蚁群算法matlab
- 格式:doc
- 大小:30.00 KB
- 文档页数:8
一、引言随着科技的不断发展,各种电子设备在我们的生活中起着越来越重要的作用。
然而,这些电子设备在长时间的使用过程中难免会出现故障,而故障的及时准确诊断对于设备的正常运行和维护至关重要。
故障诊断技术的研究和应用显得尤为重要。
二、故障诊断方法的研究现状1.基于蚁群算法的故障诊断方法蚁群算法是一种通过模拟蚂蚁在寻找食物过程中留下的信息素路径来解决组合优化等计算问题的启发式算法。
近年来,蚁群算法在故障诊断领域得到了广泛的应用。
其优点在于能够充分利用信息素路径的思想,通过不断搜索最优解的方式,找到最适合的故障诊断方案。
2.传统的故障诊断方法传统的故障诊断方法多为基于专家系统或规则库的方式,需要事先对设备的故障类型和规律进行深入的研究和积累。
在实际应用中存在诊断效率低、难以适应复杂环境的问题。
三、基于蚁群算法的故障诊断代码实现1. 蚁群算法的原理蚁群算法是一种模拟蚂蚁在寻找食物过程中留下信息素路径的算法,通过信息素路径的不断蒸发和更新,最终寻找到最优的路径。
在故障诊断中,可以将设备的故障模式看作“食物”,蚂蚁的行走路径看作“诊断路径”,通过模拟蚂蚁在搜索食物的过程中留下信息素路径的方式,来寻找最优的故障诊断路径。
2.算法流程(1)初始化信息素和蚂蚁的位置;(2)蚂蚁根据信息素浓度选择下一步的行走方向;(3)蚂蚁行走后更新信息素浓度;(4)重复步骤(2)和(3),直到所有蚂蚁都找到故障诊断路径;(5)根据信息素浓度更新蚂蚁的行走路径。
3.代码实现以MATLAB为例,基于蚁群算法的故障诊断代码可以通过以下步骤实现:(1)初始化信息素和蚂蚁的位置,设定设备故障模式和规则库;(2)根据信息素浓度和故障规则,确定蚂蚁下一步的行走路径;(3)蚂蚁行走后更新信息素浓度;(4)重复步骤(2)和(3),直到所有蚂蚁都找到故障诊断路径;(5)根据信息素浓度更新蚂蚁的行走路径,最终得到最优的故障诊断路径。
四、代码优化与应用1. 参数调优在实际编写故障诊断代码时,需要针对具体的设备和故障情况进行参数的调优,以保证算法的高效性和准确性。
MATLAB中的蚁群算法与粒子群优化联合优化实例分析引言:在现代科学技术的发展中,优化问题一直是一个关键的挑战。
为了解决这些问题,出现了许多优化算法。
其中,蚁群算法(Ant Colony Optimization,ACO)和粒子群优化算法(Particle Swarm Optimization,PSO)是两种被广泛应用的算法。
本文将通过示例分析,探讨如何将这两种优化算法结合使用以获得更好的优化结果。
1. 蚁群算法概述蚁群算法是一种启发式优化算法,灵感来源于蚂蚁寻找食物的行为。
蚂蚁在搜索食物的过程中,通过释放信息素与其他蚂蚁进行通信,从而引导整个群体向最优解靠近。
这种算法主要适用于组合优化问题,如旅行商问题(Traveling Salesman Problem,TSP)等。
2. 粒子群优化算法概述粒子群优化算法是一种仿生优化算法,灵感来源于鸟群觅食的行为。
在算法中,个体被模拟成鸟群中的粒子,并通过合作和竞争的方式搜索最优解。
粒子的位置代表可能的解,速度代表解的搜索方向和距离。
这种算法通常适用于连续优化问题。
3. 蚁群算法与粒子群优化算法的结合蚁群算法和粒子群优化算法有着不同的特点和适用范围,结合它们的优点可以提高优化结果的质量。
在下面的示例中,我们将探讨一个工程优化问题,通过联合使用这两种算法来获得较好的优化结果。
示例:电力系统优化在电力系统中,优化发电机组的负荷分配可以有效降低能源消耗和运行成本。
我们将使用蚁群算法和粒子群优化算法联合进行负荷分配的优化。
首先,我们需要建立一个能源消耗和运行成本的数学模型。
这个模型将考虑发电机组的负荷分配和相应的能源消耗和运行成本。
假设我们有n个发电机组,每个组的负荷分配为x1,x2,...,xn,则总的能源消耗为:E = f(x1) + f(x2) + ... + f(xn)其中f(x)是关于负荷分配的函数,代表了每个发电机组的能源消耗。
接下来,我们使用蚁群算法对发电机组的负荷分配进行优化。
蚁群算法路径优化matlab代码标题:蚁群算法路径优化 MATLAB 代码正文:蚁群算法是一种基于模拟蚂蚁搜索食物路径的优化算法,常用于求解复杂问题。
在路径优化问题中,蚂蚁需要从起点移动到终点,通过探索周围区域来寻找最短路径。
MATLAB 是一个常用的数值计算软件,可以用来实现蚁群算法的路径优化。
