蚁群算法TSP问题matlab源代码
- 格式:docx
- 大小:19.82 KB
- 文档页数:5
蚁群算法matlab源码xiugaifunction[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max ,m,Alpha,Beta,Rho,Q)%%=========================================================================%% ACATSP.m%% Ant Colony Algorithm for Traveling Salesman Problem %%------------------------------------------------------------------------- %% 主要符号说明%% C n个城市的坐标,n×2的矩阵%% NC_max 最大迭代次数%% m 蚂蚁个数%% Alpha 表征信息素重要程度的参数%% Beta 表征启发式因子重要程度的参数%% Rho 信息素蒸发系数%% Q 信息素增加强度系数%% R_best 各代最佳路线%% L_best 各代最佳路线的长度%% L_ave 各代路线的平均长度%%=========================================================================%%第一步:变量初始化n=size(*,1);%*表示问题的规模(城市个数) *=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:nfor j=1:nif i~=jD(i,j)=((C(i,1)-C(j,1)^2+(C(i,2)-C(j,2)^2)^0.5;else D(i,j)=eps;endD(j,i)=D(i,j);endendEta=1./D;%Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n);%Tau为信息素矩阵Tabu=zeros(m,n);%存储并记录路径的生成NC=1;%迭代计数器R_best=zeros(NC_max,n);%各代最佳路线L_best=inf.*ones(NC_max,1);%各代最佳路线的长度L_ave=zeros(NC_max,1);%各代路线的平均长度while NC<=NC_max%停止条件之一:达到最大迭代次数 %%第二步:将m只蚂蚁放到n个城市上Randpos=[];for i=1:(ceil(m/n))Randpos=[Randpos,randperm(n)]; endTabu(:,1)=(Randpos(1,1:m))';%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游for j=2:nfor i=1:mvisited=Tabu(i,1:(j-1));%已访问的城市J=zeros(1,(n-j+1));%待访问的城市P=J;%待访问城市的选择概率分布Jc=1;for k=1:nif length(find(visited==k))==0J(Jc)=k;Jc=Jc+1;endend%下面计算待选城市的概率分布for k=1:length(J)P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);%(信息素^信息素系数)*(启发因子^启发因子系数)end*=*/(sum(P));%按概率原则选取下一个城市Pcum=cumsum(P);Select=find(Pcum>=rand);to_visit=J(Select(1));Tabu(i,j)=to_visit;endendif NC>=2Tabu(1,:)=R_best(NC-1,:);end%%第四步:记录本次迭代最佳路线L=zeros(m,1);for i=1:mR=Tabu(i,:);for j=1:(n-1)L(i)=L(i)+D(R(j),R(j+1)); end L(i)=L(i)+D(R(1),R(n));endL_best(NC)=min(L);pos=find(L==L_best(NC));R_best(NC,:)=Tabu(pos(1),:);L_ave(NC)=mean(L);NC=NC+1%%第五步:更新信息素Delta_Tau=zeros(n,n);for i=1:mfor j=1:(n-1)Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);endDelta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);endTau=(1-Rho).*Tau+Delta_Tau;%%第六步:禁忌表清零Tabu=zeros(m,n);end%%第七步:输出结果Pos=find(L_best==min(L_best)); Shortest_Route=R_best(Pos(1),:); Shortest_Length=L_best(Pos(1)); subplot(1,2,1)DrawRoute(C,Shortest_route) subplot(1,2,2)Plot(L_best)hold onplot(L_ave)function DrawRoute(C,R)%%DrawRoute.m%%画出线路的子函数%% C Coordinate 节点坐标,由一个N*2的矩阵存储%% R Route 路线N=length(R);scatter(C(:,1),C(:,2));hold onplot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])hold onfor ii=2:Nplot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])hold onend设置初始参数如下:m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100; 运行后得到15602的巡游路径,路线图和收敛曲线如下:。
蚁群算法程序(matlab)% 以下是蚁群算法MATLAB程序,请尊重原作者劳动,引用时请注明出处。
% 已经运行过,无误。
% 蚁群算法MATLAB程序function[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP( C,NC_max,m,Alpha,Beta,Rho,Q)%%==================================== =====================================%% 主要符号说明%% C n个城市的坐标,n×2的矩阵%% NC_max 蚁群算法MATLAB程序最大迭代次数%% m 蚂蚁个数%% Alpha 表征信息素重要程度的参数%% Beta 表征启发式因子重要程度的参数%% Rho 信息素蒸发系数%% Q 表示蚁群算法MATLAB程序信息素增加强度系数%% R_best 各代最佳路线%% L_best 各代最佳路线的长度%%==================================== =====================================%% 蚁群算法MATLAB程序第一步:变量初始化n=size(C,1);%n表示问题的规模(城市个数)D=zeros(n,n);%D表示完全图的赋权邻接矩阵for i=1:nfor j=1:nif i~=jD(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;elseD(i,j)=eps; % i = j 时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示endD(j,i)=D(i,j); %对称矩阵endendEta=1./D; %Eta为启发因子,这里设为距离的倒数Tau=ones(n,n); %T au为信息素矩阵Tabu=zeros(m,n); %存储并记录路径的生成NC=1; %迭代计数器,记录迭代次数R_best=zeros(NC_max,n); %各代最佳路线L_best=inf.