纳米二氧化钛抗菌材料的研究与应用进展
- 格式:doc
- 大小:45.50 KB
- 文档页数:3
纳米二氧化钛在生物医学中的应用进展李智;葛少华【摘要】纳米二氧化钛( nano⁃sized dioxide titanium,nano⁃TiO2)具有较大的比表面积、优良的光催化性能,是目前世界上使用最多的纳米材料之一。
纳米技术的快速发展使得纳米二氧化钛在生物医学领域也得到了广泛的关注和应用,该文综述了纳米TiO2在肿瘤治疗、种植体表面改性、抗菌方面的应用及其可能的不良反应。
%TiO2 nanomaterial is one of the most widely used nanomaterials in the world, which has bigger specific surface area and outstanding performance in photocatalysis. Recently the application of nano⁃sized dioxide titanium in the field of biomedicine has raised much attention because of the advanced development of nanotechnology. This review summarizes the application and the possible adverse reactions ofnano⁃sized dioxide titanium in tumor therapy, implant surface modification and antibacterial aspects.【期刊名称】《口腔医学》【年(卷),期】2017(037)001【总页数】4页(P85-88)【关键词】纳米二氧化钛;光催化;肿瘤治疗;抗菌作用;种植体表面改性【作者】李智;葛少华【作者单位】山东省口腔组织再生重点实验室,山东大学口腔医学院牙周科,山东济南 250000;山东省口腔组织再生重点实验室,山东大学口腔医学院牙周科,山东济南 250000【正文语种】中文【中图分类】R783.1二氧化钛(TiO2)是自然界中天然存在的一种半导体物质,分为金红石、锐钛矿、板钛矿和二氧化钛B几种晶型,具有化学性能稳定、价廉易得、催化活性高、生物相容性好等特点。
1.纳米二氧化钛的作用a)杀菌功能用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。
b)防紫外线功能纳米TiO2既能吸收紫外线,又能反射、散射紫外线,还能透过可见光,是性能优越、极有发展前途的物理屏蔽型的紫外线防护剂。
c)对氟里昂的降解功能TiO2对于CFCl3的降解具有良好的光催化活性,用TiO2/WO3体系降解CFCl3,在100h内保持催化效率高于99.6%。
2.是否可以用作涂层添加物人们常采用的防腐措施是在金属表面涂上一层防腐涂层,以防止腐蚀介质与金属基体的直接接触,从而减轻腐蚀纳米材料表面原子数所占的比例大,表面原子周围缺少相邻的原子,具有不饱和性质,在与其他组份作用时,在两个混合相之间产生很大的作用力,将很大程度地对材料增强增韧所以,以纳米材料作为添加剂制备涂料时,就涂膜本体而言,就像复合材料一样,被显着地增强增韧,纳米材料的加入将改善涂层中颜料和填料的体积填充致密度,减少毛细管作用,提高涂层对腐蚀介质的屏蔽作用;同时,涂料的流变特性及热稳定性也得以改善.比如纳米级二氧化钛粒子常被用作涂料的助剂,用以改善涂料的流变性,提高涂层的附着力、涂膜硬度、光洁度和抗老化性能。
3.效果如何纳米材料能够提高涂层的一些性能,但是,必须严格控制其加入量,加量太多,一方面使其更难分散,从而导致其团聚量相对增多,影响其粉体与树脂的结合.另一方面,加量太少,使得没有足够纳米粉体与树脂结合,也将使其性能降低。
4.是否有这样的理论支持北京化工大学材料科学与工程学院的徐瑞芬等人曾做过方面的研究a)原材料抗菌纳米二氧化钛,实验室自制;苯-丙(BC-102)乳液;钛白粉,R-901;煅烧高岭土;立德粉;滑石粉;分散剂;消泡剂;增稠剂;成膜助剂;乙二醇,化学纯;pH调节剂,AMP-95。
b)实验室制备方法将水放入容器内,开启高速搅拌机,在低速下依次加入颜料分散剂、部分消泡剂、,AMP-95、成膜助剂,混合均匀后将纳米二氧化钛光催化剂和颜填料用筛慢慢地筛入叶轮搅起的旋涡中。
纳米涂料的抗菌性能及应用探讨在当今科技迅速发展的时代,纳米技术已经在众多领域展现出了其独特的魅力和巨大的应用潜力。
其中,纳米涂料作为一种新型的功能性材料,凭借其出色的抗菌性能,逐渐成为了研究和应用的热点。
纳米涂料之所以能够具备抗菌性能,关键在于其独特的纳米结构和成分。