下面是一个基本的 MATLAB 代码示例,用于实现蚁群算法的路径优化:```matlab% 定义参数num_ants = 100; % 蚂蚁数量num_steps = 100; % 路径优化步数search_radius = 2; % 搜索半径max_iterations = 1000; % 最大迭代次数% 随机生成起点和终点的位置坐标start_pos = [randi(100), randi(100)];end_pos = [75, 75];% 初始化蚂蚁群体的位置和方向ants_pos = zeros(num_ants, 2);ants_dir = zeros(num_ants, 2);for i = 1:num_antsants_pos(i, :) = start_pos + randn(2) * search_radius; ants_dir(i, :) = randomvec(2);end% 初始化蚂蚁群体的速度ants_vel = zeros(num_ants, 2);for i = 1:num_antsants_vel(i, :) = -0.1 * ants_pos(i, :) + 0.5 *ants_dir(i, :);end% 初始时蚂蚁群体向终点移动for i = 1:num_antsans_pos = end_pos;ans_vel = ants_vel;for j = 1:num_steps% 更新位置和速度ans_pos(i) = ans_pos(i) + ans_vel(i);ants_vel(i, :) = ones(1, num_steps) * (-0.1 * ans_pos(i) + 0.5 * ans_dir(i, :));end% 更新方向ants_dir(i, :) = ans_dir(i, :) - ans_vel(i) * 3;end% 迭代优化路径max_iter = 0;for i = 1:max_iterations% 计算当前路径的最短距离dist = zeros(num_ants, 1);for j = 1:num_antsdist(j) = norm(ants_pos(j) - end_pos);end% 更新蚂蚁群体的位置和方向for j = 1:num_antsants_pos(j, :) = ants_pos(j, :) - 0.05 * dist(j) * ants_dir(j, :);ants_dir(j, :) = -ants_dir(j, :);end% 更新蚂蚁群体的速度for j = 1:num_antsants_vel(j, :) = ants_vel(j, :) - 0.001 * dist(j) * ants_dir(j, :);end% 检查是否达到最大迭代次数if i > max_iterationsbreak;endend% 输出最优路径[ans_pos, ans_vel] = ants_pos;path_dist = norm(ans_pos - end_pos);disp(["最优路径长度为:" num2str(path_dist)]);```拓展:上述代码仅仅是一个简单的示例,实际上要实现蚁群算法的路径优化,需要更加复杂的代码实现。
双蚁群算法的matlab实现
双蚁群算法是一种基于蚁群优化算法的改进版本,它引入了两
种不同类型的蚂蚁来模拟现实世界中的竞争和合作关系。
在Matlab
中实现双蚁群算法可以分为以下几个步骤:
1. 定义问题,首先需要明确定义需要解决的优化问题,包括目
标函数、约束条件等。
2. 初始化参数,设置算法的参数,如蚂蚁数量、迭代次数、信
息素挥发系数、信息素更新系数等。
3. 初始化蚂蚁群,随机放置两种类型的蚂蚁在问题的解空间中,每只蚂蚁都有一个位置和一个解。
4. 更新信息素,根据蚂蚁搜索的路径更新信息素的浓度。
5. 蚂蚁搜索,根据信息素浓度和启发式规则,蚂蚁在解空间中
搜索最优解。
6. 评估解的质量,计算每个蚂蚁找到的解的质量,并更新最优
解。
7. 更新信息素,根据找到的最优解更新信息素的浓度。
8. 终止条件,根据预设的迭代次数或者其他终止条件判断算法是否结束。
在Matlab中实现双蚁群算法时,可以使用向量化操作和矩阵运算来提高计算效率。
同时,可以利用Matlab的绘图功能对算法的收敛过程和最优解的搜索路径进行可视化展示,以便更直观地理解算法的运行过程。
需要注意的是,双蚁群算法的实现涉及到许多细节和参数的调节,需要经过反复实验和调优才能得到较好的效果。
同时,也可以借助Matlab中丰富的工具箱和函数来加速算法的实现和调试过程。
总之,通过以上步骤和注意事项,可以在Matlab中实现双蚁群算法,并应用于解决各种优化问题。
蚁群算法matlab精讲及仿真4.1基本蚁群算法4.1.1基本蚁群算法的原理蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。
等人提出来的,在越来越多的领域里得到广泛应用。
蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由 Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。
当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信息传递物质量高的路径走,可能搜索其它的路径。
这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。
【基于蚁群算法和遗传算法的机器人路径规划研究】该算法的特点:(1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。