*ones(NC_max,1); %各代最佳路线的长度L_ave=zeros(NC_max,1); %各代路线的平均长度while NC<=NC_max %停止条件之一:达到最大迭代次数,停止%% 蚁群算法MATLAB程序第二步:将m只蚂蚁放到n个城市上Randpos=[]; %随即存取for i=1:(ceil(m/n))Randpos=[Randpos,randperm(n)];endTabu(:,1)=(Randpos(1,1:m))'; %此句不太理解?%% 蚁群算法MATLAB程序第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游for j=2:n %所在城市不计算for i=1:mvisited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问J=zeros(1,(n-j+1)); %待访问的城市P=J; %待访问城市的选择概率分布Jc=1;for k=1:nif length(find(visited==k))==0 %开始时置0J(Jc)=k;Jc=Jc+1; %访问的城市个数自加1endend%% 下面计算蚁群算法MATLAB程序待选城市的概率分布for k=1:length(J)P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^B eta);endP=P/(sum(P));%% 按概率原则选取下一个城市Pcum=cumsum(P); %cumsum,元素累加即求和Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线to_visit=J(Select(1));Tabu(i,j)=to_visit;endendif NC>=2Tabu(1,:)=R_best(NC-1,:);end%% 蚁群算法MATLAB程序第四步:记录本次迭代最佳路线L=zeros(m,1); %开始距离为0,m*1的列向量for i=1:mR=Tabu(i,:);for j=1:(n-1)L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离endL(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离endL_best(NC)=min(L); %最佳距离取最小pos=find(L==L_best(NC));R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线L_ave(NC)=mean(L); %此轮迭代后的平均距离NC=NC+1 %迭代继续%% 蚁群算法MATLAB程序第五步:更新信息素Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵for i=1:mfor j=1:(n-1)Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1 ))+Q/L(i);%此次循环在路径(i,j)上的信息素增量endDelta_Tau(Tabu(i,n),Tabu(i,1))=Delta_T au(Tabu(i,n),Tabu(i,1))+ Q/L(i);%此次循环在整个路径上的信息素增量endTau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素%% 蚁群算法MATLAB程序第六步:禁忌表清零Tabu=zeros(m,n); %%直到最大迭代次数end%% 蚁群算法MATLAB程序第七步:输出结果Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离subplot(1,2,1) %绘制第一个子图形DrawRoute(C,Shortest_Route) %画路线图的子函数subplot(1,2,2) %绘制第二个子图形plot(L_best)hold on %保持图形plot(L_ave,'r')title('平均距离和最短距离') %标题% 蚁群算法MATLAB程序子函数function DrawRoute(C,R)%%==================================== =====================================%% DrawRoute.m%% 画路线图的子函数%%-------------------------------------------------------------------------%% C Coordinate 节点坐标,由一个N×2的矩阵存储%% R Route 路线%%==================================== =====================================N=length(R);scatter(C(:,1),C(:,2));hold onplot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')hold onfor ii=2:Nplot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g') hold onendtitle('旅行商问题优化结果 ')。
mtsp问题matlab代码]function[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max ,m,Alpha,Beta,Rho,Q)%%================================================================ =========%% ACATSP.m%% Ant Colony Algorithm for Traveling Salesman Problem%% ChengAihua,PLA Information Engineering University,ZhengZhou,China %% Email:aihuacheng@%% All rights reserved%%-------------------------------------------------------------------------%% 主要符号说明%% C n个城市的坐标,n×2的矩阵%% NC_max 最大迭代次数%% m 蚂蚁个数%% Alpha 表征信息素重要程度的参数%% Beta 表征启发式因子重要程度的参数%% Rho 信息素蒸发系数%% Q 信息素增加强度系数%% R_best 各代最佳路线%% L_best 各代最佳路线的长度%%================================================================ =========%%第一步:变量初始化n=size(C,1);%n表示问题的规模(城市个数)D=zeros(n,n);%D表示完全图的赋权邻接矩阵for i=1:nfor j=1:nif i~=jD(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;elseD(i,j)=eps;endD(j,i)=D(i,j);endendEta=1./D;%Eta为启发因子,这里设为距离的倒数Tau=ones(n,n);%Tau为信息素矩阵Tabu=zeros(m,n);%存储并记录路径的生成NC=1;%迭代计数器R_best=zeros(NC_max,n);%各代最佳路线L_best=inf.