纳米尺度的粒子具有较大的比表面积,这使得它们能够与细菌等微生物充分接触,并通过多种机制发挥抗菌作用。
常见的纳米抗菌材料包括纳米银、纳米氧化锌、纳米二氧化钛等。
以纳米银为例,银离子本身就具有较强的抗菌活性。
在纳米尺度下,其表面积大幅增加,从而释放出更多的银离子,能够更有效地破坏细菌的细胞膜、干扰细菌的代谢过程,最终导致细菌死亡。
纳米氧化锌则通过产生氧自由基来破坏细菌的细胞结构,实现抗菌效果。
纳米二氧化钛在光照条件下能够激发产生强氧化性的物质,对细菌进行氧化分解。
纳米涂料的抗菌性能具有诸多显著的优点。
首先,其抗菌效果持久且高效。
与传统的抗菌剂相比,纳米粒子在涂料中的分散更加均匀稳定,不易流失和失效,能够长时间保持良好的抗菌性能。
其次,纳米涂料具有广谱抗菌性。
它不仅能够有效抑制常见的细菌,如金黄色葡萄球菌、大肠杆菌等,还对一些真菌、病毒等微生物有一定的抑制作用。
再者,纳米涂料的使用相对安全环保。
由于纳米粒子的使用量较少,且其抗菌作用机制相对温和,对人体和环境的潜在危害较小。
纳米涂料的抗菌性能在众多领域都有着广泛的应用。
在医疗领域,医院的墙壁、医疗器械的表面涂层等都可以采用纳米涂料,有效减少交叉感染的风险。
例如,病房内的墙壁涂上纳米抗菌涂料后,能够抑制病菌的滋生和传播,为患者提供更清洁、安全的治疗环境。
手术器械经过纳米涂料处理后,可以降低术后感染的几率,提高手术的成功率。
在食品工业中,纳米涂料可应用于食品包装材料。
通过在包装材料表面涂覆纳米抗菌涂层,可以延长食品的保质期,防止食品受到细菌、霉菌等微生物的污染。
这对于保障食品安全、减少食品浪费具有重要意义。
纳米材料的抗菌性能研究纳米材料是具有尺寸在纳米级别的物质,其特殊的结构和性质在不同领域具有广泛的应用前景。
近年来,科学家们对纳米材料的抗菌性能进行了深入研究,探索其在医疗和食品安全等方面的潜在用途。
本文将探讨纳米材料的抗菌性能研究领域的一些重要进展。
抗菌性能是纳米材料广受关注的一个重要特性。
传统的抗菌方法,如化学药剂和物理灭菌,往往存在着副作用和局限性。
然而,纳米材料通过其特殊的结构和功能带来了新的解决方案。
纳米颗粒的尺寸远小于细菌和病毒的尺寸,使其可以穿透细胞膜并破坏细胞结构。
此外,纳米材料表面的高比表面积也有利于与细菌相互作用,从而抑制其生长。
因此,纳米材料展现出了卓越的抗菌性能。
银纳米颗粒是目前研究最为广泛的一类纳米材料。
银离子的抗菌活性已经被广泛证明,而银纳米颗粒在材料表面的释放具有持久的抗菌效果。
研究表明,银纳米颗粒可以抑制多种细菌和真菌的生长,包括耐药菌株。
此外,银纳米颗粒还可以作为抗菌剂纳入纺织品和聚合物中,有效地提高这些材料的抗菌性能。
除了银纳米颗粒,其他纳米材料也被广泛研究用于抗菌应用。
碳纳米管、二氧化钛纳米颗粒和氧化锌纳米颗粒等材料也展现出了优秀的抗菌性能。
碳纳米管的高比表面积和独特的结构特性使其具有卓越的抗菌效果。
而二氧化钛和氧化锌纳米颗粒则通过产生活性氧物种和破坏菌体结构来实现其抗菌作用。
这些纳米材料的抗菌性能在医疗器械、包装材料和水处理等领域有着广泛的应用潜力。
纳米材料的抗菌性能研究还面临一些挑战和问题。
首先,纳米材料的生物安全性仍然是一个关键问题。
虽然纳米材料能够有效抑制细菌的生长,但对于人类和环境的潜在毒性尚不完全了解。
因此,相关的毒性评估和安全性研究非常必要。
其次,纳米材料的稳定性和长期持久的抗菌效果也需要进一步改进。
在实际应用中,纳米材料的抗菌效果可能会受到周围环境和物质的影响,因此需要进行更多的研究来优化其抗菌性能。
总的来说,纳米材料的抗菌性能研究在医学、食品安全和环境保护等方面具有重要的应用前景。
二氧化钛的现状及未来五至十年发展前景二氧化钛是一种重要的功能性材料,具有广泛的应用领域。
本文将从现状和未来五至十年的发展前景两个方面来探讨二氧化钛的发展趋势。
首先,我们来了解二氧化钛的现状。
目前,二氧化钛主要应用于光催化、染料敏化太阳能电池、光学涂层、自清洁表面涂层、防紫外线材料等领域。
其中,光催化是二氧化钛应用最为广泛的领域之一。
二氧化钛能够通过光催化反应将有毒有害物质转化为无害物质,具有很大的环保潜力。
此外,二氧化钛还可以用于制备光催化剂,催化有机合成反应,提高反应效率。
另外,二氧化钛在电池、传感器、电解池等领域也有着广阔的应用前景。
然而,二氧化钛的发展还面临一些挑战。
首先,二氧化钛的纯化和制备技术还需要进一步提高,以满足不同应用领域的需求。
其次,二氧化钛的光催化性能和稳定性还有待改进,以提高其在环境治理和能源领域的应用效果。
此外,二氧化钛还存在一定的毒性和生物相容性问题,需要进行更多的研究和改进。
然而,尽管面临一些挑战,二氧化钛在未来五至十年的发展前景仍然十分广阔。
首先,随着环境保护需求的增加,二氧化钛作为一种环境友好材料将会得到更多的应用。
其次,二氧化钛在能源领域的应用也将得到进一步发展。
