北京工业大学数学建模作业汇总
- 格式:doc
- 大小:1.36 MB
- 文档页数:135
实验五解:依据题意“总的停车距离=反应距离+刹车距离”,设L表示跟车距离,s表示刹车距离,v表示车速,t表示反应时间,即:L=vt+s用平方和最小方法估计系数s、t:min s,ts+v i t−L i2 ni=1将50组实验数据代入计算并取最优解,相应的LINGO程序如下图1-1所示:图1-1(详细如下)model:sets:quantity/1..50/:v,L;endsetsdata:v= 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25;L= 2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 26 34 34 46 26 36 60 80 20 26 54 32 40 32 40 50 42 56 76 84 36 46 68 32 48 52 56 64 66 54 70 92 93 120 85;enddatamin=@sum(quantity:(s+v*t-L)^2);@free(s);@free(t);endLINGO程序计算结果截取如下图1-2所示:图1-2由计算结果可知:平方和最小时,s=-17.57909,t=3.932409。
即,L=3.932409v−17.57909解:依据题意设第一个作业点为坐标原点,即(0, 0)点。
则第二个作业点的坐标为(75,330),第三个作业点的坐标为(-225, -40)。
设两个临时机场的位置坐标分别为A x a,y a、B x b,y b,A机场给三个作业点提供的油料分别为a1、a2、a3,B机场给三个作业点提供的油料分别为b1、b2、b3,要求每月从机场到作业点的吨公里数最少,建立数学模型:目标函数为:Min L=a1x a2+y a2+b1x b2+y b2+a2x a−752+y a−3302+b2x b−752+y b−3302+a3x a+2252+y a+402+b3x b+2252+y b+402约束条件为:a1+b1=25a2+b2=14a3+b3=34相应的LINGO程序如下图2-1所示:图2-1(不是很清晰,详细见下)min=a1*(xa^2+ya^2)^0.5+b1*(xb^2+yb^2)^0.5+a2*((xa-75)^2+(ya-330)^2)^0 .5+b2*((xb-75)^2+(yb-330)^2)^0.5+a3*((xa+225)^2+(ya+40)^2)^0.5+b3*((x b+225)^2+(yb+40)^2)^0.5;a1+b1=25;a2+b2=14;a3+b3=34;@free(xa);@free(xb);@free(ya);@free(yb);LINGO程序运行结果如下图2-2所示:图2-2由计算结果可知:临时机场A建立的位置坐标为(0, 0)处,机场B建立的位置坐标为(-225,-40)处时,并且A机场给第1个作业点提供油料25t,给第2个作业点提供14t,给第3个作业点提供0t;机场B给第1个作业点提供0t,给第2个作业点提供0t,给第三个作业点提供34t,这种方案下每月的吨公里数最少为4737.816。
2微分方程实验1、微分方程稳定性分析绘出下列自治系统相应的轨线,并标出随 t 增加的运动方向,确定平■衡点, 并按稳定的、渐近稳定的、或不稳定的进行分类:解:(1)由 f (x ) =x=0, f (y ) =y=0;可得平衡点为(0,0),___ 1 0系数矩阵A,求得特征值入1=1,入2=1;0 1p=-(入1+入2)=-2<0 , q=入1入2=1>0;对照稳定性的情况表,可知平■衡点(0, 0) 是不稳定的。
图形如下:(2)如上题可求得平衡点为(0,0 ),特征值入1=-1,入2=2;p=-(入1+入2)=-1<0 , q-入1入2=-2<0;对照稳定性的情况表,可知平■衡点(0, 0) 是不稳定的。
其图形如下:dx⑴dt dtx, y;dxdtdydt dx x, ⑶尸 2y ;晋 dx y, (4) ? 2x;也 dtx+1, 2y.(3) 如上题可求得平■衡点为(0,0 ),特征值入1=0 + 1.4142i,入2=0 -1.4142i; p=-(入1+入2)= 0, q-入1入2=1.4142>0;对照稳定性的情况表,可知平■衡点(0, 0)是不稳定的。
其图形如下:(4) 如上题可求得平衡点为(1,0 ),特征值入1=-1,入2=-2;p=-(入1+入2)= 3>0, q=入1入2=2>0;对照稳定性的情况表,可知平■衡点(1, 0) 是稳定的。
其图形如下:2、种群增长模型一个片子上的一群病菌趋向丁繁殖成一个圆菌落.设病菌的数目为N,单位成员的增长率为r1,则由Malthus生长律有竺r1 N,但是,处丁周界表面的dt那些病菌由丁寒冷而受到损伤,它们死亡的数量与N2成比例,其比例系数为r2, 求N满足的微分方程.不用求解,图示其解族.方程是否有平衡解,如果有,是否为稳定的?解:由题意很容易列出N满足的微分方程:坐r1N r2N; f(N)dt令f(N)=O,可求得方程的两个平■衡点N1=0,N2=「22/r i21 1d2N 1 5 52 (r1 r2N 2) (r1N r2N 2)dt 2进而求得A d2N 令r dt2 2 0可求得N=r2 /4r〔则N=N1 N=N2 N=r22/4r i2可以把第一象限划为三部分,且从下到上三部分中分0,冬dt2.2 2 c dN cdN c dN cdN 0, ;—0, —r 0; —0, ―rdt dt dt dt则可以画出N (t) 的图形,即微分方程的解族,如下图所示:由图形也可以看出,对丁方程的两个平■衡点,其中N1=0是不稳定的;N2=^2 /「;是稳定的o3、有限资源竞争模型1926年Volterra 提出了两个物种为共同的、有限的食物来源而竞争的模型当[b MX h 2X 2)]x dt dX2 电 2(h i X i h 2X 2)]X 2dt假设也 坦,称垣为物种i 对食物不足的敏感度,(1) 证明当x1(t0)>0时,物种2最终要灭亡; (2) 用图形分析方法来说明物种 2最终要灭亡.解:(1)由上述方程组 f (x1) =[b 1〔S' h 2x 2)]x 1=0,f (x2)=电2 (h 1X 1h 2X 2)]X 2=0,可得方程的平■衡点为R (0,0), P 1 (E,0),P 2 (0, M).2 h 2对平衡点P 。