*ones(NC_max,1);%各代最佳路线的长度L_ave=zeros(NC_max,1);%各代路线的平均长度while NC<=NC_max%停止条件之一:达到最大迭代次数 %%第二步:将m只蚂蚁放到n个城市上Randpos=[];for i=1:(ceil(m/n))Randpos=[Randpos,randperm(n)]; endTabu(:,1)=(Randpos(1,1:m))';%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游 for j=2:n for i=1:mvisited=Tabu(i,1:(j-1));%已访问的城市J=zeros(1,(n-j+1));%待访问的城市P=J;%待访问城市的选择概率分布Jc=1;for k=1:nif length(find(visited==k))==0 J(Jc)=k;Jc=Jc+1;endend%下面计算待选城市的概率分布for k=1:length(J)P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);endP=P/(sum(P));%按概率原则选取下一个城市Pcum=cumsum(P);Select=find(Pcum>=rand); to_visit=J(Select(1)); Tabu(i,j)=to_visit;endendif NC>=2Tabu(1,:)=R_best(NC-1,:); end%%第四步:记录本次迭代最佳路线L=zeros(m,1);for i=1:mR=Tabu(i,:);for j=1:(n-1)L(i)=L(i)+D(R(j),R(j+1));endL(i)=L(i)+D(R(1),R(n));endL_best(NC)=min(L);pos=find(L==L_best(NC)); R_best(NC,:)=Tabu(pos(1),:);L_ave(NC)=mean(L);NC=NC+1%%第五步:更新信息素Delta_Tau=zeros(n,n);for i=1:mfor j=1:(n-1)Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/ L(i);endDelta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);endTau=(1-Rho).*Tau+Delta_Tau;%%第六步:禁忌表清零Tabu=zeros(m,n);end%%第七步:输出结果Pos=find(L_best==min(L_best)); Shortest_Route=R_best(Pos(1),:) Shortest_Length=L_best(Pos(1)) subplot(1,2,1)DrawRoute(C,Shortest_Route) subplot(1,2,2)plot(L_best)hold onplot(L_ave)function DrawRoute(C,R)%%================================================================ =========%% DrawRoute.m%% 画路线图的子函数%%-------------------------------------------------------------------------%% C Coordinate 节点坐标,由一个N×2的矩阵存储%% R Route 路线%%=========================================================================N=length(R); scatter(C(:,1),C(:,2));hold onplot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])hold onfor ii=2:N plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)]) hold onend设置初始参数如下: m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100;31城市坐标为:1304 2312 3639 1315 4177 2244 3712 1399 3488 1535 3326 1556 3238 1229 4196 1004 4312 790 4386 570 3007 1970 2562 1756 2788 1491 2381 1676 1332 695 3715 1678 3918 2179 4061 2370 3780 2212 3676 2578 4029 2838 4263 2931 3429 1908 3507 2367 3394 2643 3439 3201 2935 3240 3140 3550 2545 2357 2778 28262370 2975[/code]运行后得到15602的巡游路径,路线图和收敛曲线如下: 提问者评价谢啦~参考资料:蚁群算法TSP(旅行商问题)通用matlab程序。
基于MATLAB的蚁群算法解决旅行商问题 (附带源程序、仿真)摘要:旅行商问题的传统求解方法是遗传算法,但此算法收敛速度慢,并不能获得问题的最优化解。
蚁群算法是受自然界中蚁群搜索食物行为启发而提出的一种智能优化算法,通过介绍蚁群觅食过程中基于信息素的最短路径的搜索策略,给出基于MATLAB的蚁群算法在旅行商问题中的应用,对问题求解进行局部优化。
经过计算机仿真结果表明,这种蚁群算法对求解旅行商问题有较好的改进效果。
关键词:蚁群算法;旅行商问题;MATLAB;优化一、意义和目标旅行商问题是物流领域中的典型问题,它的求解具有十分重要的理论和现实意义。
采用一定的物流配送方式,可以大大节省人力物力,完善整个物流系统。
已被广泛采用的遗传算法是旅行商问题的传统求解方法,但遗传算法收敛速度慢,具有一定的缺陷。
本文采用蚁群算法,充分利用蚁群算法的智能性,求解旅行商问题,并进行实例仿真。
进行仿真计算的目标是,该算法能够获得旅行商问题的优化结果,平均距离和最短距离。
二、国内外研究现状仿生学出现于20世纪50年代中期,人们从生物进化机理中受到启发,提出了遗传算法、进化规划、进化策略等许多用以解决复杂优化问题的新方法。
这些以生物特性为基础的演化算法的发展及对生物群落行为的发现引导研究人员进一步开展了对生物社会性的研究,从而出现了基于群智能理论的蚁群算法,并掀起了一股研究的热潮。
20世纪90年代意大利科学家M.Dorigo M最早提出了蚁群优化算法――蚂蚁系统(Ant system, AS),在求解二次分配、图着色问题、车辆调度、集成电路设计以及通信网络负载问题的处理中都取得了较好的结果。
旅行商问题(TSP, Traveling Salesman Problem)被认为是一个基本问题,是在1859年由威廉・汉密尔顿爵士首次提出的。