例如,二氧化钛被广泛应用于太阳能电池中,可以提高电池的光电转换效率。
另外,随着纳米技术的发展,二氧化钛纳米材料的研究和应用将会得到进一步提升,为二氧化钛的性能改进提供更多可能。
此外,二氧化钛的应用还将延伸到更多领域。
例如,二氧化钛在医疗、食品安全等领域的应用也将得到拓展。
二氧化钛具有抗菌、防腐等特性,可以用于制备医疗器械、食品包装等,并起到杀菌、防腐的作用。
综上所述,二氧化钛作为一种重要的功能性材料,在现状中已经得到广泛应用,并具有良好的发展前景。
未来五至十年,随着技术的进一步发展和研究的深入,二氧化钛的性能将会得到改进和优化,应用领域将会进一步扩大。
我们对二氧化钛的未来发展充满期待,并相信它将会在各个领域发挥出更大的作用。
66囱魁科技2021年•第1期纳米二氧化钛抗菌陶瓷的制备研究唐楷②代高芬①巫沅恒①①隆昌华恒玻陶科技有限公司②四川恒保森新材料有限公司近年来,国内外研究人员对于无机抗菌陶瓷产品研究不断深入,产品广泛适用于医院、厨房、卫生间等。
本文综述了纳米二氧化钛抗菌陶瓷的制备研究和发展趋势,提出以纳米TiO?作为抗菌剂主体,同时掺杂金属离子将其光响应范围拓展到可见光区以提高其量子效率,使DO?在可见光区具备光催化性能,进而开发一类新型抗菌陶瓷。
近年来,国内外在光催化型抗菌材料领域发展迅速,其中,纳米T©是一种非常好的光催化抗菌材料,具有光催化活性高、稳定性好、对人体无害、成本低等优点「吧因此,将纳 米TiO应用到抗菌陶瓷行业,可以既保持原有陶瓷使用功能,具有良好的抗冲击性、耐磨性和耐酸碱的性能葺又可以具备消毒、除臭、灭菌等功能,能有效杀灭与人体接触时残留的大肠杆菌及其他有害细菌巾,具有巨大的经济和社会效益。
1国内外研究现状US10045538B2《具有抗菌性能的陶瓷釉料》公开了一种抗菌陶瓷釉的成分,包含一个或多个抗菌剂进行处理。
专利披露了制作方法和使用的釉色成分,以及基质的抗菌机理。
抗菌剂包括金属氧化物,同时披露了抗菌剂在烧结过程中产生抗菌作用的机制。
US5151122A《生产抗菌陶瓷材料的方法》公开了一种抗菌陶瓷材料的生产方法,该抗菌陶瓷材料中基材含有轻磷灰石结构,同时含有磷酸钙、磷酸氢钙、碳酸钙、硅酸钙、沸石等材料的一种或多种组分。
抗菌金属成分主要为银、铜和锌,同时也阐述了如何在烧结过程中保持产生抗菌作用的机制。
JP2002060285A《抗菌陶瓷器的制造方法》公开了一种低成本制造具有优秀抗菌性的陶瓷的方法。
通过在陶瓷质地坯料的表面,或在陶瓷质地坯料表面上形成的釉层的表面,附着含有抗菌金属和威抗菌金属的化合物的液状体,然后烧制成抗菌性陶瓷。
JP2005022927A《抗菌陶瓷和硼砂器》公开了一种抗菌陶瓷的制造方法,即制造一种釉层含有无机系抗菌药物的抗菌性的陶瓷、搪瓷器皿。
亲水型纳米二氧化钛
亲水型纳米二氧化钛是一种新型的纳米材料,具有很多优异的性能。
它的主要特点是具有极强的亲水性,能够吸附水分子,形成水膜,从而使其表面具有良好的润湿性和自洁性。
这种材料在环境保护、能源、医疗等领域都有广泛的应用前景。
亲水型纳米二氧化钛在环境保护方面有着重要的作用。
它可以作为一种高效的光催化剂,能够利用太阳光将有害物质分解为无害的物质,从而净化环境。
例如,它可以将空气中的有害气体如二氧化硫、氮氧化物等转化为无害的氮气和水蒸气,从而减少空气污染。
此外,亲水型纳米二氧化钛还可以用于水处理,能够有效地去除水中的有机物、重金属等污染物,从而提高水质。
亲水型纳米二氧化钛在能源领域也有着广泛的应用。
它可以作为一种高效的太阳能电池材料,能够将太阳能转化为电能。
此外,它还可以用于制备高效的光催化水分解催化剂,将太阳能转化为氢气和氧气,从而实现清洁能源的利用。
亲水型纳米二氧化钛在医疗领域也有着重要的应用。
它可以用于制备高效的抗菌材料,能够有效地杀灭细菌,从而减少感染的风险。
此外,它还可以用于制备高效的药物载体,能够将药物精确地输送到病灶部位,从而提高治疗效果。
亲水型纳米二氧化钛是一种具有广泛应用前景的新型纳米材料。
它
的亲水性能使其在环境保护、能源、医疗等领域都有着重要的作用。
相信随着科技的不断发展,亲水型纳米二氧化钛将会有更加广泛的应用。
《纳米Ag-TiO2填充树脂力学及光控抗菌性能研究》篇一一、引言随着现代科技的发展,人们对材料性能的要求日益提高,特别是在医疗、食品包装、家居用品等领域,抗菌性能的优劣成为衡量材料性能的重要指标之一。
纳米技术的出现为材料科学带来了新的突破,其中纳米Ag-TiO2复合材料因其独特的力学和光控抗菌性能,受到了广泛关注。
本文将就纳米Ag-TiO2填充树脂的力学性能和光控抗菌性能进行研究。
二、材料与方法1. 材料本研究所用材料包括树脂基体、纳米Ag、纳米TiO2以及相应的填充剂。
所有材料均经过严格筛选,确保其纯度和性能满足实验要求。
