎛--+∞→b ax x x x ,其中a ,b 是常数,求a ,b .179.已知),0()1(lim 2017∞≠≠=--∞→A n n n k k n ,求k 的值.180.计算⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim .181.已知5312)(22+++-=bx x ax x f ,当∞→x 时,求a 和b 的值使)(x f 为无穷小量.182.当0→x ,比较函数22)(-+=x x e x f 与x 是否为同阶无穷小.183.已知82lim 3=⎪⎭⎫ ⎝⎛-+∞→x x a x a x ,求a .184.()xx x sec 32cos 1lim +→π.185.11212lim +∞→⎪⎭⎫⎝⎛-+x x x x .186.26311lim -∞→⎪⎭⎫ ⎝⎛+x x x 187.xx x x 311lim ⎪⎭⎫ ⎝⎛+-∞→.188.21232lim +∞→⎪⎭⎫ ⎝⎛++x x x x .189.xx x tan 2)(sin lim π→.190.已知⎪⎪⎩⎪⎪⎨⎧<=>+=0,sin 10,0,1sin )(x x x x p x q x x x f 在点0=x 处极限存在,求p 和q 的值.191.求函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点的个数.192.判断函数111)(--=x x ex f 的间断点及其类型.193.判断函数xx x f 1cos)(=的间断点及其类型.194.设)(x f 在点0=x 处连续,且⎪⎩⎪⎨⎧=≠-=0,0,cos 1)(2x a x x x x f ,求a .195.求函数xxy sin =的间断点及类型.196.求函数)1()(22--=x x xx x f 的间断点.197.证明方程019323=+--x x x 至少有一个小于1的正根.198.判断函数122+=x y 的单调性.199.已知⎪⎪⎪⎩⎪⎪⎪⎨⎧<⎪⎭⎫ ⎝⎛-=>+--=0,110,0,1)1(2sin )(2x x x b x a e e x f x x x 在点0=x 处连续,求a 和b 的值.200.设函数⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在),(+∞-∞内连续,求a .201.设⎪⎪⎩⎪⎪⎨⎧<≤---+=>+=01,110,00,)1ln()(x x xx x x x x x f ,判断其间断点及类型.202.设xe xf x 1)(-=,判断其间断点及类型.203.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0)(,11x x x e x f x ,判断)(x f 的间断点及其类型.204.求曲线65222+-=x x x y 的渐近线.205.求xex f -+=1111)(的间断点并判断其类型.206.设⎪⎪⎪⎩⎪⎪⎪⎨⎧>++=<=0,)21ln(0,0,sin 1sin )(2x a xx x b x x x x x f ,求b a ,的值使其在),(+∞-∞内连续.207.设⎪⎪⎩⎪⎪⎨⎧≤<=<<-=-21,1,210,1ln )(1x e x x x xx f x ,(1)求)(x f 的定义域(2)判断间断点1=x 的类型,如何改变定义使)(x f 在这点连续?208.判断函数x x y ln +=在区间),0(+∞内的单调性.第一章函数、极限与连续1..54,51:15101510⎥⎦⎤⎢⎣⎡⇒⎪⎪⎩⎪⎪⎨⎧≤-≤≤+≤D x x 选C2.43<≤-x ,826<≤-x ,14620<+≤x 。
高等数学习题库淮南联合大学基础部2008年10月第一章 映射,极限,连续习题一 集合与实数集基本能力层次:1: 已知:A ={x|1≤x ≤2}∪{x|5≤x ≤6}∪{3},B={y|2≤y ≤3} 求:在直角坐标系内画出 A ×B解:如图所示A ×B ={(x,y )| ,x A y B ∈∈ }.2:证明:∵ P 为正整数,∴p =2n 或p =2n+1,当p =2n+1时,p 2=4n 2+4n+1,不能被2整除,故p =2n 。
即结论成立。
基本理论层次:习题二 函数、数列与函数极限基本能力层次1:解:2:证明:由得cxy ay ax b -=+即 ay bx cy a+=-,所以 ()x f y = 所以命题成立3:(1)22x y -= (2)lg(sin )y x = (3 []y x = (4)0,01,0x y x ≥⎧⎫=⎨⎬<⎩⎭解:4:用极限定义证明: 1lim1n n n →∞-=(不作要求)证明:因为 ω∀ 有11|1|n n n ω--=<成立,只要1n ω>取N =[1ω],则当n>N 时,就有11|1|n n nω--=<有定义变知1lim 1n n n →∞-=成立5:求下列数列的极限(1)lim 3n n n →∞ (2)222312limn n n →∞+++(3)(4)n 解:(1) 233nn n n <,又2lim 03nn x →∞=,所以 0lim 03n n n →∞≤≤ , 故:lim 3n n n →∞=0(2)由于2223312(1)(21)111(1)(2)6n n n n n n n n n+++++==++又因为:1111lim (1)(2)63n n n n →∞++=,所以:2223121lim3n n n →∞+++ (3)因为:所以:(4) 因为:111n n≤≤+,并且1lim(1)1n n →∞+=, 故由夹逼原理得1n =6:解:由于7:解:8:9:习题三无穷小与无穷大、极限运算法则及两个重要极限基本理论层次1:解:同理:(3),(4)习题四无穷小的比较、函数的连续及性质基本理论层次1:(1)(2)2:第二章一元微分学及应用习题一导数及求导法则、反函数及复合函数的导数.基本理论层次21,1,,,,1()(1)(1)lim lim 1x a b x bx x f x f bx x ⎧+≥⎪⎨-+<⎪⎩-+-==-2222-ax 1.设f(x)=试求常数使f(x)在x=1处可导。