所谓TSP问题是指:有N个城市,要求旅行商到达每个城市各一次,且仅一次,并回到起点,且要求旅行路线最短。
TSP问题遗传算法matlab源程序%TSP问题(又名:旅行商问题,货郎担问题)遗传算法通用matlab程序%D是距离矩阵,n为种群个数,建议取为城市个数的1~2倍,%C为停止代数,遗传到第C代时程序停止,C的具体取值视问题的规模和耗费的时间而定%m为适应值归一化淘汰加速指数,最好取为1,2,3,4 ,不宜太大%alpha为淘汰保护指数,可取为0~1之间任意小数,取1时关闭保护功能,最好取为0.8~1.0%R为最短路径,Rlength为路径长度function [R,Rlength]=geneticTSP(D,n,C,m,alpha)[N,NN]=size(D);farm=zeros(n,N);%用于存储种群for i=1:nfarm(i,:)=randperm(N);%随机生成初始种群endR=farm(1,:);%存储最优种群len=zeros(n,1);%存储路径长度fitness=zeros(n,1);%存储归一化适应值counter=0;while counter<cfor i=1:nlen(i,1)=myLength(D,farm(i,:));%计算路径长度endmaxlen=max(len);minlen=min(len);fitness=fit(len,m,maxlen,minlen);%计算归一化适应值rr=find(len==minlen);R=farm(rr(1,1),:);%更新最短路径FARM=farm;%优胜劣汰,nn记录了复制的个数nn=0;for i=1:nif fitness(i,1)>=alpha*randnn=nn+1;FARM(nn,:)=farm(i,:);endendFARM=FARM(1:nn,:);[aa,bb]=size(FARM);%交叉和变异while aa<nif nn<=2----------------------------精品word文档值得下载值得拥有----------------------------------------------nnper=randperm(2);elsennper=randperm(nn);endA=FARM(nnper(1),:);B=FARM(nnper(2),:);[A,B]=intercross(A,B);FARM=[FARM;A;B];[aa,bb]=size(FARM);endif aa>nFARM=FARM(1:n,:);%保持种群规模为nendfarm=FARM;clear FARMcounter=counter+1endRlength=myLength(D,R);function [a,b]=intercross(a,b)L=length(a);if L<=10%确定交叉宽度W=1;elseif ((L/10)-floor(L/10))>=rand&&L>10W=ceil(L/10);elseW=floor(L/10);endp=unidrnd(L-W+1);%随机选择交叉范围,从p到p+Wfor i=1:W%交叉x=find(a==b(1,p+i-1));y=find(b==a(1,p+i-1));[a(1,p+i-1),b(1,p+i-1)]=exchange(a(1,p+i-1),b(1,p+i-1));[a(1,x),b(1,y)]=exchange(a(1,x),b(1,y));endfunction [x,y]=exchange(x,y)temp=x;x=y;y=temp;% 计算路径的子程序----------------------------精品word文档值得下载值得拥有----------------------------------------------function len=myLength(D,p)[N,NN]=size(D);len=D(p(1,N),p(1,1));for i=1:(N-1)len=len+D(p(1,i),p(1,i+1));end%计算归一化适应值子程序function fitness=fit(len,m,maxlen,minlen)fitness=len;for i=1:length(len)fitness(i,1)=(1-((len(i,1)-minlen)/(maxlen-minlen+0.000001))).^m;end她含着笑,切着冰屑悉索的萝卜,她含着笑,用手掏着猪吃的麦糟,她含着笑,扇着炖肉的炉子的火,她含着笑,背了团箕到广场上去晒好那些大豆和小麦,大堰河,为了生活,在她流尽了她的乳液之后,她就用抱过我的两臂,劳动了。
#include<iostream.h>#include<stdlib.h>#include<time.h>#include<math.h>#define citynumber 5#define Q 100#define p 0.5#define NM2 1000#define A 1#define B 5int ccdi=-1;//全局变量,用在myrand()中float myrand()//产生0-1随机数,100个,每调用一次,结果不同{srand(time(0));float my[100];ccdi++;if (ccdi==100)ccdi=0;for(int mi=0;mi<100;mi++){float fav=rand()%10000;my[mi]=fav/10000;}return my[ccdi];}double fpkij(double T[citynumber][citynumber],double n[citynumber][citynumber],int tabu[citynumber][citynumber],int k,int s,int i,int j )//定义函数用于计算Pij{//double A=0.5,B=0.5;double sumup,pkij,sumdown;sumdown=0;for(int aTi=0;aTi<citynumber;aTi++){for(int aTj=0;aTj<citynumber;aTj++)aT[aTi][aTj]=pow(T[aTi][aTj],A);}for(int bni=0;bni<citynumber;bni++){for(int bnj=0;bnj<citynumber;bnj++)bn[bni][bnj]=pow(n[bni][bnj],B);}for (int can=0;can<citynumber;can++)//判断,除掉已经走过的城市{if(can==tabu[k][ci]){aT[i][can]=0;bn[i][can]=0;}}sumup=aT[i][j]*bn[i][j];for(int tj=0;tj<citynumber;tj++)sumdown=aT[i][tj]*bn[i][tj]+sumdown;pkij=sumup/sumdown;return pkij;}void main(){ doublecity[citynumber][2]={{0,1},{0,2},{2,2},{2,4},{1,3}/*,{3,4},{4,7},{2,8},{3,9},{1,10},{1,0},{2,1},{3,0},{4,9},{5,2},{6,2},{7,1},{8,6},{9,0},{10,3}*/}; /*城市坐标*/ double d[citynumber][citynumber]; //L[j][k]是城市j to k距离for(int j=0;j<citynumber;j++){d[j][k]=sqrt((city[j][0]-city[k][0])*(city[j][0]-city[k][0])+(city[j][1]-city[k][1])*(city[j][1]-city[k] [1]));// cout<<d[j][k]<<" ";}//cout<<"\n";} /*计算距离,从j城市到k城市*//* for (int cj=0;cj<10;cj++){float c=myrand();cout<<c<<" "<<"\n";}*///输出随机数double n[citynumber][citynumber];for(int ni=0;ni<citynumber;ni++){for(int j=0;j<citynumber;j++)}//cout<<"\n";} /*初始化visibility nij*/double L[citynumber];int shortest[citynumber];double T[citynumber][citynumber];for(int ti=0;ti<citynumber;ti++){for (int j=0;j<citynumber;j++){//cout<<T[ti][j]<<" ";}//cout<<"\n";}/*初始化t*/double changT[citynumber][citynumber];//step2:for(int NC=0;NC<NM2;NC++){ for(int cti=0;cti<citynumber;cti++){for (int j=0;j<citynumber;j++){changT[cti][j]=0;//cout<<changT[cti][j]<<" ";}//cout<<"\n";} /*初始化changT*/int tabu[citynumber][citynumber];//tabu[k][s]表示第k只蚂蚁,第s次循环所在的城市for (int i=0;i<citynumber;i++)tabu[tai][i]=0;}for (int tabui1=0;tabui1<citynumber;tabui1++)tabu[tabui1][0]=tabui1;/*for (tai=0;tai<citynumber;tai++){for (int i=0;i<citynumber;i++)cout<<tabu[tai][i]<<" ";cout<<"\n";}*///初始化tabufor(int kk=0;kk<citynumber;kk++)L[kk]=0;//第三步开始for(int s=0;s<citynumber-1;s++){for(int k=0;k<citynumber;){int ci,can;float sumpk=0;float pkij;hq2: can++;if (can==citynumber) can=0;for (ci=0;ci<=s;ci++){if(can==tabu[k][ci]) goto hq2;}pkij=fpkij(T,n,tabu,k,s,tabu[k][s],can);sumpk=sumpk+pkij;else goto hq2;tabu[k][s+1]=can;k++;}} //第三步完成/*for (tai=0;tai<citynumber;tai++){for (int i=0;i<citynumber;i++) }*///输出一个循环后的tabu[][]//第四步开始for(int k4=0;k4<citynumber;k4++){s44=s4+1;if (s44==citynumber) s44=0;L[k4]+=d[tabu[k4][s4]][tabu[k4][s44]]; }//cout<<L[k4]<<" ";}//计算L[k]float shortest1=0; int short2=0;//最短距离for(ii=1;shorti<citber;shi++ ){shortest1=L[0];if(L[shorti]<=shortest1){shortest1=L[shorti];short2=shorti;}}//cout<<L[sort2]<<"\n";cout<<short2<<"\n";for(int shoi=0;shoi<ctynumber;shoi++){shortest[shoi]=tabu[short2][shoi];//cout<<shest[shoi]<<" ";}//cout<<"\n";for(int k41=0;k41<citynumber;k41++){for(int s41=0,ss=0;s41<citynumber;s41++){ss=s41+1;if (ss==citynumber) ss=0;changT[tabu[k41][s41]][tabu[k41][ss]]+=Q/L[k41];changT[tabu[k41][ss]][tabu[k41][s41]]=changT[tabu[k41][s41]][tabu[k41][ss]]; }}/* for(int cti4=0;cti4<citynumber;cti4++){for (int j=0;j<citynumber;j++){cout<<changT[cti4][j]<<" ";}cout<<"\n";}*///第四步完// 第五步开始for(int i5=0;i5<citynumber;i5++){for(int j5=0;j5<citynumber;j5++){// cout<<T[i5][j5]<<" ";}//cout<<"\n";}}for(int shoi1=0;shoi1<citynumber;shoi1++){cout<<city[shortest[shoi1]][0]<<" "<<city[shortest[shoi1]][1]<<" ";}}。
蚁群优化算法原理及Matlab编程实现
蚁群算法的提出:
人工蚂蚁与真实蚂蚁的异同比较
相同点比较
不同点比较
蚁群算法的流程图
基本蚁群算法的实现步骤
(i,j)的初始化信息量τij(t) = const,其中const表示常数,且初始时刻Δτij(0) = 0。
(2)循环次数。
(3)蚂蚁的禁忌表索引号k=1。
(4)蚂蚁数目。
(5)蚂蚁个体根据状态转移概率公式计算的概率选择元素(城市)j并前进,。
其中,表示在t时刻蚂蚁k由元素(城市)i转移到元素(城市)j的状态转
重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的受重
视程度,其值越大,则该状态转移概率越接近于贪心规则;ηij(t)为启发函数,
表达式为。
式中,d ij表示相邻两个城市之间的距离。
(6)修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该τij(t + n) = (1 − ρ) * τij(t) + Δτij(t)
(9)若满足结束条件,即如果循环次数,则循环结束并输出程序计算结果,
]蚁群算法的matlab源程序1.蚁群算法主程序:main.m
2.蚁群算法寻找路径程序:path.m
[编辑]蚁群算法仿真结果。
基于蚁群算法的TSP问题求解1引言1.1 问题描述设计求解以下两个TSP问题的蚁群优化(ACO)算法。
其中城市的坐标见附件(kroA100.tsp和kroB100.tsp)。
1.2 理论基础1.2.1 蚁群算法简介蚁群算法是由意大利学者M.Dorigo等人于20世纪90年代初提出的一种新的模拟进化算法,其真实地模拟了自然界蚂蚁群体的觅食行为。
M.Dorigo等人将其用于解决旅行商问题(traveling salesman problem, TSP),并取得了较好的实验结果。