2. 方法(1)制备纳米Ag-TiO2填充树脂:将纳米Ag和纳米TiO2按照一定比例混合,加入到树脂基体中,通过搅拌、热压等工艺制备成填充树脂。
(2)力学性能测试:采用万能材料试验机对填充树脂进行拉伸、压缩、弯曲等力学性能测试。
(3)光控抗菌性能测试:在模拟太阳光下,对填充树脂的抗菌性能进行测试,并记录其抗菌效果随时间的变化。
三、结果与讨论1. 力学性能分析(1)拉伸性能:通过拉伸试验发现,纳米Ag-TiO2填充树脂的拉伸强度和断裂伸长率均有所提高,这主要归因于纳米粒子的加入增强了树脂基体的分子间作用力。
(2)压缩性能:压缩试验结果表明,填充树脂的压缩强度和模量均有显著提高,这得益于纳米粒子的优异力学性能和其在树脂基体中的均匀分布。
(3)弯曲性能:弯曲试验显示,纳米Ag-TiO2填充树脂的抗弯强度和韧性均有所提高,这表明纳米粒子的加入改善了树脂基体的抗弯性能。
2. 光控抗菌性能分析(1)抗菌效果:在模拟太阳光下,纳米Ag-TiO2填充树脂表现出优异的抗菌效果,能够有效地抑制细菌的生长和繁殖。
这主要归因于纳米银和纳米二氧化钛的光催化作用,能够在光照下产生具有强氧化性的物质,从而杀灭细菌。
(2)抗菌持久性:随着光照时间的延长,填充树脂的抗菌效果逐渐增强,表明其具有较好的抗菌持久性。
纳米二氧化钛1.概述纳米级二氧化钛,亦称钛白粉。
物理性质为细小微粒,直径在100纳米以下,产品外观为白色疏松粉末,它是一种新型的无机化工材料。
具有透明性、紫外线吸收性、熔点低、磁性强、抗菌、自洁净、抗老化等性能,广泛应用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等众多领域。
本文将从制备、应用两个方面入手,简要介绍纳米二氧化钛材料。
2.制备目前,制备纳米二氧化钛的方法有很多,可分为气相法、液相法[1]两大类。
2.1.气相合成法制备TiO2纳米粒子中典型的气相法主要包括四氯化钛氢氧火焰水解法、四氯化钛气相氧化法、钛醇盐气相氧化或水解法等方法。
四氯化钛氢氧火焰水解法最早由德国Degussa公司开发成功,并生产出当前纳米级超细TiO2粉体的著名牌号之一(P25 );还有美国的卡伯特公司和日本Aerosil公司等也采用该方法生产超细TiO2粉体。
TiCl4气相氧化法的反应初期,TiCl4和O2发生均相化学反应,生成Ti02的前驱体分子,通过成核形成TiO2的分子簇或粒子。
由于非均相成核比均相成核在热力学上更容易,随着反应的进行,TiCl4在Ti02粒子表面吸附并进行非均相反应,使粒子变大[2]。
施利毅等[3]利用N2携带TiCl4气体,预热到435℃后,经套管喷嘴的内管进入高温管式反应器,O2经预热后经套管喷嘴的外管也进入反应器,TiCl4和O2在900-l400℃下反应。
研究了氧气预热温度、反应器尾部氮气流量、反应温度、停留时间和掺铝量对TiO2颗粒大小、形貌和晶型的影响,结果表明:提高氧气预热温度和加大反应器尾部氮气流量对控制产物粒径有利,纳米TiO2,颗粒的粒径随反应温度升高和停留时间延长而增大,当反应温度为1373 K,AlCl3与TiCl4摩尔比为0.25、停留时间为1.73 s时,纯金红石型纳米Ti02颗粒的粒径分布为30-50nm。
华东理工大学[4]首先让可燃气体与过量氧气燃烧,生成高温含氧气流,然后再与经过预热的气态TiCl4呈一定角度交叉混合,使反应在高速下进行。
编辑本段应用特性纳米TiO2的功能及用途纳米TiO2具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。
纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中。
2。
1.杀菌功能在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。
在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染.因此,纳米TiO2能净化空气,具有除臭功能。
1)纳米二氧化钛抗菌特点:1 对人体安全无毒,对皮肤无刺激性.2 抗菌能力强,抗菌范围广.3 无臭味、怪味,气味小.4耐水洗,储存期长。
5热稳定性好,高温下不变色,不分解,不挥发,不变质。
6即时性好,纳米二氧化钛抗菌剂仅需1h就能发挥效果,而其他银系抗菌剂效果则需约24h。
7纳米二氧化钛是一种永久性维持抗菌效果的抗菌剂。
8具有很好的安全性,科用于食品添加剂等,与皮肤接触无不良影响。
2)纳米二氧化钛的抗菌原理:纳米二氧化钛在光催化作用下使细菌分解而达到抗菌效果的。