1.曲线拟合有关部门希望研究车速与刹车距离之间的关系, y=β0+β1x ,其中x 为车速,y 为刹车距离,现测得50组数据(xi ,yi )(i=1,2,3…,50)(见表3.1,用三种方法((1)平方和最小;(2)绝对偏差和最小; (3)最大偏差最小)估计系数β0和β1,并分析三种方法的计算效果(注:用LINGO 软件求解,用其他软件画出散点图和回归直线),说明哪一种方法得到有结果更合理. 解:(1)平方和最小,根据最小二乘方法求解,相应的无约束问题为()2n1i i i 10y -x min 10∑=+=ββββ,,为了方便计算,将β0, β1换成A,B ,相应的LINGO程序如下: sets :quantity/1..50/: x,y; endsets data :y=2,10,4,22,16,10,18,26,34,17,28,14,20,24,28,26,34,34,46,26,36,60,80,20,26,54,32,40,32,40,50,42,56,76,84,36,46,68,32,48,52,56,64,66,54,70,92,93,120,85;x=4,4,7,7,8,9,10,10,10,11,11,12,12,12,12,13,13,13,13,14,14,14,14,15,15,15,16,16,17,17,17,18,18,18,18,19,19,19,20,20,20,20,20,22,23,24,24,24,24,25; enddatamin =@sum (quantity: (A+B*x-y)^2); @free (A); @free(B);计算结果如图所示用LINGO解得:A= -17.57909,B=3.932409,所以y= -17.57909+3.932409*x. β0= -17.57909,β1=3.932409(2)绝对偏差和最小,根据最小一乘方法求解,相应的无约束问题为∑=+=ni1ii1y-xmin1ββββ,,为了方便计算,将β0, β1换成A,B,相应的LINGO程序如下:sets:quantity/1..50/: x,y;endsetsdata:y=2,10,4,22,16,10,18,26,34,17,28,14,20,24,28,26,34,34,46,26,36,60,80,20,26,54,32,4 0,32,40,50,42,56,76,84,36,46,68,32,48,52,56,64,66,54,70,92,93,120,85;x=4,4,7,7,8,9,10,10,10,11,11,12,12,12,12,13,13,13,13,14,14,14,14,15,15,15,16,16,17, 17,17,18,18,18,18,19,19,19,20,20,20,20,20,22,23,24,24,24,24,25;enddatamin=@sum(quantity: @abs(A+B*x-y));@free(A); @free(B);计算结果如图所示用LINGO 解得:A= -11.6,B=3.4, 所以y= -11.6+3.4*x. β0= -11.6,β1=3.4(3)最大偏差最小,根据最大偏差的最小的方法求解,相应的无约束问题为i i 101y -x max min 10ββββ+=≤≤ni ,,为了方便计算,将β0, β1换成A,B ,相应的LINGO程序如下: sets :quantity/1..50/: x,y; endsets data :y=2,10,4,22,16,10,18,26,34,17,28,14,20,24,28,26,34,34,46,26,36,60,80,20,26,54,32,40,32,40,50,42,56,76,84,36,46,68,32,48,52,56,64,66,54,70,92,93,120,85;x=4,4,7,7,8,9,10,10,10,11,11,12,12,12,12,13,13,13,13,14,14,14,14,15,15,15,16,16,17,17,17,18,18,18,18,19,19,19,20,20,20,20,20,22,23,24,24,24,24,25; enddatamin =@max (quantity: @abs (A+B*x-y)); @free (A); @free (B); 计算结果如图所示用LINGO解得:A= -12,B=4,所以y= -12+4*x. β0= -12,β1=4X轴为速度,Y轴为距离,蓝色点多已知数据点,y1,y2,y3分别为前三种方法求得的数据点,黑色线为通过蓝色数据点得到的线性回归方程y=1.445x+6.121,比较三种方法得到曲线,可以看到与红色曲线吻合度高于其他两种方法,所以第一种方法得到的结果更为合理。