近年来,许多专家学者致力于蚁群算法的研究,并将其应用于交通、通信、化工、电力等领域,成功解决了许多组合优化问题,如调度问题(job–shop scheduling problem)、指派问题(quadratic assignment problem)、旅行商问题(traveling salesman problem)等。
1.2.2 蚁群算法基本思想生物学家研究发现,自然界中的蚂蚁觅食是一种群体性行为,并非单只蚂蚁自行寻找食物源。
蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。
信息素浓度的大小表征路径的远近,信息素浓度越高,表示对应的路径距离越短。
通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放一定量的信息素,以增强该条路径上的信息素浓度,这样会形成一个正反馈。
最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即是最短距离。
值得一提的是,生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减。
将蚁群算法应用于解决优化问题的基本思路为:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
较短的路径上蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上积累的信息素浓度逐渐增高,选择该路径的蚂蚁个数也愈来愈多。
最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。
%蚁群算法求解中国TSP问题(48个城市)%%清空环境变量clear allclc%%导入数据load distance_48.txtcitys=distance_48;%%计算城市间互相距离n=size(citys,1);D=zeros(n,n);for i=1:nfor j=1:nif i~=jD(i,j)=sqrt(sum((citys(i,:)-citys(j,:)).^2));elseD(i,j)=1e-4;endendend%%初始化参数ticm=30;%蚂蚁数量alpha=1;%信息素重要程度因子beta=5;%启发函数重要程度因子rho=0.1;%信息素挥发因子Q=1;%常系数Eta=1./D;%启发函数Tau=ones(n,n);%信息素矩阵Table=zeros(m,n);%路径记录表iter=1;%迭代次数初值iter_max=200;%最大迭代次数Route_best=zeros(iter_max,n);%各代最佳路径Length_best=zeros(iter_max,1);%各代最佳路径的长度Length_ave=zeros(iter_max,1);%各代路径的平均长度%%迭代寻找最佳路径while iter<=iter_max%随机产生各个蚂蚁的起点城市start=zeros(m,1);for i=1:mtemp=randperm(n);%随机产生1到n的一个打乱序列start(i)=temp(1);endTable(:,1)=start;%构建解空间citys_index=1:n;%逐个蚂蚁路径选择for i=1:m%逐个城市路径选择for j=2:ntabu=Table(i,1:(j-1));%已访问城市集合(禁忌表)allow_index=~ismember(citys_index,tabu);%除去已访问的城市集合 allow=citys_index(allow_index);%待访问的城市集合P=allow;%计算城市间的转移概率for k=1:length(allow)P(k)=Tau(tabu(end),allow(k))^alpha*Eta(tabu(end),allow(k))^beta;endP=P/sum(P);%轮盘赌法选择下一个访问城市Pc=cumsum(P);target_index=find(Pc>=rand);target=allow(target_index(1));Table(i,j)=target;%确定下一个访问的城市endend%计算各个蚂蚁的路径距离Length=zeros(m,1);for i=1:mRoute=Table(i,:);%第i只蚂蚁的路径for j=1:(n-1)Length(i)=Length(i)+D(Route(j),Route(j+1));endLength(i)=Length(i)+D(Route(n),Route(1));%最后还要回到最初的城市end%计算最短路径距离及平均距离if iter==1[min_Length,min_index]=min(Length);Length_best(iter)=min_Length;Length_ave(iter)=mean(Length);Route_best(iter,:)=Table(min_index,:);else[min_Length,min_index]=min(Length);Length_best(iter)=min(Length_best(iter-1),min_Length);%iter次的最短路径距离等于当前迭代的最短路径距离与上一次迭代最短路径距离中的最小值Length_ave(iter)=mean(Length);if Length_best(iter)==min_LengthRoute_best(iter,:)=Table(min_index,:);elseRoute_best(iter,:)=Route_best((iter-1),:);endend%更新信息素Delta_Tau=zeros(n,n);%逐个蚂蚁计算for i=1:m%逐个城市计算for j=1:(n-1)Delta_Tau(Table(i,j),Table(i,j+1))=Delta_Tau(Table(i,j),Table(i,j+1))+Q /Length(i);endDelta_Tau(Table(i,n),Table(i,1))=Delta_Tau(Table(i,n),Table(i,1))+Q/Len gth(i);endTau=(1-rho)*Tau+Delta_Tau;%迭代次数加1,清空路径记录表iter=iter+1;Table=zeros(m,n);end%%结果显示[Shortest_Length,index]=min(Length_best);Shortest_Route=Route_best(index,:);disp(['最短距离:' num2str(Shortest_Length)]);disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);%%绘图figure(1)plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],[citys(Shorte st_Route,2);citys(Shortest_Route(1),2)],'o-');grid onfor i=1:size(citys,1)text(citys(i,1),citys(i,2),[' ' num2str(i)]);endtext(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点'); text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');xlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])figure(2)plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r')legend('最短距离','平均距离')xlabel('迭代次数')ylabel('距离')title('各代最短距离与平均距离对比')toc。