由于纳米二氧化钛的电子结构特点为一个满 TiO2的价带和一个空的导带,在水和空气的体系中,纳米二氧化钛在阳光尤其是在紫外线的照射下 ,当电子能量达到或超过其带隙能时 ,电子就可从价带激发到导带 ,同时在价带产生相应的空穴,即生成电子、空穴对 ,在电场的作用下 ,电子与空穴发生分离,迁移到粒子表面的不同位置,发生一系列反应 : TiO2 + hν e —— + hH2O + h-—·OH+ HO2 +e——O2 ·O2 ·+ H-—HO2·2HO2· —— O2 + H2O2H2O2 +O2 · -—·OH+OH +O2吸附溶解在 TiO2 表面的氧俘获电子形成O2 ·, 生成的超氧化物阴离子自由基与多数有机物反应(氧化) ,同时能与细菌内的有机物反应,生成 CO2和 H2O;而空穴则将吸附在 TiO2 表面的 OH 和H2O氧化成·OH,·OH 有很强的氧化能力,攻击有机物的不饱和键或抽取 H原子产生新自由基 ,激发链式反应 ,最终致使细菌分解。
掺杂纳米Ti0复合材料的制备方法及应用摘要:纳米二氧化钛光催化性能在环境保护得到越来越多的应用,但其光催化作用要经过紫外光照射才能得以发挥,采用掺杂方式制备纳米TiO2复合材料能显著加强二氧化钛的光催化能力。
本文讨论了掺杂纳米二氧化钛的制备方法、掺杂方式,及其应用前景。
关键词:掺杂纳米二氧化钛制备应用纳米二氧化钛作为一种无机抗菌材料,粒径小,表面积大,具有光化学性质稳定、优异的紫外线屏蔽作用、无毒、价廉等许多优异的特性,在陶瓷、环保、涂料、日用品、防晒类护肤品、食品包装薄膜、纤维等领域有广阔的应用前景。
纳米二氧化钛还可添加在汽车的金属面漆中,能使涂层产生丰富而神秘的颜色效应。
纳米二氧化钛具有较好的紫外线吸收与反射能力,但其光催化杀菌作用要经过紫外光照射才能得以发挥,而且纯纳米二氧化钛光催化效率较低。
采用离子掺杂、表面增敏和复合半导体等方法制备纳米TiO2复合材料,改善纳米二氧化钛的光谱性能成为研究的热点。
纳米TiO2改性是通过掺杂离子来降低禁带宽度,增加光催化活性,拓宽其光谱响应范围。
掺杂方法主要有溶胶凝胶法、水热法、高温雾化法、溅射法、共沉淀法等。
其中溶胶-凝胶法应用最广。
1制备方法采用溶胶-凝胶法制备纳米胶体TiO2,以钛酸四异丙酯为原料进行水解制备纳米胶体TiO2。
钛醇盐在水中迅速发生水解和缩聚反应而生成水合TiO2胶体,调节PH值,加入少量十二烷基硅酸钠,将掺杂物加入溶胶中,搅拌均匀,得掺杂纳米TiO2溶胶,去水得凝胶,加热得到掺杂纳米TiO2材料。
还可以将掺杂纳米TiO2胶体涂覆在玻璃基底上,再晒干、热处理得到掺杂纳米TiO2薄膜。
在胶体中加入一定量的高分子聚合物,可以防止TiO2薄膜在烧结过程中开裂,而且能提高TiO2薄膜的比表面积。
实验中若水量太少,则形成的TiO2缩聚呈线状,不利于制备纳米多孔薄膜;只有加入足够量的水,确保水解过程缓慢完成,才能获得高质量的三维网络状薄膜。
2掺杂方式纳米二氧化钛掺杂方式有金属掺杂、非金属掺杂、金属和非金属共掺杂。
纳米粒子的光催化机理及其抗菌效能二氧化钛纳米粒子的光催化机理及抗菌效率在XXXX、藤岛和本田发现,在光伏电池中二氧化钛单晶分解水后,纳米二氧化钛的多相光催化已成为研究热点,并已广泛应用于环保、健康等领域。
研究表明,纳米二氧化钛比块体材料具有更高的光催化性能这主要是由于量子尺寸效应,这使得价带和导带成为两个独立的能级。
能隙变宽,导电势变为负,价带势变为正,从而获得更强的氧化还原能力并提高其光催化能力。
纳米二氧化钛粒径小,光生电子从晶体扩散到表面的时间短,降低了电子和空穴的复合几率,有效提高了光催化性能。
同时,纳米粒子具有大的比表面积,这增强了吸附基底的能力并促进了光催化反应。
当照射能量大于或等于二氧化钛带隙能量的光时,二氧化钛吸收光子产生电子-空穴对,电子-空穴对将电荷从溶液或气相通过禁带转移到吸附在表面上的物质。
空穴捕获粒子表面吸附物或溶剂中的电子,激活并氧化最初不吸收光的物质,并还原电子受体接收表面上的电子但同时,电子-空穴复合会发生在表面和内部,降低其光催化效率。
光生电子和空穴向被吸附的有机或无机物种的转移是电子和空穴向二氧化钛转移的结果在表面上,它提供电子来还原电子受体,通常是水溶液中的氧。
空穴迁移到表面,并与提供电子的物质结合,氧化该物质。
对于电子空穴,电荷迁移的速率和概率取决于每个导带和价带边缘的位置以及被吸附物质的氧化还原电位。
氧化还原反应只能在受体电位低于半导体的导带电位且供体电位高于价带电位时发生。
与电荷向物种转移竞争的是电子和空穴的复合,如粒子内部的复合和粒子表面的复合。
1.4研究重点当前的研究重点是如何提高光催化剂的量子效率如果适当的空穴或表面缺陷态可以用来捕获电子或空穴,则可以防止电子-空穴复合。
价带中的空穴是氧化剂,导带中的电子是还原剂。
大多数光催化反应利用空穴氧化剂的能量提供还原物质与电子反应。
防止电子和空穴的复合是我们研究的关键。
如何提高1.5光催化反应是发生在固-液或固-气界面的多相反应光催化材料不仅需要很大的面积,而且还需要能够一般地接收光,所以它更适合以粉末和薄膜的形式存在。
