Matlab蚁群算法共41页
- 格式:ppt
- 大小:1.06 MB
- 文档页数:39
MATLAB中的蚁群算法与粒子群优化联合优化实例分析引言:在现代科学技术的发展中,优化问题一直是一个关键的挑战。
为了解决这些问题,出现了许多优化算法。
其中,蚁群算法(Ant Colony Optimization,ACO)和粒子群优化算法(Particle Swarm Optimization,PSO)是两种被广泛应用的算法。
本文将通过示例分析,探讨如何将这两种优化算法结合使用以获得更好的优化结果。
1. 蚁群算法概述蚁群算法是一种启发式优化算法,灵感来源于蚂蚁寻找食物的行为。
蚂蚁在搜索食物的过程中,通过释放信息素与其他蚂蚁进行通信,从而引导整个群体向最优解靠近。
这种算法主要适用于组合优化问题,如旅行商问题(Traveling Salesman Problem,TSP)等。
2. 粒子群优化算法概述粒子群优化算法是一种仿生优化算法,灵感来源于鸟群觅食的行为。
在算法中,个体被模拟成鸟群中的粒子,并通过合作和竞争的方式搜索最优解。
粒子的位置代表可能的解,速度代表解的搜索方向和距离。
这种算法通常适用于连续优化问题。
3. 蚁群算法与粒子群优化算法的结合蚁群算法和粒子群优化算法有着不同的特点和适用范围,结合它们的优点可以提高优化结果的质量。
在下面的示例中,我们将探讨一个工程优化问题,通过联合使用这两种算法来获得较好的优化结果。
示例:电力系统优化在电力系统中,优化发电机组的负荷分配可以有效降低能源消耗和运行成本。
我们将使用蚁群算法和粒子群优化算法联合进行负荷分配的优化。
首先,我们需要建立一个能源消耗和运行成本的数学模型。
这个模型将考虑发电机组的负荷分配和相应的能源消耗和运行成本。
假设我们有n个发电机组,每个组的负荷分配为x1,x2,...,xn,则总的能源消耗为:E = f(x1) + f(x2) + ... + f(xn)其中f(x)是关于负荷分配的函数,代表了每个发电机组的能源消耗。
接下来,我们使用蚁群算法对发电机组的负荷分配进行优化。
双蚁群算法的matlab实现
双蚁群算法是一种基于蚁群优化算法的改进版本,它引入了两
种不同类型的蚂蚁来模拟现实世界中的竞争和合作关系。
在Matlab
中实现双蚁群算法可以分为以下几个步骤:
1. 定义问题,首先需要明确定义需要解决的优化问题,包括目
标函数、约束条件等。
2. 初始化参数,设置算法的参数,如蚂蚁数量、迭代次数、信
息素挥发系数、信息素更新系数等。
3. 初始化蚂蚁群,随机放置两种类型的蚂蚁在问题的解空间中,每只蚂蚁都有一个位置和一个解。
4. 更新信息素,根据蚂蚁搜索的路径更新信息素的浓度。
5. 蚂蚁搜索,根据信息素浓度和启发式规则,蚂蚁在解空间中
搜索最优解。
6. 评估解的质量,计算每个蚂蚁找到的解的质量,并更新最优
解。
7. 更新信息素,根据找到的最优解更新信息素的浓度。
8. 终止条件,根据预设的迭代次数或者其他终止条件判断算法是否结束。
在Matlab中实现双蚁群算法时,可以使用向量化操作和矩阵运算来提高计算效率。
同时,可以利用Matlab的绘图功能对算法的收敛过程和最优解的搜索路径进行可视化展示,以便更直观地理解算法的运行过程。
需要注意的是,双蚁群算法的实现涉及到许多细节和参数的调节,需要经过反复实验和调优才能得到较好的效果。
同时,也可以借助Matlab中丰富的工具箱和函数来加速算法的实现和调试过程。
总之,通过以上步骤和注意事项,可以在Matlab中实现双蚁群算法,并应用于解决各种优化问题。
蚁群算法matlab代码讲解蚁群算法(Ant Colony Algorithm)是模拟蚁群觅食行为而提出的一种优化算法。
它以蚁群觅食的方式来解决优化问题,比如旅行商问题、图着色问题等。
该算法模拟了蚂蚁在寻找食物时的行为,通过信息素的正反馈和启发式搜索来实现问题的最优解。
在蚁群算法中,首先需要初始化一组蚂蚁和问题的解空间。
每只蚂蚁沿着路径移动,通过信息素和启发式规则来选择下一步的移动方向。
当蚂蚁到达目标位置后,会根据路径的长度来更新信息素。
下面是一个用MATLAB实现蚁群算法的示例代码:```matlab% 参数设置num_ants = 50; % 蚂蚁数量num_iterations = 100; % 迭代次数alpha = 1; % 信息素重要程度因子beta = 5; % 启发式因子rho = 0.1; % 信息素蒸发率Q = 1; % 信息素增加强度因子pheromone = ones(num_cities, num_cities); % 初始化信息素矩阵% 初始化蚂蚁位置和路径ants = zeros(num_ants, num_cities);for i = 1:num_antsants(i, 1) = randi([1, num_cities]);end% 迭代计算for iter = 1:num_iterations% 更新每只蚂蚁的路径for i = 1:num_antsfor j = 2:num_cities% 根据信息素和启发式规则选择下一步移动方向next_city = choose_next_city(pheromone, ants(i, j-1), beta);ants(i, j) = next_city;endend% 计算每只蚂蚁的路径长度path_lengths = zeros(num_ants, 1);for i = 1:num_antspath_lengths(i) = calculate_path_length(ants(i, :), distances);end% 更新信息素矩阵pheromone = (1 - rho) * pheromone;for i = 1:num_antsfor j = 2:num_citiespheromone(ants(i, j-1), ants(i, j)) = pheromone(ants(i, j-1), ants(i, j)) + Q / path_lengths(i); endendend```上述代码中的参数可以根据具体问题进行调整。