蚁群算法matlab代码讲解蚁群算法(Ant Colony Algorithm)是模拟蚁群觅食行为而提出的一种优化算法。
它以蚁群觅食的方式来解决优化问题,比如旅行商问题、图着色问题等。
该算法模拟了蚂蚁在寻找食物时的行为,通过信息素的正反馈和启发式搜索来实现问题的最优解。
在蚁群算法中,首先需要初始化一组蚂蚁和问题的解空间。
每只蚂蚁沿着路径移动,通过信息素和启发式规则来选择下一步的移动方向。
当蚂蚁到达目标位置后,会根据路径的长度来更新信息素。
下面是一个用MATLAB实现蚁群算法的示例代码:```matlab% 参数设置num_ants = 50; % 蚂蚁数量num_iterations = 100; % 迭代次数alpha = 1; % 信息素重要程度因子beta = 5; % 启发式因子rho = 0.1; % 信息素蒸发率Q = 1; % 信息素增加强度因子pheromone = ones(num_cities, num_cities); % 初始化信息素矩阵% 初始化蚂蚁位置和路径ants = zeros(num_ants, num_cities);for i = 1:num_antsants(i, 1) = randi([1, num_cities]);end% 迭代计算for iter = 1:num_iterations% 更新每只蚂蚁的路径for i = 1:num_antsfor j = 2:num_cities% 根据信息素和启发式规则选择下一步移动方向next_city = choose_next_city(pheromone, ants(i, j-1), beta);ants(i, j) = next_city;endend% 计算每只蚂蚁的路径长度path_lengths = zeros(num_ants, 1);for i = 1:num_antspath_lengths(i) = calculate_path_length(ants(i, :), distances);end% 更新信息素矩阵pheromone = (1 - rho) * pheromone;for i = 1:num_antsfor j = 2:num_citiespheromone(ants(i, j-1), ants(i, j)) = pheromone(ants(i, j-1), ants(i, j)) + Q / path_lengths(i); endendend```上述代码中的参数可以根据具体问题进行调整。
蚁群算法(ACA)及其Matlab实现1基本原理:本质上也是⼀种概率算法,通过⼤概率收敛到最佳值,和其他的智能算法很相似。
蚁群分泌的信息素存在正反馈,使得较佳的解具有⼤概率被选到,当全局都选⽤较佳的解,变可以得到整体的最优解。
2⼏个关键点:1)概率选择:受信息素浓度和启发函数影响,启发函数为距离的倒数2)信息素挥发考虑到信息素随时间的挥发,加⼊挥发因⼦3程序设计步骤:1初始化各个参数:包括各点的距离,信息素的初始浓度,蚂蚁数量,信息素挥发因⼦,信息素和启发函数的重要度因⼦,启发函数,最⼤迭代次数,路径记录表等等2迭代:对每个蚂蚁随机制定初始值,再根据概率选择,选择出每只蚂蚁的路径,确定每只蚂蚁的路径总长度,以及蚁群的最佳路径长度和平均长度,并对信息素进⾏更新。
3展⽰:展⽰出最佳路径,以及最佳路径对迭代的变化图4Matlab代码clc,clear %清空环境中的变量load data.txt %读⼊城市的坐标t0 = clock; %程序计时开始%%%%%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%city=data;n = size(city,1); %城市距离初始化D = zeros(n,n);for i = 1:nfor j = 1:nif i ~= jD(i,j) = sqrt(sum((city(i,:) - city(j,:)).^2));elseD(i,j) = 0; %设定的对⾓矩阵修正值endendendm=30; %蚂蚁数量alpha = 1; % 信息素重要程度因⼦beta = 5; % 启发函数重要程度因⼦v = 0.1; % 信息素挥发因⼦Q = 0.5; % 信息因⼦常系数H= 1./D; % 启发函数T= ones(n,n); % 信息素矩阵Table = zeros(m,n); % 路径记录表iter = 1; % 迭代次数初值iter_max = 50; % 最⼤迭代次数best_route = zeros(iter_max,n); % 各代最佳路径best_length = zeros(iter_max,1); % 各代最佳路径的长度%%while iter<=iter_max% 随机产⽣每只蚂蚁的起点城市start = zeros(m,1);for i = 1:mtemp = randperm(n);start(i) = temp(1);endTable(:,1) = start;city_index=1:n;for i = 1:m% 逐个城市路径选择for j = 2:ntabu = Table(i,1:(j - 1)); % 已访问的城市集合allow =city_index( ~ismember(city_index,tabu)); % 筛选出未访问的城市集合P = zeros(1,length(allow));% 计算相连城市的转移概率for k = 1:length(allow)P(k) = T(tabu(end),allow(k))^alpha * H(tabu(end),allow(k))^beta;endP = P/sum(P);% 轮盘赌法选择下⼀个访问城市Pc = cumsum(P); %参加说明2(程序底部)target_index = find(Pc >= rand);target = allow(target_index(1));Table(i,j) = target;endend% 计算各个蚂蚁的路径距离Length = zeros(m,1);for i = 1:mRoute = [Table(i,:) Table(i,1)];for j = 1:nLength(i) = Length(i) + D(Route(j),Route(j + 1));endend%对最优路线和距离更新if iter == 1[min_length,min_index] = min(Length);best_length(iter) = min_length;best_route(iter,:) = Table(min_index,:);else[min_length,min_index] = min(Length);if min_length<best_length(iter-1)best_length(iter)=min_length;best_route(iter,:)=Table(min_index,:);elsebest_length(iter)=best_length(iter-1);best_route(iter,:)=best_route(iter-1,:);endend% 更新信息素Delta_T= zeros(n,n);% 逐个蚂蚁计算for i = 1:m% 逐个城市计算Route = [Table(i,:) Table(i,1)];for j = 1:nDelta_T(Route(j),Route(j+1)) = Delta_T(Route(j),Route(j+1)) +D(Route(j),Route(j+1))* Q/Length(i); endendT= (1-v) * T + Delta_T;% 迭代次数加1,并清空路径记录表iter = iter + 1;Table = zeros(m,n);end%--------------------------------------------------------------------------%% 结果显⽰shortest_route=best_route(end,:); %选出最短的路径中的点short_length=best_length(end);Time_Cost=etime(clock,t0);disp(['最短距离:' num2str(short_length)]);disp(['最短路径:' num2str([shortest_route shortest_route(1)])]);disp(['程序执⾏时间:' num2str(Time_Cost) '秒']);%--------------------------------------------------------------------------%% 绘图figure(1)%采⽤连线图画起来plot([city(shortest_route,1);city(shortest_route(1),1)], [city(shortest_route,2);city(shortest_route(1),2)],'o-');for i = 1:size(city,1)%对每个城市进⾏标号text(city(i,1),city(i,2),[' ' num2str(i)]);endxlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法最优化路径(最短距离):' num2str(short_length) ''])figure(2)%画出收敛曲线plot(1:iter_max,best_length,'b')xlabel('迭代次数')ylabel('距离')title('迭代收敛曲线') 程序说明:采⽤蚁群算法求取TSP问题,共有34个城市,从txt⽂件加载数据:运⾏结果:。
蚁群算法介绍:(1)寻找最短路径的蚁群算法来源于蚂蚁寻食的行为。
蚁群寻找食物时会派出一些蚂蚁分头在四周游荡, 如果一只蚂蚁找到食物, 它就返回巢中通知同伴并沿途留下“ 信息素”(外激素pheromone)作为蚁群前往食物所在地的标记。
信息素会逐渐挥发,如果两只蚂蚁同时找到同一食物, 又采取不同路线回到巢中, 那么比较绕弯的一条路上信息素的气味会比较淡, 蚁群将倾向于沿另一条更近的路线前往食物所在地。