《纳米材料导论》课程报告题目:纳米TiO2的制备方法与应用学生姓名:李玉海学生学号:2010130101025纳米TiO2的制备方法与应用摘要:综述了纳米二氧化钛材料的制备及应用,论文主要根据二氧化钛的表征及性能,深入地讨论了纳米二氧化钛材料的一些制备方法及应用。
从物理法和化学法、或从液相法和气相法,详细地概述了二氧化钛粉体制备。
在诸多性能的分析下,二氧化钛纳米材料在空气净化、废水处理、杀菌消毒、化妆品、涂料、塑料中的应用等方面起到了实际作用。
在写作过程中,本文通过查找各种关于纳米材料以及有关纳米科技的书籍和文献进行论述,充分体现了纳米材料在生活中的应用。
关键词:纳米二氧化钛制备应用前景1. 纳米TiO2的概述钛的氧化物——二氧化钛,是雪白的粉末,是最好的白色颜料,俗称钛白。
以前,人们开采钛矿,主要目的便是为了获得二氧化钛。
钛白的粘附力强,不易起化学变化,永远是雪白的。
特别可贵的是钛白无毒。
它的熔点很高,被用来制造耐火玻璃,釉料,珐琅、陶土、耐高温的实验器皿等。
具有独特的光催化性、优异的颜色效应以及紫外线屏蔽等功能,在光纳米TiO2催化剂、化妆品、抗紫外线吸收剂、功能陶瓷、气敏传感器件等方面具有广阔的应用前景。
1.2纳米TiO2的制备方法纳米TiO2在光催化领域具有举足轻重的地位,因此制备高光催化性能的纳米TiO2一直也是光催化研究的重点内容。
纳米TiO2的制备方法大致可以分为气相法和液相法。
1.2.1气相法气相法是正在开发的一种优良方法,多用于制备纳米级别的粒子或薄膜,该法是使用钛卤化物、钛有机化合物等在加热条件下挥发,经气相反应使生成物沉淀下来。
气相法合成纳米Ti02颗粒具有纯度高、粒度细、分散性好、组分易于控制等优点。
但是气相法由于受能耗大、设备复杂、产品生产成本高、对设备材质及工艺过程要求高等条件限制,在我国要实现工业化生产,还要解决设备材质及一系列制备的工程技术问题。
1.2.2液相法液相法是选择可溶于水或有机溶剂的钛盐,使其溶解并以粒子或分子状态混合均匀,再选择一种合适的沉淀剂或采用蒸发、结晶、升华、水解等过程,将钛离子均匀沉淀后结晶出来,再经脱水或热分解制得粉体。
二氧化钛抗菌灭菌原理二氧化钛抗菌灭菌原理1. 引言二氧化钛(TiO2)是一种多功能材料,在许多领域中都显示出了巨大的应用潜力。
其中,其在抗菌灭菌方面的作用备受关注。
本文将深入探讨二氧化钛的抗菌灭菌原理,从理论到实践,帮助读者全面了解二氧化钛的抗菌灭菌机制。
通过本文的学习,读者将会对二氧化钛的应用有更深入的理解。
2. 二氧化钛的抗菌灭菌原理概述二氧化钛广泛应用于空气净化、水处理和医疗设备等领域中,主要归功于其出色的抗菌灭菌能力。
二氧化钛表面上的氧化态钛离子(Ti4+)可以与水分子结合生成羟基根离子(OH-),使得表面呈现出超亲水特性。
这种特性随后导致了液体上的表面张力减小,从而使得水分子能迅速渗入菌体并使其发生溶解或破裂。
二氧化钛属于重金属氧化物,在光照条件下可以发生光催化作用,其中紫外光激发二氧化钛表面上的电子,形成活性氧物种,这些物种具有强氧化性,能够破坏菌体的细胞结构,达到杀灭细菌的效果。
3. 抗菌机制的研究为了更加深入地研究二氧化钛的抗菌灭菌机制,许多学者进行了大量的实验和研究。
他们发现,二氧化钛的抗菌作用与其晶体形态、晶体表面结构以及晶胞结构有关。
当二氧化钛存在于晶体结构中时,其表面反应活性明显增高,从而改善了抗菌效果。
二氧化钛抗菌机制还与光照条件、温度和湿度等环境因素有关。
较强的紫外光线可以增加二氧化钛抗菌的效果,而高温和干燥的条件下,二氧化钛的抗菌效果会明显降低。
4. 抗菌灭菌原理的应用二氧化钛的抗菌灭菌原理在多个领域中得到了广泛应用。
在空气净化领域,二氧化钛被用于净化室内空气中的细菌和病毒,以改善人们的生活环境。
在食品加工和储存中,二氧化钛可以作为食品包装材料的添加剂,来抑制食品中的细菌和霉菌的生长,从而延长食品的保质期。
在医疗领域,二氧化钛可以应用于医疗设备的材料表面,以减少细菌感染的风险。
这些广泛的应用表明,二氧化钛的抗菌灭菌原理在现实生活中具有重要的意义。
5. 个人观点和理解对于我个人而言,二氧化钛的抗菌灭菌原理是一种非常有价值的技术。
纳米二氧化钛抗菌材料的研究与应用进展 摘要:介绍了纳米TiO2应用于抗菌材料领域的优势、光催化抗菌机理及其研究进展,综述了纳米TiO2在杭菌陶瓷、抗菌不锈钢、杭菌塑料、杭菌涂料等方面的应用。 关键词:纳米TiO2、抗菌、光催化、应用
1 引言