第三次作业1.生产计划安排某公司使用三种操作装配三种玩具一玩具火车、玩具卡车和玩具汽车.对于二种操作可冃时间限制分别是每天430分钟、460分钟和420分钟,玩具火车、玩具代车和玩具汽车的单位收入分別是3美元、2美元和5美元•每辆玩具火车在三种操作的装配时间分別是1分钟、3分钟和1分钟•毎辆玩具K车和每辆玩具汽车相应的时间是(2,0,4)和(1,2,0)分钟(零时间表示不使用该项操作).(1)将间题建立成一个线性规划模型,确定最优的生产方案.(2)对于操作1,假定超过它当前每天43()分钟能力的任何附加时间必须依靠每小时50美元的加班获得•每小时成本包括劳动力和机器运行费两个方面. 对于操作1,使用加班在经济I:冇利吗?如果冇利,最多増加多少时间?(3)假定操作2的操作员已同意每天加班工作2小时,其加班费是45美元•小时.还有,操作自身的成本是•小时10美元.这项活动对于每天收入的实际结果是什么?(4)操作3需要加班时间吗?解:(1)设生产玩具火车、玩具卡车和玩具汽车的数量分别为XI, X2, X3,则H 标函数为:max Z=3X 1+2X2+5X3约朿条件:XI +2X2 +X3V 二4303X1 +2X3<=460XI +4X2 <=420Xl>=0; X2>=0; X3>=0输到ling。
里面的结果为;Global optimal solution found.Objective value:1350.000Infeasibilities: 0.000000Total solver iterations: 2Model Class: LPTotal variables: 3Non linear variables: 0Total constraints: 4Nonlinear constraints:Total non zeros:10Non linear non zeros:VariableValue Reduced CostXI0.000000 4.000000X2100.0000 0.000000X3230.00000.000000RowSlack or SurplusDual Price11350.0001.000000 2 0.000000 1.0000003 0.000000 2.000000420.000000.000000所以玩具火车、玩具卡车和玩具汽车的生产数量分别为:0、100. 230; 最大的收入为1350.(2)表明操作1每工作1分钟的利润是2美元,如果是要加50美元每小时的加工费的话,一定 是赚的。
最优化与存储模型实验作业一、 基本实验1.拟合问题有关部门希望研究车速与刹车距离之间的关系,01y x ββ=+,其中x 为车速,y 为刹车距离,现测得50组数据(,)(1,2,,50)i i x y i =(见表5.1),用三种方法((1)平方和最小;(2)绝对偏差和最小;(3)最大偏差最小)估计系数0β,1β,并分析三种方法的计算效果(注:用Lingo 软件求解,用其他软件画出散点图和回归直线),说明那一种方法得到的结果更合理。
解:x 为车速,y 为刹车距离,(1)平方和最小;(2)绝对偏差和最小;(3)最大偏差最小。
三种情况下相应的无约束问题为:01010150210,15010,110,150min (),min ,min max ,i i i i i i i i i z x y z x y z x y ββββββββββββ==≤≤=+-=+-=+-∑∑编写相应的Lingo 程序分别为(由于β和α在程序中不好体现,我们仍然用a表示α,b表示β):(1)平方和最小:sets:Quantity/1..50/: x, y;endsetsdata:x=4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14,15, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 20, 22,23, 24, 24, 24, 24, 25;y=2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34, 34, 46, 26, 36 ,60, 80, 20, 26, 54, 32, 40, 32, 40, 50, 42, 56, 76, 84, 36, 46, 68, 32, 48, 52, 56, 64, 66, 54, 70, 92, 93, 120, 85;enddataMin=@sum(quantity: (a*x+b-y)^2);@free(a);@free(b);运行结果见xueyunqiang-chapter5-1所以拟合结果是:=-y x3.93240917.57909(2)绝对偏差和最小:编写Lingo程序:sets:Quantity/1..50/: x, y;endsetsdata:x=4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 20, 22, 23, 24, 24, 24, 24, 25;y=2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34, 34, 46, 26, 36 ,60, 80, 20, 26, 54, 32, 40, 32, 40, 50, 42, 56, 76, 84, 36, 46, 68, 32, 48, 52, 56, 64, 66, 54, 70, 92, 93, 120, 85;enddataMin=@sum (quantity: @abs(a*x+b-y));@free(a); @free(b);运行结果见xueyunqiang-chapter5-1(2)所以拟合结果为;y