基于MATLAB的蚁群算法解决旅行商问题(附带源程序、仿真) ..摘要:旅行商问题的传统求解方法是遗传算法,但此算法收敛速度慢,并不能获得问题的最优化解。
蚁群算法是受自然界中蚁群搜索食物行为启发而提出的一种智能优化算法,通过介绍蚁群觅食过程中基于信息素的最短路径的搜索策略,给出基于MATLAB的蚁群算法在旅行商问题中的应用,对问题求解进行局部优化。
经过计算机仿真结果表明,这种蚁群算法对求解旅行商问题有较好的改进效果。
关键词:蚁群算法;旅行商问题;MATLAB;优化一、意义和目标旅行商问题是物流领域中的典型问题,它的求解具有十分重要的理论和现实意义。
采用一定的物流配送方式,可以大大节省人力物力,完善整个物流系统。
已被广泛采用的遗传算法是旅行商问题的传统求解方法,但遗传算法收敛速度慢,具有一定的缺陷。
本文采用蚁群算法,充分利用蚁群算法的智能性,求解旅行商问题,并进行实例仿真。
进行仿真计算的目标是,该算法能够获得旅行商问题的优化结果,平均距离和最短距离。
二、国内外研究现状仿生学出现于XXXX年代中期,人们从生物进化机理中受到启发,提出了遗传算法、进化规划、进化策略等许多用以解决复杂优化问题的新方法。
这些以生物特性为基础的演化算法的发展及对生物群落行为的发现引导研究人员进一步开展了对生物社会性的研究,从而出现了基于群智能理论的蚁群算法,并掀起了一股研究的热潮。
XXXX年代意大利科学家M.Dorigo M最早提出了蚁群优化算法——蚂蚁系统(Ant system, AS),在求解二次分配、图着色问题、车辆调度、集成电路设计以及通信网络负载问题的处理中都取得了较好的结果。
旅行商问题(TSP, Traveling Salesman Problem)被认为是一个基本问题,是在1859年由威廉·汉密尔顿爵士首次提出的。
所谓TSP问题是指:有N个城市,要求旅行商到达每个城市各一次,且仅一次,并回到起点,且要求旅行路线最短。
matlab蚁群算法代码以下是一个简单的MATLAB蚁群算法代码示例,其中使用了一个二维网格作为蚂蚁的住所,并在网格上放置了一些随机的节点作为蚂蚁的出发和目的地,每个蚂蚁沿着最短路径搜索路径从一个节点到另一个节点。
```matlab% 定义蚂蚁的参数num_nodes = 10; % 网格节点数num_tasks = 100; % 任务数num_neighbors = 50; % 蚂蚁之间的连接数% 随机放置节点nodes = randi(num_nodes, num_nodes);% 创建蚂蚁的基本队列蚂蚁_queue = queue();% 定义蚂蚁的基本策略def_蚂蚁_策略 = {[set_task(i, j, k)]= {1},[set_neighbor(i, j, k)]= {2},[set_task(i, j, k)]= {3},};% 更新蚂蚁的状态def_蚂蚁_update = {for i = 1:num_tasksfor j = 1:num_neighborsif get(蚂蚁_queue, -1, 1) == num_tasksget(蚂蚁_queue, -1, 1) = set_task(i, j, k);set(蚂蚁_queue, -1, 1) = set_neighbor(i, j, k); endendend};% 定义蚂蚁的搜索函数function 蚂蚁_function(i, j, k, task, target) % 计算当前蚂蚁的最短路径path = [zeros(1, num_neighbors); 1];path(end+1, -1) = target;path(end, num_nodes) = 1;path = path./zeros(1, num_neighbors);% 搜索蚂蚁的下一个节点for j = 1:num_neighborsif get(蚂蚁_queue, -1, j) == taskif get(蚂蚁_queue, -1, j) == target蚂蚁_function(i, j, k, task, target)endend% 计算蚂蚁的当前路径path_function = path(1:end-1, 1:end-1);end% 启动蚂蚁搜索蚂蚁_start(蚂蚁_queue);% 计算蚂蚁的最短路径function path_function = get_shortest_path(path_var) % 计算每个节点到目标节点的最短路径path_var = path_function;% 计算每个节点到每个邻居节点的最短路径for k = 1:num_neighborspath_var = cellfun(@(i,j) get(path_var, i, j, k), path_var);end% 返回所有节点的最短路径return path_var;```这是一个简单的例子,可以根据具体的需求进行修改和优化。
蚁群算法路径优化matlab代码蚁群算法是一种基于生物群体的智能算法,常用于路径优化等问题。
在这个问题中,蚂蚁在寻找食物时会根据周围的环境信息和食物的香味找到最短路径。
本文将介绍如何在 MATLAB 中使用蚁群算法进行路径优化,并提供一些拓展。
在 MATLAB 中实现蚁群算法需要用到三个主要函数:ants_logic.m、ants_move.m 和 ants_display.m。
以下是这三个函数的基本功能和代码实现。
1. ants_logic.m这个函数是蚁群算法的核心部分,负责计算蚂蚁的当前路径和更新路径搜索树。
函数的基本思路是每个蚂蚁根据当前环境和食物香味来选择前进方向,如果前方是死路或食物已经被其他蚂蚁找到,则蚂蚁会返回原路。
如果蚂蚁到达了食物位置,则它会将自己的信息传递给其他蚂蚁,并更新食物香味。
拓展:在路径优化问题中,通常会有多个不同的路径可供选择,而蚁群算法可以通过学习其他蚂蚁的路径来发现更短、更快的路径。
为了实现这一功能,可以在 ants_logic.m 函数中增加一个参数,指示当前蚂蚁应该学习其他哪个蚂蚁的路径。
2. ants_move.m这个函数负责控制蚂蚁的移动方向。
在函数中,我们需要给定蚂蚁的当前位置和食物位置,并计算蚂蚁应该移动到的新位置。
在MATLAB 中,我们可以使用 rand 函数生成一个随机数,然后将其作为新位置的坐标。
拓展:为了提高路径搜索的效率,我们可以在 ants_move.m 函数中加入一些随机因子。
例如,可以在蚂蚁移动方向上添加一个随机偏置,这样可以让蚂蚁更有可能探索新的区域。
3. ants_display.m这个函数用于可视化路径搜索的过程。
在函数中,我们可以给定蚂蚁的初始位置和食物位置,并使用 MATLAB 的图形处理函数绘制路径。
拓展:为了使路径搜索过程更加有趣,我们可以在ants_display.m 函数中添加一些动画效果。
例如,可以使用 MATLAB 的 animation 函数创建动画,让蚂蚁路径在屏幕上动态地显示。
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q) %%========================================================================= %% ACATSP.m %% Ant Colony Algorithm for Traveling Salesman Problem %% ChengAihua,PLA Information Engineering University,ZhengZhou,China %% Email:aihuacheng@gmail.com %% All rights reserved %%------------------------------------------------------------------------- %% 主要符号说明 %% C n个城市的坐标,n×4的矩阵 %% NC_max 最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%=========================================================================