专升本高等数学一(函数、极限与连续)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.函数y=的定义域是( )A.[一2,3]B.[一3,3]C.(一2,一1)∪(一1,3]D.(一3,3)正确答案:C解析:因为对于函数y应满足这三个不等式解的交集为一2<x<-1与一1<x≤3.所以函数的定义域为(-2,-1)∪(-1,3].知识模块:函数、极限与连续2.下列函数中是奇函数的为( )A.y=cos3xB.y=x2+sinxC.y=ln(x2+x4)D.y=正确答案:D解析:A、C为偶函数,B为非奇非偶函数,D中y(一x)==一y(x),为奇函数,故选D.知识模块:函数、极限与连续3.函数f(x)=|xsinx|ecosx,在(一∞,+∞)上是( )A.有界函数B.偶函数C.单调函数D.周期函数正确答案:B解析:定义域(一∞,+∞)关于原点对称,且f(一x)=|(一x)sin(一x)|ecos(-x)=|xsinx|ecosx=f(x),故函数f(x)在(一∞,+∞)上为偶函数.知识模块:函数、极限与连续4.极限等于( )A.2B.1C.D.0正确答案:D解析:因x→∞时,→0,而sin2x是有界函数;所以由无穷小的性质知,=0.知识模块:函数、极限与连续5.设=3,则a= ( )A.B.C.2D.不确定正确答案:A解析:.知识模块:函数、极限与连续6.= ( )A.0B.1C.∞D.不存在但不是∞正确答案:D解析:不存在,故选D.知识模块:函数、极限与连续7.若=5,则( )A.a=一9,b=14B.a=1,b=一6C.a=一2,b=0D.a=一2,b=一5正确答案:B解析:若(x2+ax+b)=0,因此4+2a+b=0,2a+b=一4,即b=一4-2a,故所以a=1,而b=一6.知识模块:函数、极限与连续8.设函数f(x)=则f(x)在( )A.x=0,x=1处都间断B.x=0,x=1处都连续C.x=0处间断,x=1处连续D.x=0处连续,x=1处间断正确答案:C解析:因为在x=0处,,因此f(x)在x=0处间断.在x=1处,=f(1),因此,在x=1处连续,故选C.知识模块:函数、极限与连续9.函数f(x)=的间断点为( )A.x=一1B.x=0C.x=1D.不能确定正确答案:B解析:x=0处为分段点,≠f(0),所以f(x)的间断点为x=0,故选B.知识模块:函数、极限与连续填空题10.设函数f(x)的定义域为[0,1],g(x)=lnx一1,则复合函数f[g(x)]的定义域是_________.正确答案:[e,e2]解析:由函数f(x)的定义域为[0,1]知在f[g(x)]中g(x)∈[0,1],即0≤lnx 一1≤11≤lnx≤2e≤x≤e2.知识模块:函数、极限与连续11.设f(x)=则f{f[f(一3)]}=_________.正确答案:4解析:f(一3)=0,f[f(一3)]=f(0)=2,f{f[f(一3)]}=f(2)=x2|x=2=4.知识模块:函数、极限与连续12.若x→0时,(1一ax2)一1与xsinx是等价无穷小,则a=________.正确答案:一4解析:=1,故a=一4.知识模块:函数、极限与连续13.极限=________.正确答案:e-2解析:=e-2.知识模块:函数、极限与连续14.极限=________.正确答案:e-1解析:=e-1.知识模块:函数、极限与连续15.设f(x)=若f(x)在x=1处连续,则a=_______.正确答案:2kπ+,k=0,±1,±2,…解析:由=1.且f(1)=1,所以f(x)在x=1连续,应有1=sina,所以a=2kπ+,k=0,±1,±2,….知识模块:函数、极限与连续16.设f(x)=,则补充定义f(0)=________时,函数f(x)就在点x=0处连续.正确答案:1解析:若f(x)在x=0处连续,则f(0)==1.知识模块:函数、极限与连续解答题17.设f(x)=+|x-5|,求.正确答案:.涉及知识点:函数、极限与连续18.求极限.正确答案:.涉及知识点:函数、极限与连续19.计算.正确答案:=一1.涉及知识点:函数、极限与连续20.求极限.正确答案:.涉及知识点:函数、极限与连续21.求极限.正确答案:=2.涉及知识点:函数、极限与连续22.求极限.正确答案:.涉及知识点:函数、极限与连续23.求极限(sinx)x.正确答案:此极限为0°型,所以涉及知识点:函数、极限与连续24.设f(x)=,当a,b取何值时,f(x)在(一∞,+∞)上连续.正确答案:f(x)=因为f(x)在(一∞,+∞)上连续,所以f(x)在x=1及x=一1处连续,综上所述,解得a=0,b=1.涉及知识点:函数、极限与连续25.问a、b为何值时,函数f(x)=在点x=2和x=4处均连续.正确答案:由题意知涉及知识点:函数、极限与连续。
第二章 极限与连续一、填空 1、⎪⎭⎫⎝⎛+→x x x x x sin 11sinlim 0= 。
2、)arcsin(lim 2x x x x -++∞→= 。