x=-3.411.6,(3)最大偏差最小:编写Lingo程序:sets:Quantity/1..50/: x, y;endsetsdata:x=4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14,15, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 20, 22,23, 24, 24, 24, 24, 25;y=2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34, 34, 46, 26, 36 ,60, 80, 20, 26, 54, 32, 40, 32, 40, 50, 42, 56, 76, 84, 36, 46, 68, 32, 48, 52, 56, 64, 66, 54, 70, 92, 93, 120, 85;enddataMin=@max (quantity: @abs(a*x+b-y));@free(a); @free(b);运算结果见xueyunqiang-chapter5-1(3)所以拟合结果为:=-412,y x三种拟合结果为:(1) 3.93240917.57909=-y x(2) 3.411.6,=-y x(3)412,=-y x在Matlab中绘制散点图和拟合直线图如下:>>x=[4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 1314 14 14 14 15 15 15 16 16 17 17 17 18 18 18 18 19 19 1920 20 20 20 20 22 23 24 24 24 24 25];>>y=[2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 26 34 34 4626 36 60 80 20 26 54 32 40 32 40 50 42 56 76 84 36 46 6832 48 52 56 64 66 54 70 92 93 120 85];>> plot(x,y,'s')>> hold on>> x=0:0.05:25;y=3.932409*x-17.57909;plot(x,y,'b');>> hold on;>> x=0:0.05:25;y=3.4*x-11.6;plot(x,y,'r-');>> hold on;>> x=0:0.05:25;y=4*x-12;plot(x,y,'m- -');由散点图可知最上角的点明显异于其他点,最大偏差最小回归直线受最大偏差影响明显,最小二乘统计性质较好,但是受异常点的影响,也有向上偏移的趋势,而最小一乘受异常点影响的程度较小,基本上在主流数据之间。
第一次作业数学建模入门1.冷却定律与破案按照Newton冷却定律,温度为T的物体在温度为To (To<T)的环境中冷却的速度与温差T-To成正比。
你能用该定律确定张某是否是下面案件中的犯罪嫌疑人。
某公安局于晚上7时30分发现一具女尸,当晚8时20分法医测得尸体温度为32.6℃,一小时后,尸体被抬走时又测得尸体温度为31.4℃,,已知室温在几个小时内均为21.1℃,由案情分析得知张某是此案的主要犯罪嫌疑人,但张某矢口否认,并有证人说:“下午张某一直在办公室,下午5时打一个电话后才离开办公室”。
从办公室到案发现场步行需要5分钟,问张某是否能被排除在犯罪嫌疑人之外?解答:首先,牛顿冷却定律为温度为T(t)的物体在温度的环境中冷却的速度与温度差成正比。
所以,得出微分方程 ( ,K为比例常数。
任意时刻t,物体的温度为 ,C为常数根据已知条件,记晚上8时20分为t=0时刻,T(0)=32.6℃,T(1)=31.4℃,=21.1℃:求解函数得,k=-0.11,C=11.5,即假定人的正常体温为37℃,代入公式得t-2.95小时, 即遇害时间为8.33-2.95=5.38≈5时23分。
张某在5时离开办公室,步行需要5分钟到达案发地点,所以张某不能排除作案嫌疑。
2.锻炼想象力、洞察力和判断力的问题(1)某人早8时从山下旅店出发沿一条山路上山,下午5时到达山顶并留宿,次日8时沿同一条路径下山,下午5时回到旅店。
该人必在两天中的同一是可经过路径中的同一地点,为什么?解答:令:A(t)表示此人第一天上山时t时刻离山脚的路程;B(t)表示此人第二天下山时t时刻离山脚的路程。
假设山顶到山下的总路程为S,由已知条件可知:A(8)=0,A(17)= SB(8)= S,B(17)=0令:C(t)= A(t)- B(t);则C(8)=-S,C(17)= S;由于C(t)为连续函数,由零点定理推出结论:在t=[8,17]中间,至少存在一点 t 使C(t)= A(t)- B(t)=0;即A(t)= B(t),可证明这人必在两天中的同一时刻经过路径中的同一地点。
设生产玩具火车、玩具卡车和玩具汽车的数量分别为x,y,z。
目标函数为:3x+2y+5z。
约束条件为:x+3y+z≤4303x+2z≤460x+4y≤420x≥0,y≥0,z≥0最优值为目标函数取得最大值。
(1)最优的生产方案为:玩具火车、玩具卡车和玩具汽车的生产数量分别为:0、100、230;收入为1350美元。
(2)由Dual Price第二行可知,当操作1每增加1分钟收入增加1美元,加班一小时收入60美元,60>50,使用加班在经济上是有利的。
最多加班10分钟,此时操作1工作的每1分钟收入和操作员收入相同。
(3)由运算结果第三行可知,当操作2每加班1分钟时,收入增加2美元。