matlab-蚁群算法-机器人路径优化问题4.1问题描述移动机器人路径规划是机器人学的一个重要研究领域。
它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。
机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。
4.2算法理论蚁群算法(AntColonyAlgorithm,ACA),最初是由意大利学者DorigoM.博士于1991年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。
该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。
但是算法本身性能的评价等算法理论研究方面进展较慢。
Dorigo提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。
次年Dorigo博士在文献[30]中给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。
Stützle与Hoo给出了最大-最小蚂蚁系统(MA某-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。
蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。
蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。
这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。
经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。
蚁群算法(ACA)及其Matlab实现1基本原理:本质上也是⼀种概率算法,通过⼤概率收敛到最佳值,和其他的智能算法很相似。
蚁群分泌的信息素存在正反馈,使得较佳的解具有⼤概率被选到,当全局都选⽤较佳的解,变可以得到整体的最优解。
2⼏个关键点:1)概率选择:受信息素浓度和启发函数影响,启发函数为距离的倒数2)信息素挥发考虑到信息素随时间的挥发,加⼊挥发因⼦3程序设计步骤:1初始化各个参数:包括各点的距离,信息素的初始浓度,蚂蚁数量,信息素挥发因⼦,信息素和启发函数的重要度因⼦,启发函数,最⼤迭代次数,路径记录表等等2迭代:对每个蚂蚁随机制定初始值,再根据概率选择,选择出每只蚂蚁的路径,确定每只蚂蚁的路径总长度,以及蚁群的最佳路径长度和平均长度,并对信息素进⾏更新。
3展⽰:展⽰出最佳路径,以及最佳路径对迭代的变化图4Matlab代码clc,clear %清空环境中的变量load data.txt %读⼊城市的坐标t0 = clock; %程序计时开始%%%%%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%city=data;n = size(city,1); %城市距离初始化D = zeros(n,n);for i = 1:nfor j = 1:nif i ~= jD(i,j) = sqrt(sum((city(i,:) - city(j,:)).^2));elseD(i,j) = 0; %设定的对⾓矩阵修正值endendendm=30; %蚂蚁数量alpha = 1; % 信息素重要程度因⼦beta = 5; % 启发函数重要程度因⼦v = 0.1; % 信息素挥发因⼦Q = 0.5; % 信息因⼦常系数H= 1./D; % 启发函数T= ones(n,n); % 信息素矩阵Table = zeros(m,n); % 路径记录表iter = 1; % 迭代次数初值iter_max = 50; % 最⼤迭代次数best_route = zeros(iter_max,n); % 各代最佳路径best_length = zeros(iter_max,1); % 各代最佳路径的长度%%while iter<=iter_max% 随机产⽣每只蚂蚁的起点城市start = zeros(m,1);for i = 1:mtemp = randperm(n);start(i) = temp(1);endTable(:,1) = start;city_index=1:n;for i = 1:m% 逐个城市路径选择for j = 2:ntabu = Table(i,1:(j - 1)); % 已访问的城市集合allow =city_index( ~ismember(city_index,tabu)); % 