蚁群算法设计虚拟的“蚂蚁”, 让它们摸索不同路线, 并留下会随时间逐渐消失的虚拟“信息素”, 根 据“信息素较浓的路线更近”的原则, 即可选择出最佳路线.(2) 为了模拟实际蚂蚁的行为, 首先引进如下记号: 设m 是蚁群中蚂蚁的数, ij d (i,j=1,2,...,n)表示城市i 和城市j 之间的距离, i b t 表示t 时刻位于城市i 的蚂蚁的个数,则有 1ni i mb tij t表示t 时刻在城市,i j 连线上残留的信息素。
初始时刻,各条路径上的信息素相等,设0ij c c 为常数。
蚂蚁1,2,,k k m 在运动过程中,根据各条路径上的信息素决定转移方向。
k ij P t 表示在t 时刻蚂蚁k 由城市i 转移到城市j 的概率:,0,kij ij kik ikij kktabu kt t t P j tabu j tabu (1) 其中:ij n 为先验知识或称为能见度,在TSP 问题中为城市i 转移到城市j 的启发信息,一般地取1ij d ij n ,为在路径上残留信息的重要程度;为启发信息的重要程度;与实际蚁群不同,人工蚁群系统具有记忆能力,1,2,,k tabu k m 用以记录蚂蚁K 当前所走过的城市,称为禁忌表(下一步不充许选择的城市),集合k tabu 随着进化过程进行动态调整。
经过n 个时刻,所有蚂蚁完成了一次周游,此时应清空禁忌表,将当前蚂蚁所在的城市置入k tabu 中准备下一次周游,这时计算每一只蚂蚁走过的路程k L ,并保存最短路径min min min ,1,,k L L L k m 。
蚁群算法的matlab源码,同时请指出为何不能优化到已知的最好解%%% the procedure of ant colony algorithm for VRP%% % % % % % % % % % %%initialize the parameters of ant colony algorithmsload data.txt;d=data(:,2:3);g=data(:,4);m=31; % 蚂蚁数alpha=1;belta=4;% 决定tao和miu重要性的参数lmda=0;rou=0.9; %衰减系数q0=0.95;% 概率tao0=1/(31*841.04);%初始信息素Q=1;% 蚂蚁循环一周所释放的信息素defined_phrm=15.0; % initial pheromone level valueQV=100; % 车辆容量vehicle_best=round(sum(g)/QV)+1; %所完成任务所需的最少车数V=40;% 计算两点的距离for i=1:32;for j=1:32;dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2); end;end;%给tao miu赋初值for i=1:32;for j=1:32;if i~=j;%s(i,j)=dist(i,1)+dist(1,j)-dist(i,j);tao(i,j)=defined_phrm;miu(i,j)=1/dist(i,j);end;end;end;for k=1:32;for k=1:32;deltao(i,j)=0;end;end;best_cost=10000;for n_gen=1:50;print_head(n_gen);for i=1:m;%best_solution=[];print_head2(i);sumload=0;cur_pos(i)=1;rn=randperm(32);n=1;nn=1;part_sol(nn)=1;%cost(n_gen,i)=0.0;n_sol=0; % 由蚂蚁产生的路径数量M_vehicle=500;t=0; %最佳路径数组的元素数为0while sumload<=QV;for k=1:length(rn);if sumload+g(rn(k))<=QV;gama(cur_pos(i),rn(k))=(sumload+g(rn(k)))/QV;A(n)=rn(k);n=n+1;end;end;fid=fopen('out_customer.txt','a+');fprintf(fid,'%s %i\t','the current position is:',cur_pos(i));fprintf(fid,'\n%s','the possible customer set is:')fprintf(fid,'\t%i\n',A);fprintf(fid,'------------------------------\n');fclose(fid);p=compute_prob(A,cur_pos(i),tao,miu,alpha,belta,gama,lmda,i); maxp=1e-8;na=length(A);for j=1:na;if p(j)>maxpmaxp=p(j);index_max=j;end;end;old_pos=cur_pos(i);if rand(1)<q0cur_pos(i)=A(index_max);elsekrnd=randperm(na);cur_pos(i)=A(krnd(1));bbb=[old_pos