2*120-(45+10)*2=130美元。
收入130美元。
(4)不需要操作3加班,因为其影子价格为0。
设使用燕麦、玉米和糖渣分别为x、y、z千克。
目标函数为:1.3*x+1.7*y+1.2*z+2.5*(x+y)+0.5*(x+y+z)。
约束条件为:x>=0x<=11900y>=0y<=23500z>=0z<=750x+y+z>=2100013.6*x+4.1*y+5*z>=9.5*210007.1*x+2.4*y+0.3*z>=2*210007*x+3.7*y+25*z<=6*21000最小成本为92667.95+9000*4.2+12000*1.7=150867.95元。
燕麦11896.63千克,玉米8678.905千克,糖渣424.4658千克。
每种原料的的3/7生产颗粒饲料,剩下的4/7生产粉状饲料。
设x i,y i,z i,w i分别为第i年对四个项目的投资。
目标函数为:1.2X3+1.6Z2+1.4W3。
约束条件为:X1+Y1=30X2+Z2=1.2X1X3+W3=1.2X2+1.5y1y1<=20z2<=15w3<=10投资计划:第一年12.5万投资A,17.5万投资B。
第四次作业解:(1) 平方和最小的目标方程:()2n 1i i i 10y -x min 10∑=+=ββββ,编程如下:model:sets:quantity/1..50/: x,y;endsetsmin=@sum(quantity: (B0+B1*x-y)^2);data:y=2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 26 34 34 46 26 36 60 80 20 26 54 32 40 32 40 50 42 56 76 84 36 46 68 32 48 52 56 64 66 54 70 92 93 120 85;x=4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25;enddata@free(B0); @free(B1);End得到结果如下:Local optimal solution found.Objective value: 11353.52Infeasibilities: 0.000000Extended solver steps: 5Total solver iterations: 18Model Class: NLPTotal variables: 3Nonlinear variables: 2Integer variables: 0Total constraints: 2Nonlinear constraints: 1Total nonzeros: 3Nonlinear nonzeros: 2Variable Value Reduced CostB0 -17.57909 0.000000B1 3.932409 0.000000X( 1) 4.000000 0.000000X( 2) 4.000000 0.000000X( 3) 7.000000 0.000000X( 4) 7.000000 0.000000X( 5) 8.000000 0.000000X( 6) 9.000000 0.000000X( 7) 10.00000 0.000000X( 8) 10.00000 0.000000X( 9) 10.00000 0.000000X( 10) 11.00000 0.000000X( 11) 11.00000 0.000000 X( 12) 12.00000 0.000000 X( 13) 12.00000 0.000000 X( 14) 12.00000 0.000000 X( 15) 12.00000 0.000000 X( 16) 13.00000 0.000000 X( 17) 13.00000 0.000000 X( 18) 13.00000 0.000000 X( 19) 13.00000 0.000000 X( 20) 14.00000 0.000000 X( 21) 14.00000 0.000000 X( 22) 14.00000 0.000000 X( 23) 14.00000 0.000000 X( 24) 15.00000 0.000000 X( 25) 15.00000 0.000000 X( 26) 15.00000 0.000000 X( 27) 16.00000 0.000000 X( 28) 16.00000 0.000000 X( 29) 17.00000 0.000000 X( 30) 17.00000 0.000000 X( 31) 17.00000 0.000000 X( 32) 18.00000 0.000000 X( 33) 18.00000 0.000000 X( 34) 18.00000 0.000000 X( 35) 18.00000 0.000000 X( 36) 19.00000 0.000000 X( 37) 19.00000 0.000000 X( 38) 19.00000 0.000000 X( 39) 20.00000 0.000000 X( 40) 20.00000 0.000000 X( 41) 20.00000 0.000000 X( 42) 20.00000 0.000000 X( 43) 20.00000 0.000000 X( 44) 22.00000 0.000000 X( 45) 23.00000 0.000000 X( 46) 24.00000 0.000000 X( 47) 24.00000 