筛选出未访问的城市集合P = zeros(1,length(allow));% 计算相连城市的转移概率for k = 1:length(allow)P(k) = T(tabu(end),allow(k))^alpha * H(tabu(end),allow(k))^beta;endP = P/sum(P);% 轮盘赌法选择下⼀个访问城市Pc = cumsum(P); %参加说明2(程序底部)target_index = find(Pc >= rand);target = allow(target_index(1));Table(i,j) = target;endend% 计算各个蚂蚁的路径距离Length = zeros(m,1);for i = 1:mRoute = [Table(i,:) Table(i,1)];for j = 1:nLength(i) = Length(i) + D(Route(j),Route(j + 1));endend%对最优路线和距离更新if iter == 1[min_length,min_index] = min(Length);best_length(iter) = min_length;best_route(iter,:) = Table(min_index,:);else[min_length,min_index] = min(Length);if min_length<best_length(iter-1)best_length(iter)=min_length;best_route(iter,:)=Table(min_index,:);elsebest_length(iter)=best_length(iter-1);best_route(iter,:)=best_route(iter-1,:);endend% 更新信息素Delta_T= zeros(n,n);% 逐个蚂蚁计算for i = 1:m% 逐个城市计算Route = [Table(i,:) Table(i,1)];for j = 1:nDelta_T(Route(j),Route(j+1)) = Delta_T(Route(j),Route(j+1)) +D(Route(j),Route(j+1))* Q/Length(i); endendT= (1-v) * T + Delta_T;% 迭代次数加1,并清空路径记录表iter = iter + 1;Table = zeros(m,n);end%--------------------------------------------------------------------------%% 结果显⽰shortest_route=best_route(end,:); %选出最短的路径中的点short_length=best_length(end);Time_Cost=etime(clock,t0);disp(['最短距离:' num2str(short_length)]);disp(['最短路径:' num2str([shortest_route shortest_route(1)])]);disp(['程序执⾏时间:' num2str(Time_Cost) '秒']);%--------------------------------------------------------------------------%% 绘图figure(1)%采⽤连线图画起来plot([city(shortest_route,1);city(shortest_route(1),1)], [city(shortest_route,2);city(shortest_route(1),2)],'o-');for i = 1:size(city,1)%对每个城市进⾏标号text(city(i,1),city(i,2),[' ' num2str(i)]);endxlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法最优化路径(最短距离):' num2str(short_length) ''])figure(2)%画出收敛曲线plot(1:iter_max,best_length,'b')xlabel('迭代次数')ylabel('距离')title('迭代收敛曲线') 程序说明:采⽤蚁群算法求取TSP问题,共有34个城市,从txt⽂件加载数据:运⾏结果:。
蚁群算法介绍:(1)寻找最短路径的蚁群算法来源于蚂蚁寻食的行为。
蚁群寻找食物时会派出一些蚂蚁分头在四周游荡, 如果一只蚂蚁找到食物, 它就返回巢中通知同伴并沿途留下“ 信息素”(外激素pheromone)作为蚁群前往食物所在地的标记。
信息素会逐渐挥发,如果两只蚂蚁同时找到同一食物, 又采取不同路线回到巢中, 那么比较绕弯的一条路上信息素的气味会比较淡, 蚁群将倾向于沿另一条更近的路线前往食物所在地。
蚁群算法设计虚拟的“蚂蚁”, 让它们摸索不同路线, 并留下会随时间逐渐消失的虚拟“信息素”, 根 据“信息素较浓的路线更近”的原则, 即可选择出最佳路线.(2) 为了模拟实际蚂蚁的行为, 首先引进如下记号: 设m 是蚁群中蚂蚁的数, ij d (i,j=1,2,...,n)表示城市i 和城市j 之间的距离, i b t 表示t 时刻位于城市i 的蚂蚁的个数,则有 1ni i mb tij t表示t 时刻在城市,i j 连线上残留的信息素。