cur_pos(i)];ccc=[1 1];if bbb==ccc;cur_pos(i)=A(krnd(2));end;end;tao(old_pos,cur_pos(i))=taolocalupdate(tao(old_pos,cur_pos(i)),rou,tao0);%对所经弧进行局部更新sumload=sumload+g(cur_pos(i));nn=nn+1;part_sol(nn)=cur_pos(i);temp_load=sumload;if cur_pos(i)~=1;rn=setdiff(rn,cur_pos(i));n=1;A=[];end;if cur_pos(i)==1; % 如果当前点为车场,将当前路径中的已访问用户去掉后,开始产生新路径if setdiff(part_sol,1)~=[];n_sol=n_sol+1; % 表示产生的路径数,n_sol=1,2,3,..5,6...,超过5条对其费用加上车辆的派遣费用fid=fopen('out_solution.txt','a+');fprintf(fid,'%s%i%s','NO.',n_sol,'条路径是:');fprintf(fid,'%i ',part_sol);fprintf(fid,'\n');fprintf(fid,'%s','当前的用户需求量是:');fprintf(fid,'%i\n',temp_load);fprintf(fid,'------------------------------\n');fclose(fid);% 对所得路径进行路径内3-opt优化final_sol=exchange(part_sol);for nt=1:length(final_sol); % 将所有产生的路径传给一个数组temp(t+nt)=final_sol(nt);end;t=t+length(final_sol)-1;sumload=0;final_sol=setdiff(final_sol,1);rn=setdiff(rn,final_sol);part_sol=[];final_sol=[];nn=1;part_sol(nn)=cur_pos(i);A=[];n=1;end;end;if setdiff(rn,1)==[];% 产生最后一条终点不为1的路径n_sol=n_sol+1;nl=length(part_sol);part_sol(nl+1)=1;%将路径的最后1位补1% 对所得路径进行路径内3-opt优化final_sol=exchange(part_sol);for nt=1:length(final_sol); % 将所有产生的路径传给一个数组temp(t+nt)=final_sol(nt);end;cost(n_gen,i)=cost_sol(temp,dist)+M_vehicle*(n_sol-vehicle_best); %计算由蚂蚁i产生的路径总长度for ki=1:length(temp)-1;deltao(temp(ki),temp(ki+1))=deltao(temp(ki),temp(ki+1))+Q/cost(n_gen,i); end;if cost(n_gen,i)<best_cost;best_cost=cost(n_gen,i);old_cost=best_cost;best_gen=n_gen; % 产生最小费用的代数best_ant=i; %产生最小费用的蚂蚁best_solution=temp;end;if i==m; %如果所有蚂蚁均完成一次循环,,则用最佳费用所对应的路径对弧进行整体更新for ii=1:32;for jj=1:32;tao(ii,jj)=(1-rou)*tao(ii,jj);end;end;for kk=1:length(best_solution)-1;tao(best_solution(kk),best_solution(kk+1))=tao(best_solution(kk),best_solution (kk+1))+deltao(best_solution(kk),best_solution(kk+1));end;end;fid=fopen('out_solution.txt','a+');fprintf(fid,'%s%i%s','NO.',n_sol,'路径是:');fprintf(fid,'%i ',part_sol);fprintf(fid,'\n');fprintf(fid,'%s %i\n','当前的用户需求量是:',temp_load);fprintf(fid,'%s %f\n','总费用是:',cost(n_gen,i));fprintf(fid,'------------------------------\n');fprintf(fid,'%s\n','最终路径是:'); fprintf(fid,'%i-',temp);fprintf(fid,'\n');fclose(fid);temp=[];break;end;end;end;end;。