0.000000 X( 48) 24.00000 0.000000 X( 49) 24.00000 0.000000 X( 50) 25.00000 0.000000 Y( 1) 2.000000 0.000000 Y( 2) 10.00000 0.000000 Y( 3) 4.000000 0.000000 Y( 4) 22.00000 0.000000Y( 5) 16.00000 0.000000 Y( 6) 10.00000 0.000000 Y( 7) 18.00000 0.000000 Y( 8) 26.00000 0.000000 Y( 9) 34.00000 0.000000 Y( 10) 17.00000 0.000000 Y( 11) 28.00000 0.000000 Y( 12) 14.00000 0.000000 Y( 13) 20.00000 0.000000 Y( 14) 24.00000 0.000000 Y( 15) 28.00000 0.000000 Y( 16) 26.00000 0.000000 Y( 17) 34.00000 0.000000 Y( 18) 34.00000 0.000000 Y( 19) 46.00000 0.000000 Y( 20) 26.00000 0.000000 Y( 21) 36.00000 0.000000 Y( 22) 60.00000 0.000000 Y( 23) 80.00000 0.000000 Y( 24) 20.00000 0.000000 Y( 25) 26.00000 0.000000 Y( 26) 54.00000 0.000000 Y( 27) 32.00000 0.000000 Y( 28) 40.00000 0.000000 Y( 29) 32.00000 0.000000 Y( 30) 40.00000 0.000000 Y( 31) 50.00000 0.000000 Y( 32) 42.00000 0.000000 Y( 33) 56.00000 0.000000 Y( 34) 76.00000 0.000000 Y( 35) 84.00000 0.000000 Y( 36) 36.00000 0.000000 Y( 37) 46.00000 0.000000 Y( 38) 68.00000 0.000000 Y( 39) 32.00000 0.000000 Y( 40) 48.00000 0.000000 Y( 41) 52.00000 0.000000 Y( 42) 56.00000 0.000000 Y( 43) 64.00000 0.000000 Y( 44) 66.00000 0.000000 Y( 45) 54.00000 0.000000 Y( 46) 70.00000 0.000000 Y( 47) 92.00000 0.000000 Y( 48) 93.00000 0.000000Y( 49) 120.0000 0.000000Y( 50) 85.00000 0.000000Row Slack or Surplus Dual Price1 11353.52 -1.000000 所以得到平方和最小时的β0为-17.57909,β1为3.932409。
数学建模作业3线性规划和整数规划实验:1生产计划安排:某厂生产A,B,C三种产品,其所需劳动力,材料等有关数据如下:产品,消耗定额,资源 A B C 可用量(单位)劳动力 6 3 5 45材料 3 4 5 30产品利润(元/件) 3 1 4要求:(a)确定获利最大的产品生产计划;(b)产品A的利润在什么范围内变动时,上述最有计划不变;(c)如果劳动力数量不增,材料不足时可从市场购买,每单位0.4元,问该厂要不要购进原材料扩大生产,以购多少为宜(d)如果设计一种新产品D,单件劳动力消耗为8单位,材料消耗为2单位,每件可获利3元,问该种产品是否值得生产?解:max 3x1+x2+4x3 !利润最大值目标函数 x1,x2,x3分别为ABC的生产数量st !限制条件6x1+3x2+5x3<45 !劳动力的限制条件3x1+4x2+5x3<30 !材料的限制条件end !结束限制条件把上面的语句直接复制到lindo中点solve,可以得到以下结果1.生产产品A5件,C 3件可以得到最大利润,27元2.A利润在2.4-4.8元之间变动,最优生产计划不变3.max 3x1+x2+4x3st6x1+3x2+5x3<45end可得到生产产品B 9件时利润最大,最大利润为36元,应该购入原材料扩大生产,购入15个单位4.max 3x1+x2+4x3+3x4st6x1+3x2+5x3+8x4<453x1+4x2+5x3+2x4<30endgin x1gin x2gin x3gin x4利润没有增加,不值得生产2工程进度问题:某城市在未来的五年内将启动四个城市住房改造工程.每项工程有不同的开始时间,工程周期也不一样.表3.1提供这此项目的基本数据.工程1和工程4必须在规定的周期内全部完成.必要时,其余的二项工程可以在预算的限制内完成部分.然而,每个工程在它的规定时间内必须至少完成25%.每年底,工程完成的部分立刻入住,并目实现一定比例的收入.例如,如果工程1在第一年完成40%,在第三年完成剩下的60%,在五年计划范围内的相应收入是0.4 x 50(第二年)+0.4 x 50(第三年)+ }0.4+0.6) x 50(第四年)+ (0.4+0.6) x 50(第五年)=(4x0.4+2x0.6)x50(单位:万元).试为工程确定最优的时间进度表,使得五年内的总收入达到最大.解:设某年某工程的完成量为Xij,i表示工程的代号(i=1,2,3),j表示年数(j=1,2,3,4,5)如第一年工程1完成X11,工程3完成X31,到第二年工程已完成X12,工程3完成X32。