初始时刻,各条路径上的信息素相等,设0ij c c 为常数。
蚂蚁1,2,,k k m 在运动过程中,根据各条路径上的信息素决定转移方向。
k ij P t 表示在t 时刻蚂蚁k 由城市i 转移到城市j 的概率:,0,kij ij kik ikij kktabu kt t t P j tabu j tabu (1) 其中:ij n 为先验知识或称为能见度,在TSP 问题中为城市i 转移到城市j 的启发信息,一般地取1ij d ij n ,为在路径上残留信息的重要程度;为启发信息的重要程度;与实际蚁群不同,人工蚁群系统具有记忆能力,1,2,,k tabu k m 用以记录蚂蚁K 当前所走过的城市,称为禁忌表(下一步不充许选择的城市),集合k tabu 随着进化过程进行动态调整。
经过n 个时刻,所有蚂蚁完成了一次周游,此时应清空禁忌表,将当前蚂蚁所在的城市置入k tabu 中准备下一次周游,这时计算每一只蚂蚁走过的路程k L ,并保存最短路径min min min ,1,,k L L L k m 。
function [y,val]=QACSticload att48 att48;MAXIT=300; % 最大循环次数NC=48; % 城市个数tao=ones(48,48);% 初始时刻各边上的信息最为1rho=0.2; % 挥发系数alpha=1;beta=2;Q=100;mant=20; % 蚂蚁数量iter=0; % 记录迭代次数for i=1:NC % 计算各城市间的距离for j=1:NCdistance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2);endendbestroute=zeros(1,48); % 用来记录最优路径routelength=inf; % 用来记录当前找到的最优路径长度% for i=1:mant % 确定各蚂蚁初始的位置% endfor ite=1:MAXITfor ka=1:mant %考查第K只蚂蚁deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零[routek,lengthk]=travel(distance,tao,alpha,beta);if lengthk<routelength % 找到一条更好的路径routelength=lengthk;bestroute=routek;endfor i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量deltatao(routek(i),routek(i+1))=deltatao(routek(i),routek(i+1))+Q/lengthk ;enddeltatao(routek(48),1)=deltatao(routek(48),1)+Q/lengthk;endfor i=1:NC-1for j=i+1:NCif deltatao(i,j)==0deltatao(i,j)=deltatao(j,i); y=bestroute;end val=routelength;end tocendtao=(1-rho).*tao+deltatao;endy=bestroute;val=routelength;tocfunction [y,val]=travel(distance,tao,alpha,beta) % 某只蚂蚁找到的某条路径[m,n]=size(distance);p=fix(m*rand)+1; %fix取整函数val=0; % 初始路径长度设为0tabuk=[p]; % 假设该蚂蚁都是从第p 个城市出发的for i=1:m-1np=tabuk(length(tabuk)); % 蚂蚁当前所在的城市号p_sum=0;for j=1:mif isin(j,tabuk)continue;elseada=1/distance(np,j);p_sum=p_sum+tao(np,j)^alpha*ada^beta;endendcp=zeros(1,m); % 转移概率for j=1:mif isin(j,tabuk)continue;elseada=1/distance(np,j);cp(j)=tao(np,j)^alpha*ada^beta/p_sum;endendNextCity=pchoice(cp);tabuk=[tabuk,NextCity];val=val+distance(np,NextCity);endy=tabuk;function y=isin(x,A) % 判断数x 是否在向量A 中,如在返回1 ,否则返回0 y=0;for i=1:length(A)if A(i)==xy=1;break;endendfunction y=pchoice(A)a=rand;tempA=zeros(1,length(A)+1);for i=1:length(A)tempA(i+1)=tempA(i)+A(i);endfor i=2:length(tempA)if a<=tempA(i)y=i-1;break;endend。
蚁群算法matlab代码蚁群算法,英文名为Ant Colony Algorithm,缩写为ACO,是一种启发式算法,是一种模拟蚂蚁寻找食物路径的算法。