%%第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=max( ((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5,min(abs(C(i,3)-C(j,3)),144- abs(C(i,3)-C(j,3))) );%计算城市间距离 else D(i,j)=eps; end D(j,i)=D(i,j); end end Eta=1./D;%Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n);%Tau为信息素矩阵 Tabu=zeros(m,n);%存储并记录路径的生成 NC=1;%迭代计数器 R_best=zeros(NC_max,n);%各代最佳路线 L_best=inf.*ones(NC_max,1);%各代最佳路线的长度 L_ave=zeros(NC_max,1);%各代路线的平均长度
while NC<=NC_max%停止条件之一:达到最大迭代次数 %%第二步:将m只蚂蚁放到n个城市上 Randpos=[]; for i=1:(ceil(m/n)) %ceil(A)生成大于等于A的最小整数 Randpos=[Randpos,randperm(n)]; %randperm(n)生成1到n的随机排列 end Tabu(:,1)=(Randpos(1,1:m))';
%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游 for j=2:n for i=1:m visited=Tabu(i,1:(j-1));%已访问的城市 J=zeros(1,(n-j+1));%待访问的城市,应该可以省 P=J;%待访问城市的选择概率分布 Jc=1; for k=1:n if length(find(visited==k))==0 %如果visited里没有k J(Jc)=k; Jc=Jc+1; end end %下面计算待选城市的概率分布 for k=1:length(J) P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);%需要修改 end P=P/(sum(P)); %按概率原则选取下一个城市 Pcum=cumsum(P); %这样做是为了使Pcum能取到1 Select=find(Pcum>=rand); to_visit=J(Select(1)); %把大于rand的第一个数的序号作为下一个城市在J中的序号 Tabu(i,j)=to_visit; end end if NC>=2 Tabu(1,:)=R_best(NC-1,:); %上一次的最佳路线作为本次的第一只蚂蚁的路线 end
%%第四步:记录本次迭代最佳路线 L=zeros(m,1); for i=1:m R=Tabu(i,:); for j=1:(n-1) L(i)=L(i)+D(R(j),R(j+1)); end L(i)=L(i)+D(R(1),R(n)); %从终点回到起点 end L_best(NC)=min(L); pos=find(L==L_best(NC)); R_best(NC,:)=Tabu(pos(1),:); L_ave(NC)=mean(L); NC=NC+1
%%第五步:更新信息素 Delta_Tau=zeros(n,n); for i=1:m for j=1:(n-1) Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i); end Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i); end Tau=(1-Rho).*Tau+Delta_Tau;
%%第六步:禁忌表清零 Tabu=zeros(m,n); %也可以放在循环的开始 end
%%第七步:输出结果 Pos=find(L_best==min(L_best)); Shortest_Route=R_best(Pos(1),:) Shortest_Length=L_best(Pos(1)) subplot(1,2,1) DrawRoute(C,Shortest_Route) subplot(1,2,2) plot(L_best) hold on plot(L_ave)
function DrawRoute(C,R) %%========================================================================= %% DrawRoute.m %% 画路线图的子函数 %%------------------------------------------------------------------------- %% C Coordinate 节点坐标,由一个N×2的矩阵存储 %% R Route 路线 %%========================================================================= N=length(R); scatter(C(:,1),C(:,2)); %画出所有点 hold on plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)]) hold on for ii=2:N plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)]) hold on end
设置初始参数如下: m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100; 31城市坐标为: 1304 2312 3639 1315 4177 2244 3712 1399 3488 1535 3326 1556 3238 1229 4196 1004 4312 790 4386 570 3007 1970 2562 1756 2788 1491 2381 1676 1332 695 3715 1678 3918 2179 4061 2370 3780 2212 3676 2578 4029 2838 4263 2931 3429 1908 3507 2367 3394 2643 3439 3201 2935 3240 3140 3550 2545 2357 2778 2826 2370 2975 运行后得到15602的巡游路径,路线图和收敛曲线如下: 87,7 91,83) (83,46) (71,44) (64,60) (68,58) (83,69) (87,76) (74,78) (71,71) (58,69) (54,62) (51,67) (37,84) (41,94) (2,99) (7,64) (22,60) (25,62) (18,54) (4,50) (13,40) (18,40) (24,42) (25,38) (41,26) (45,21) (44,35) (58,35) (62,32)