设Wxy为从第二年开始算,使用x年到y年的购买设备的总消费W12=100-17.2+1.5-50=34.3W13=100-15.5+1.7+1.5-30=57.7W14=100-14+1.5+1.7+1.8-10=81W15=100-12.2+1.5+1.7+1.8+2.2-5=90W23=100-15.5+1.7-30=56.2W24=100-14+1.7+1.8-10=79.5W25=100-12.2+1.7+1.8+2.2-5=88.5W34=100-14+1.8-10=77.8W35=100-12.2+1.8+2.2-5=86.8W45=100-12.2+2.2-5=85Lingo:sets:nodes/1..5/;arcs(nodes, nodes)|&1 #lt# &2: w, x;endsetsdata:w = 34.3 57.7 81 90 56.2 79.5 88.5 77.8 86.8 85;enddata n = @size(nodes);min = @sum(arcs: w * x);@for(nodes(i)| i #ne# 1 #and# i #ne# n:@sum(arcs(i,j): x(i,j)) = @sum(arcs(j,i): x(j,i)) );@sum(arcs(i,j)| i #eq# 1 : x(i,j)) = 1;运行结果:从程序结果分析可知按着W15花费最少。
即该单位应该在第3年购买新设备第6年年底卖掉设备,最小花费为90万元。
(1)设第一季度、第二季度、第三季度、第四季度生产量分别为a、b、c、d,a1为第一季度后剩余量,b1为第二季度后剩余量,c1为第三季度后剩余量,d1为第四季度后的剩余量。
每季度的生产的除臭剂应该小于等于最大产量,大于等于订货量,第一个季度以为的季度中 实际货物量应该等于上月的剩余量加该月的产量,以此类推,可以得出Lingo:model:min =5*a+5*b+6*c+6*d+ya1+b1+c1+d1;a>=10; a<=14;a1= a-10;b+a1>=14;b<=15;b1=b+a1-14;c+b1>=20;c<=15;c1=c+b1-20;d+ c1>=8;d<=13;d1=d+c1-8;输出结果:Variable Value Reduced CostA 14.00000 0.000000B 15.00000 0.000000C 15.00000 0.000000D 8.000000 0.000000第一个季度应生产14万盒,第二季度应该生产15万盒,第三季度应该生产15万盒,第四季度应该生产8万盒除臭剂。
第一次作业数学建模入门1.冷却定律与破案按照Newton冷却定律,温度为T的物体在温度为To (To<T)的环境中冷却的速度与温差T-To成正比。
你能用该定律确定张某是否是下面案件中的犯罪嫌疑人。
某公安局于晚上7时30分发现一具女尸,当晚8时20分法医测得尸体温度为32.6℃,一小时后,尸体被抬走时又测得尸体温度为31.4℃,,已知室温在几个小时内均为21.1℃,由案情分析得知张某是此案的主要犯罪嫌疑人,但张某矢口否认,并有证人说:“下午张某一直在办公室,下午5时打一个电话后才离开办公室”。
从办公室到案发现场步行需要5分钟,问张某是否能被排除在犯罪嫌疑人之外?解答:首先,牛顿冷却定律为温度为T(t)的物体在温度的环境中冷却的速度与温度差成正比。
所以,得出微分方程 ( ,K为比例常数。
任意时刻t,物体的温度为 ,C为常数根据已知条件,记晚上8时20分为t=0时刻,T(0)=32.6℃,T(1)=31.4℃,=21.1℃:求解函数得,k=-0.11,C=11.5,即假定人的正常体温为37℃,代入公式得t-2.95小时, 即遇害时间为8.33-2.95=5.38≈5时23分。
张某在5时离开办公室,步行需要5分钟到达案发地点,所以张某不能排除作案嫌疑。
2.锻炼想象力、洞察力和判断力的问题(1)某人早8时从山下旅店出发沿一条山路上山,下午5时到达山顶并留宿,次日8时沿同一条路径下山,下午5时回到旅店。
该人必在两天中的同一是可经过路径中的同一地点,为什么?解答:令:A(t)表示此人第一天上山时t时刻离山脚的路程;B(t)表示此人第二天下山时t时刻离山脚的路程。
假设山顶到山下的总路程为S,由已知条件可知:A(8)=0,A(17)= SB(8)= S,B(17)=0令:C(t)= A(t)- B(t);则C(8)=-S,C(17)= S;由于C(t)为连续函数,由零点定理推出结论:在t=[8,17]中间,至少存在一点 t 使C(t)= A(t)- B(t)=0;即A(t)= B(t),可证明这人必在两天中的同一时刻经过路径中的同一地点。
(2)甲乙两战之间有汽车相通,每隔10分钟甲乙两站互发一趟车,但发车时刻不一定相同。
甲乙两站之间有一中间站丙,某人每天在随机时刻到达丙站,并搭乘最先经过丙站的那趟车。
结果发现100天中约有90天到达甲站,大约10天到达乙站。
问开往甲乙两站的汽车经过两站的时刻表是如何安排的?解答:根据题中描述可知,坐乙站发的车的概率为甲站的九倍。
可以理解为从乙站发车到甲站经过丙站的时刻要比另一个早1分钟,即从甲站出发到达丙处的第i 辆车,总比从乙站出发到达丙处的第i辆车提前9分钟。
所以经过丙站的时刻表可安排为:甲站发来的车:6:00,6:10,6:20…乙站发来的车:6:09,6:19,6:29…(3)张先生家住在A市,在B市工作,每天下班后他乘城际火车于18:00抵达A市火车站,他妻子驾车至火车站接他回家。