在实际生活中,蚂蚁找到食物并返回巢穴后,将其找到食物的路径上的信息素留下,其他蚂蚁通过检测信息素来指导寻路,成为了一种集体智慧行为。
ACO也是通过模拟蚂蚁寻找食物路径的方式来寻找优化问题的最优解。
在ACO算法中,信息素是一个重要的概念,代表了走过某一路径的“好概率”,用这个“好概率”更新一些路径上的信息素,使得其他蚂蚁更可能选择经过这条路径,从而实现路径优化的目的。
在本文中,我们将讨论如何使用Matlab实现蚁群算法来优化问题。
1. 设定问题首先,我们要选取一个优化问题,并将其转换为需要在优化过程中进行选择的决策变量。
例如,我们想要优化旅行商问题(TSP)。
在TSP中,我们需要让旅行商以最短的距离经过所有城市,每个城市仅经过一次,最终回到出发的城市。
我们可以将每个城市编号,然后将TSP转化为一个最短路径选择的问题,即最短路径从编号为1的城市开始,经过所有城市,最终回到编号为1的城市。
2. 设定ACO参数在使用ACO优化问题时,需要设定一些参数,这些参数会影响算法的表现。
ACO算法需要设定的参数有:1.信息素含量:初始信息素的大小,即每个路径上的信息素浓度。
2.信息素挥发速度:信息素的随时间“减弱”程度。
3.信息素加成强度:蚂蚁经过路径后增加的信息素量。
4.启发式权重:用于计算启发式因子,即节点距离的贡献值。
5.蚂蚁数量:模拟蚂蚁数量,即同时寻找路径的蚂蚁个数。
6.迭代次数:模拟的迭代次数,即ACO算法运行的次数。
7.初始节点:ACO算法开始的节点。
3. 创建ACO优化函数我们可以使用Matlab来创建一个函数来实现ACO算法。
我们称其为“ACOoptimization.m”。
function best_path =ACOoptimization(city_location,iter_num,ant_num,init ial_path,alpha,beta,rho,update_flag) %ACO优化函数 %输入: %city_location: 城市坐标矩阵,格式为[x1,y1;x2,y2;...;xn,yn] %iter_num: 迭代次数 %ant_num: 蚂蚁数量 %initial_path: 起始路径,即初始解 %alpha,beta,rho: 超参数,用于调节蚂蚁选择路径的概率 %update_flag: 是否更新信息素的标志(1表示更新,0表示否) %输出: %best_path: 最优解,即最短路径%初始化信息素 pheromone = 0.01 *ones(length(city_location),length(city_location)); %初始化路径权重 path_weight =zeros(ant_num,1); %城市数量 n_cities =length(city_location);%主循环 for iter = 1:iter_num %一个迭代里所有蚂蚁都寻找一遍路径 for ant =1:ant_num %初始化蚂蚁位置current_city = initial_path; %标记是否经过了某个城市 visit_flag =zeros(1,n_cities);visit_flag(current_city) = 1; %用来存储当前路径 current_path = [current_city];%蚂蚁找东西 for i =1:n_cities-1 %计算路径概率p =calculate_probability(current_city,visit_flag,phero mone,city_location,alpha,beta); %蚂蚁选择路径 [next_city,next_index] = select_path(p);%路径更新current_path = [current_path;next_city];visit_flag(next_city) = 1;current_city = next_city;%更新路径权重path_weight(ant) = path_weight(ant) +Euclidean_distance(city_location(current_path(end-1),:),city_location(current_path(end),:));end%加入回到起点的路径权重path_weight(ant) = path_weight(ant) +Euclidean_distance(city_location(current_path(end),:),city_location(current_path(1),:));%判断是否为最优解 ifant == 1 best_path = current_path; else if path_weight(ant) <path_weight(ant-1) best_path =current_path; end end%更新信息素 ifupdate_flag == 1 pheromone =update_pheromone(pheromone,path_weight,initial_path,current_path,rho); end end end end在函数中,我们首先定义了ACOalg函数的参数,包括城市坐标矩阵,迭代次数,蚂蚁数量,初始路径,超参数alpha,beta,rho,以及是否需要更新信息素。