近年来,纳米TiO2抗菌陶瓷,作为一种新型的功能陶瓷材料,各受业内科技界瞩目,正成为国内外同行研发的重点产品。 抗菌型纳米TiO2陶瓷亦称绿色陶瓷,它以无毒、无味、无刺激性、热稳定性和耐热性好,不燃烧的白色纳米TiO2作为抗菌材料,通过溶胶-胶涂层、化学气相沉积或物理相沉积工艺,沉积在陶瓷基体上而制成。该生产工艺完全可以适用于日用瓷及建筑卫生陶瓷制品。使产品增添新的使用功能。研究证明,在陶瓷基体上形成的纳米TiO2薄膜层,对绿浓杆菌、大肠杆菌,金黄色葡萄球菌、沙门氏菌及曲霉菌等均有极强的杀灭功能。该生态陶瓷的研究成功,对于防止疾病传播、净化环境卫生、保护人体健康具有十分重要的意义,发展前景广阔
2 纳米TiO2用于抗菌领域的优势 可用作光催化抗菌剂的材料主要为n型半导体,如TiO2、ZnO、CdS、WO3、Sn02、ZrO等。根据选择抗菌剂须遵循的原则:对人体安全无毒,对皮肤没有刺激性;光催化活性高,抗菌能力强,抗菌范围广;无臭味、怪味,外观颜色浅,气味小;热稳定性好,高温下不变色、不分解、不挥发、不变质;价格便宜,来源容易等[1],这些半导体中以TiO2、CdS、ZnO的催化活性最高,然而ZnO在水中不稳定,会在粒子表面生成Zn(OH),影响抗菌效果; CdS在光照射时不稳定,发生阴极光腐蚀,产生Cd2+离子,对生物有毒性,对环境有害;而纳米TiO2符合以上原则。 TiO2毒性低,安全性高,对皮肤无刺激,抗菌能力强,具有即效抗菌效果,与银系抗菌剂相比,发挥TiO2的抗菌效果只需24左右[2],而银系抗菌剂的效果发挥需要大约24h。纳米TiO2
抗菌作用的发挥是通过光催化作用进行九它本身不会像其它抗菌剂那样随着抗菌剂的使用
逐渐消耗而降低抗菌效果,所以二氧化钦光催化抗菌剂具有持久的抗菌性能。另外光催化抗菌剂具有广谱抗菌的特点,对各种常见的致病菌都有很好的抑制和杀灭作用。并且一般抗菌剂只有杀菌作用,但不能分解毒素。经实验证明,纳米TiO2 (锐钦矿型)对绿脓杆菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌、芽杆菌和曲霉等具有很强的杀灭能力街。基于以上纳米TiO2的优良性能,它是目前最常用的光催化抗菌剂。
3 TiO2光催化抗菌机理 3.1 TiO2光催化机理[3,4] TiO2作为一种半导体光催化材料,由充满电子的价带、传导电子的导带和不能存在电子的禁带构成,金红石型TiO2满的价带和空的导带之间的禁带宽度为3.0ev,相当于413.3nm光子的能量;锐钛矿型为3.20eV,相当于387.snm光子的能量,当大于其带隙能的光照射到TiO2,产生带负电的电子(e)和带正电的空穴(h+): TIO2→e-+h+ 该电子具有强还原能力,子与空气中的氧反应生成具有强氧化能力的氧负离子 e- + O2 → ·0-2 而空穴具有氧化能力,光催化剂表面的微量水分反应,成氢氧根负离子(·OH ): H+ + H2O → ·OH + H+ 由于·0-2、·OH具有强氧化能力,比如·OH自由基具有402MJ /mol的反应能,高于有机化合物中的各类化学键能,可以引发绝大多数有机化合物分子发生氧化反应,并进一步氧化生成CO2和H2O,因此具有很好的消毒杀菌功能。 3.2 TiO2光催化杀菌机理 二氧化钛光催化杀灭微生物细胞有两种不同的生化机理闭。一种是紫外光激发TiO2和细胞直接作用,即光生电子和光生空穴直接和细胞壁、细胞膜或细胞的组成成分发生化学反应;另一种则是光激发TiO2与细胞的间接反应,即光生电子或光生空穴与水或水中的溶解氧先反应,生成·OH或H2O·等活性氧类,它们再与细胞壁、细胞膜或细胞内的组成成分发生生化反应。在实验中发现TiO2纳米颗粒越小,杀灭细菌的效果越好,其光催化灭菌作用可以在光照结束后的一段时间内继续有效。
4 纳米TiO2研究进展 过去对纳米TiO2的研究和应用都利用粉末TiO2的光催化特性来降解有机污染物。但粉末光催化剂在应用中存在反应过程中必须搅拌、反应后难回收等技术难题而限制了其工业用途。为了克服这些粉末催化剂应用中所遇到的困难,使其广泛的应用于各个领域,人们开始致力于光催化薄膜的研究和应用。近年来,TiO2光催化薄膜得到广泛的研究,TiO2光催化薄膜已在多种基材如陶瓷、玻璃、不锈钢、纤维、纸、木材、无织布、塑料、树脂板等表面得到应用,有效利用生活空间里的微弱紫外光源和TiO2透明薄膜共同组成的光催化体系已成为一个倍受关注的领域。例如:在卫生陶瓷表面镀一层或多层TiO2,薄膜使其具有杀菌、消毒、易于清洗等特殊功能;使用含有纳米TiO2光催化剂的抗菌涂料刷涂一些特殊场(如医院、公共场所)的墙壁,不仅可杀灭细菌,还可分解室内的有害气体。当前一些科研工作者致力于低温纳米TiO2薄膜的制备,目前作者正从事这方面的研究。以前所采用的高温锻烧过程会导致晶粒长大,并且表面脱羟基过程会引起表面积和经基化程度的显著降低,而这些都会导致TiO2光催化活性的降低。低温制备避免高温锻烧过程,可提高TiO2的光催化活性;低温镀膜还可用于不耐高温的基体表面镀膜,扩大其应用;另外,这样也有利于简化工艺、降低成本。低温制备是当前制备纳米TiO2薄膜的发展方向。