3、nn n n 1sin)1()12(531lim3+-+++∞→ = 。
4、[]xx x 20)1ln(1lim ++→= 。
5、设()x f x 1lim →存在,且()()x f x x x f x 12lim 2→+=,则()x f x 1lim →= 。
6、设xx x k x 2)(lim -∞←-=xx x 2sin lim ∞→ ,则k= .7、设3)1sin(lim 221=-++→x bax x x ,则a = ,b = .8、当0→x 时,x x sin 1tan 1--+∽kx 41,则k = 。
9、如果函数()⎪⎩⎪⎨⎧=<<+-=010)11(1x ax xx x f x在其定义域上连续,则a = 。
10、函数23122+--=x x x y 的间断点为 ,其中可去间断点为 ,补充定义 使其连续。
二、选择1、下列命题正确的是( )A 、无限多个无穷小之和仍是无穷小。
B 、两个无穷大的和仍是无穷大C 、无穷大与有界变量(但不是无穷小)的乘积一定是无穷大。
D 、两个无穷大的积仍是无穷大。
2、已知xe xf 1)(=,则x =0是函数的( )A 、无穷型间断点B 、跳跃间断点C 、可去间断点D 、其它类型间断点3、x x ln arctan sin lim 0+→=( ) A 、1 B 、-1 C 、0 D 、不存在4、对于函数21x y -= )1,1(-∈x ,下列结论中不正确的是( ) A 、是连续函数 B 、是有界函数C 、是有最大值和最小值D 、有最大值无最小值5、设)(x f 在(-+∞∞,)内有定义,且⎪⎩⎪⎨⎧=≠==∞→00)1()(,)(lim x x x f x g a x f x则( )A 、0=x 必是)(x g 的第一类间断点B 、0=x 必是)(x g 的第二类间断点C 、0=x 必是)(x g 的连续点D 、)(x g 在点0=x 处的连续性与a 的取值有关6、函数)(x f 在0x x =点有定义是它在该点有极限的( ) A 、充分条件 B 、必要条件 C 、充要条件 D 、无关条件7、函数()()1121)(3++--=x x x x x f 在( )过程中为无穷大量A 、1→xB 、2→xC 、1-→xD 、∞→x8、若21)(lim0=→x ax f x ,则=→x bx f x )(lim 0( )A 、a b 2B 、ab21 C 、2ab D 、b a 29、若)0(0+x f 与)0(0-x f 均存在,则( ) A 、)(lim 0x f x x →存在且等于)(0x fB 、)(lim 0x f x x →存在但不一定等于)(0x fC 、)(lim 0x f x x →不一定存在D 、)(lim 0x f x x →必不存在10、函数)1ln()(x x f +=在下列( )区间上有界 A 、(-1,0) B 、),0(+∞ C 、]0,1(- D 、(2,3) 三、计算1、nnnnnnn 1)54321(lim ++++∞→2、xx x x sin 1sinlim20→3、422lim 22----+→x x x x4、xxx x sin 3sin 5arcsin lim0-→5、设xxx f )31()2(-=-,)(lim x f x ∞→6、讨论函数()⎪⎪⎪⎩⎪⎪⎪⎨⎧=>+<≤---+=00021ln 10111)(222x x x x x x x x x f 在分断点的连续性7、xx e e xx x sin lim sin 0--→8、[]{}n n n n ln )2ln(lim -+∞→四、证明题1、试证明曲线12--=x xe y x 在0=x 与1=x 至少与x 轴有一个交点2、设函数)(x f 在区间[]b a ,上连续,且b b f a a f ><)(,)(,证明:存在),(b a ∈ξ使得ξξ=)(f应用实例银行复利的计算一个人为了积累养老金,他每个月按时到银行存100元,银行的年利率为4%,且可以任意分段按复利计算,试问此人在5年后共积累了多少养老金?如果存款和复利按日计算,则他又有多少养老金?如果复利和存款连续计算呢?解 按月存款和计算时,每月的利息为30011004121=⨯,记k x 为第k 月末时的养老金数,则由题意得1001=x ⎪⎭⎫ ⎝⎛++=300111001002x233001110030011100100⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=x13001110030011100100-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++=n n x5年末养老金为⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-⨯=1)30011(30000300111300111100606060x (元) 当复利和存款按日计算时,记k y 为第k 天的养老金数,则每天的存款额为3651200=a ,每天的利率为365004=r 。
第二章极限与连续[单选题]1、若x0时,函数f(x)为x2的高阶无穷小量,则=()A、0B、C、1D、∞【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】本题考察高阶无穷小.根据高阶无穷小的定义,有.[单选题]2、与都存在是函数在点处有极限的().A、必要条件B、充分条件C、充要条件D、无关条件【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限.[单选题]3、().A、B、1C、D、0【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]4、如果则().A、0B、1C、2D、5【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】根据重要极限,[单选题]5、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】分子分母同除以,即[单选题]6、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]7、设,则().A、B、2C、D、0【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]8、当时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】由于故与等价,推广,当时,[单选题]9、时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】由于,故与等价,推广,当时,[单选题]10、函数的间断点是().A、x=6、x=-1B、x=0、x=6C、x=0、x=6、x=-1D、x=-1、x=0【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】由于,所以的间断点是x=0,x=6,x=-1. [单选题]11、设,则是的().A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】,即的左右极限存在且相等,但极限值不等于函数值,故为可去型间断点.[单选题]12、计算().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】[单选题]13、计算().A、B、C、D、1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]14、().A、1B、﹣1C、2D、﹣2【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]15、下列各式中正确的是(). A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】A,当时,极限为,错误;B,,错误;C,,错误,D正确.[单选题]16、函数的间断点个数为().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在x=0和x=1处,无定义,故间断点为2个. [单选题]17、下列变量在的变化过程中为无穷小量的是()A、B、C、D、arctan x【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,.[单选题]18、()A、0B、1C、不存在,但不是∞D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]19、函数,则x=0是f(x)的( )A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】故为可去间断点.[单选题]20、().A、-1B、2C、1D、0【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】为有界函数,故原式=.[单选题]21、().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]22、下列极限存在的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】当x趋近于0时,为有界函数,故极限存在. [单选题]23、下列变量在的变化过程中为无穷小量的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,,,不存在,[单选题]24、极限=( )A、0B、2/3C、3/2D、9/2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]25、函数f(x)=的所有间断点是( )A、x=0B、x=1C、x=0,x=-1D、x=0,x=1【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】 x=1时,分母为0,无意义。
x=0时,分子的指数分母为0,无意义。
[单选题]26、极限().A、-∞B、0C、1D、+∞【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】参见教材P48~50.(2015年4月真题)[单选题]27、函数的所有间断点为().A、x=0,x=1B、x=0,x=2C、x=1,x=2D、x=0,x=1,x=2【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题考查间断点,由定义可知答案为D。
参见教材P64.(2015年4月真题)[单选题]28、设函数f(x)=2x2,g(x)=sin x,则当x→0时().A、f(x)是比g(x)高阶的无穷小量B、f(x)是比g(x)低阶的无穷小量C、f(x)与g(x)是同阶但非等价的无穷小量D、f(x)与g(x)是等价无穷小量【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】当x→0时,sin x和x是等价无穷小量,2x2是x的高阶无穷小量.所以选择A.参见教材P59~61。