5 纳米二氧化钛在抗菌方面的应用 随着人们生活质量和水平的不断提高, 对TiO2光催化杀菌性能进行了不断的开发和利用, 并将其广泛应用于日常生活中。根据需要不同, 纳米TiO2可制备成粉末或薄膜材料。将纳米TiO2薄膜涂覆于材料表面制备成抗菌材料,如抗菌陶瓷、抗菌玻璃、抗菌不锈钢等,将纳米TiO2粉末掺杂于其他材料中可制备成抗菌塑料、抗菌涂料、抗菌纤维等。 5.1 抗菌陶瓷 涂覆有TiO2纳米膜的抗菌瓷砖和卫生陶瓷在日本已进行了工业化生产。主要用于医院、食品加工等场所[5],但抗菌效果受到了光源条件的限制。为了充分利用室内的太阳光和弱光,人们又积极开发了新型的抗菌陶瓷。刘平[6] 制备的表面镀有纳米TiO2薄膜的自清洁陶瓷,在无光照条件下,15min内对金黄色葡萄球菌的灭菌率超过80%。钱泓[7]制备的TIO2抗菌陶瓷,在普通荧光灯下,对金黄色葡萄球菌的灭菌率可达以85%。抗菌玻璃纳米TiO2薄膜涂覆于玻璃( 如日用玻璃器皿、平板装饰玻璃等) 表面,可制成有杀菌功能的玻璃制品,广泛应用于医院、宾馆等大型公共场所。雷阎盈[8]制备的TiO2微晶膜玻璃,具有杀菌广谱高效的特点。自然光照射30min后,对大肠杆菌、金黄色葡萄球菌、白色念珠菌的杀菌率均达到90%以上。 5.2 抗菌不锈钢 纳米TiO2薄膜涂覆于不锈钢表面可制备成具有杀菌性能的不锈钢,在食品工业、医疗卫生乃至一般家庭都有广泛的应用前景。汪铭[9]制备了涂覆有Ag+/TiO2薄膜的抗菌不锈钢,与普通不锈钢相比,其材料性能基本相同,抗菌性能随着膜层中含银量的增加而提高。当含银量大于2%时,不锈钢的抗菌率可达到90%以上。 5.3 抗菌塑料 纳米TiO2粉末与树脂高分子材料掺混可以制备成抗菌塑料。徐瑞芬[10]制备的经表面包覆处理过的纳米锐钛矿相TiO2抗菌塑料具有长效广谱的抗菌性能。丁更新用掺杂银离子的纳米二氧化钛与聚乙烯母粒掺混制备的抗菌塑料,吹制成薄膜用于牛奶包装,能起到杀菌保鲜作用,在冷藏条件下,可保存10d。 5.4 抗菌涂料 将纳米TiO2粉末添加于苯丙配液中可制备成抗菌涂料,是值得大力推广的一种绿色环保材料。徐瑞芬[11]自制的纳米TiO2抗菌涂料,杀菌作用彻底持久,而且在室内自然光、日光灯甚至黑暗处微光条件下,也能起到较强的杀菌效果,对大肠杆菌、金黄色葡萄球菌、枯草芽孢的杀菌率均可达到90%以上。 5.6 其它 纳米TiO2粉体还可以掺入天然纤维或聚合物长丝中纺制成抗菌纤维,用于制作医疗用品等。另外,黎霞[12]制备的纳米氧化钛/磷灰石复合材料,既可以用于化妆品材料,又可用于和多种医用高分子材料制备成高性能的纳米抗菌复合材料,其在无光照和有光照培养下,都具有较强的抗菌性能。
6 结语 人们在提高TiO2光催化活性方面做了大量的工作和深入的研究,取得了一定的突破进展。但TiO2的晶态结构、表面结构、能带结构等结构因素与其光催化性能的之间内在联系还需要大量仔细的研究。在有效提高太阳光和可见光的利用率方面,其催化反应机理还需深入探讨。如今的实验理论离大规范生产和应用还有一段距离,但是作为一种新型的无机抗菌材料,它显示出潜在的优异性能是不容忽视的。 参考文献 [1] 祖庸,雷阅盈,李晓娥.纳米TiO2一种新型的无机抗菌剂[J].现代化工11,(5):46-48 [2] 高派,郑珊,张育红.纳米氧化钱光催化材料及应用[M].北京化学工业出版社,2002.12 [3] 杨毅,邓国栋,尹强,等.纳米SiO2/TiO2 复合食品抗菌材料[J]. 精细化工,2001,18(12):703-70 [4] 鞠剑峰,李澄俊,徐铭,等.纳米二氧化钛复合材料的抗菌性能研究[J].精细化工,2003,20(11):41-43. [5] 高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002. [6] 刘平,王心晨,付贤智,等.光催化自清洁陶瓷的制备及其特性[J].无机材料学报,2000,15: 88-92 [7] 钱泓,范益群,徐南平,等. TiO2生态陶瓷的制备及其抗菌性能[J].南京化工大学学报,2001,23(3) [8] 雷盈,张秀成,余历军,等. TiO2纳米微晶膜杀菌玻璃的研究[J].建筑玻璃与工业玻璃,2003,4:21-23. [9] 汪铭,丁更新,曹旭丹,等.不锈钢基片上制备AgZ/TiO2抗菌薄膜的研究[J]. 材料科学与工程学报,2003,21(3): 379-381. [10] 徐瑞芬,许用艳,付国柱,等.纳米TiO2在抗菌塑料中的应用性能研究[J]. 塑料,2002,31(3): 2-29. [11] 徐瑞芬,徐广为,许用艳.复合涂料中纳米TiO2降解污染物和抗菌性能研究[J].化工进展,2003,22(11):1193-1195. [12] 黎霞,魏杰,李玉宝.二氧化钛/磷灰石纳米抗菌复合材料的研究[J].功能材料,2004,35(1): 119-121.