(2014年4月真题)[单选题]29、设函数在x=2处连续,则().A、a=1,b=4B、a=0,b=4C、a=1,b=5D、a=0,b=5【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】在x=2点连续,那么在这一点左右极限相等,且等于该点函数值.所以有3x2-4+a=b=x+2,解得a=0,b=4,选B.参见教材P63~64。
(2014年4月真题)[单选题]30、若函数在x=0处连续,则常数k=().A、1B、2C、3D、4【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】在x=0点连续,因此因此选择D.参见教材P63~64。
(2014年10月真题)[单选题]31、函数的间断点的个数为().A、1B、2C、3D、4【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】解得x=±1.因此选择B.参见教材P64。
(2014年10月真题)[单选题]32、设函数,则为()。
A、不存在B、0C、1D、2【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】。
参见教材P48。
[单选题]33、当时,下列变量为无穷小量的是()。
A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】当时,,,,。
参见教材P59。
[单选题]34、极限=().A、-2B、0C、2D、﹢∞【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】参见教材P48。
[单选题]35、函数的所有间断点是().A、0B、-1C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】根据间断点的定义可知,均是函数的间断点。
参见教材P64。
[单选题]36、极限=().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】等于最高次项的系数之比。
故选B。
[单选题]37、极限的所有间断点为().A、x=-1B、x=2C、x=2D、x=2,x=3【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】当x=2,x=3时,f(x)没有意义,所以极限的所有间断点为2,3。
故选D。
[单选题]38、极限().A、0B、C、D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】等于最高次项的系数之比。
故选C。
参见教材P52。
[单选题]39、函数的全部间断点为().A、x=-1及x=4B、x=-1及x=-4C、x=1及x=-4D、x=1及x=4【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】当x=1,x=-4时,f(x)没有意义,所以函数的全部间断点为x=1,x=-4。
故选C。
参见教材P64。
[解答题]40、极限=_________.【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】[解答题]41、极限_________.【从题库收藏夹删除】【正确答案】 1【您的答案】您未答题【答案解析】。
[解答题]42、讨论函数在x=0处的连续性.【从题库收藏夹删除】【正确答案】,,所以在x=0处连续。
【您的答案】您未答题[解答题]43、设求.【从题库收藏夹删除】【正确答案】故【您的答案】您未答题[解答题]44、计算【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]45、证明方程在区间(0,1)内必有根.【从题库收藏夹删除】【正确答案】设则在[0,1]上连续,当时,当时,即根据零点定理:存在,使得即在区间(0,1)内必有根.【您的答案】您未答题[解答题]46、设,在内连续,求的值.【从题库收藏夹删除】【正确答案】要使在内连续,则保证在和点连续,在处,所以,在处,所以.【您的答案】您未答题[解答题]47、计算极限【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]48、计算【从题库收藏夹删除】【正确答案】此题是0/0型,所以用洛必达法则上下求导得到此题还可以用等价替换来做【您的答案】您未答题[解答题]49、求a的值,使得函数f(x)=在x=0处连续.【从题库收藏夹删除】【正确答案】,所以当时函数f(x) 在x=0处连续.【您的答案】您未答题[解答题]50、求极限.【从题库收藏夹删除】【您的答案】您未答题【答案解析】参见教材P55~58.(2015年4月真题)[解答题]51、求常数a的值,使函数在x=0处连续.【从题库收藏夹删除】【正确答案】a=1【您的答案】您未答题【答案解析】当x≠0时,当x=0时,f(x)=a.由于函数在x=0处连续,所以a=1.参见教材P63~64.(2015年4月真题)[解答题]52、求极限.【从题库收藏夹删除】【正确答案】-3【您的答案】您未答题【答案解析】参见教材P59~61.(2015年4月真题)[解答题]53、求极限.【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】参见教材P48~50。