一日他提前下班,乘早一班火车于17:30抵达A市火车站,随即步行回家,他妻子像往常一样驾车前来,在半路相遇将他接回家。
到家时张先生发现比往常提前了10分钟,问张先生步行了多长时间?解答:假设张先生步行的距离为S,则妻子比往常少开了张先生所走距离的往返距离2S,因为提前了10分钟到家,所以妻子开车行驶2S距离的时间为10分钟。
妻子往常是在18:00整在火车站接张先生,今日在距离火车站S距离的地方遇到张先生,这个距离需要开车5分钟,所以妻子遇到张先生的时间为17:55分。
张先生17:30下车,17:55分遇到妻子,所以张先生走了55-30=25分钟。
(4)一男孩一女孩分别在距家2公里和1公里且方向相反的两所学校上学,每天同时放学后分别以每小时4公里和每小时2公里的速度步行回家。
一小狗以每小时6公里的速度由男孩处奔向女孩,又从女孩处奔向男孩,如此往返直至回到家中。
问小狗奔波了多少路程。
如果男孩和女孩上学时,小狗也往返奔波在他们中间,问当他们到达学校时小狗在何处?解答:男孩和女孩从学校到家的时间都是0.5小时,当他们到家时小狗也到家,所以小狗往返跑的时间也是0.5小时,由于小狗的速度是每小时6公里,因此小狗所走的路程为3公里。
设S为初始状态时小狗与家的位移,’表示小狗最终的位移。
i表示小狗与人的相遇次数 为第i次小狗与人相遇时所经历的总时间;v1、v2、v3分别表示小狗、男孩、女孩的运动速率,表示小狗第i次与孩子相遇时小狗的位移。
初始时刻小狗与女孩相向而行;i=1之后变为小狗击男孩;i=2之后小狗再追女孩,如此往返。
所以,i为奇数时小狗与女孩相遇;i为偶数时小狗与男孩相遇。
为奇数, 为偶数当i为无穷多次时,可知S=0,对任意的 ’,S≡0。
即当S=0时,小狗的最终位置 ’可以为[-1,2]中的任意数。
由上面分析可知,在男孩和女孩上学时小狗从家(S=0)往返奔波于他们之间的情况下孩子到学校时小狗的最终位置不确定。
3.加分实验(公平投票问题)某部门推出一专项基金目的在于培养优秀人才,根据评比结果确定资助的额度。
许多单位的优秀者都申请了该基金,于是该基金的委员会聘请了数名专家,按照如下规则进行评比。
1.为了公平性,评委对本单位选手不给分;2.每位评委对每位参与申请的人(除本单位选手外)都必须打分,且不打相同的分;3.评委打分方法为给参加申请的人排序,根据优劣分别记1分、2分、…以此类推。
4.评判结束后,求出各选手的平均分,按平均分从低到高排序,依次确定本次评比的名次,即平均分最低者获得资助最高,依次类推。
本次基金申请中,甲所在单位有一名评委,这位评委将不参加对选手甲的评判,其他选手没有类似情况,评审结束后选手甲觉得这种评比规则对他不公平。
问选手甲的抱怨是否有道理?若不公平,能否做出修正来解决选手甲的抱怨?解答:令评审个数为n,根据评分规则,在一般情况下评委给出的评分分别为 ,,… ,所以该选手的平均得分为由于回避规则,甲的单位不得为甲评分,则甲的得分与一般选手有差别,应为二者之差为可知:两者之差不恒等于0,所以此规则对于选手的比分确实有不公平之处。
若在尽可能公平的情况下制定得分规则,可判断出甲所得到的公平平均分应介于 和 之间。
可以用 和 的几何平均值来定义,即X=第二次作业线性规划和整数规划试验1.生产计划安排NWAC电力公司为军事承包商生产4中类型的电缆,每种电缆必须经过4种相继的操作:拼接、焊接、套管和检查。
表2.1给出了该问题相关的数据,承包商保证对于四种电缆的每一种最低产量是100个单位。
(1)将问题建立成一个线性规划模型,并确定最优的产品进度表。
(2)基于对偶价格(Dual Price),你会推荐增加四种操作中的哪一种操作能力?试解释。
(3)对于四种电缆的最低产量要求对NWAC电力公司有利还是不利?试分析。
解答:(1)设四种电缆的日产量为 (i=1,2,3,4),所有目标函数应为:max=9.4*+10.8*+8.75*+7.8*约束条件10.5*+9.3*+11.6+8.2480020.4*+24.6*+17.7+26.596003.2*+2.5*+3.6+5.547005.0*+5.0*+5.0+5.04500, 为整数Lingo语句:max=9.4*X1+10.8*X2+8.75*X3+7.8*X4;10.5*X1+9.3*X2+11.6*X3+8.2*X4<=4800;20.4*X1+24.6*X2+17.7*X3+26.5*X4<=9600;3.2*X1+2.5*X2+3.6*X3+5.5*X4<=4700;5.0*X1+5.0*X2+5.0*X3+5.0*X4<=4500;X1>=100; X2>=100; X3>=100; X4>=100;@gin(X1); @gin(X2); @gin(X3); @gin(X4);End输出结果Global optimal solution found.Objective value: 4009.550 Objective bound: 4009.550 Infeasibilities: 0.000000 Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 100.0000 -9.400000X2 101.0000 -10.80000X3 137.0000 -8.750000X4 100.0000 -7.800000Row Slack or Surplus Dual Price1 4009.550 1.0000002 401.5000 0.0000003 0.5000000 0.0000004 3084.300 0.0000005 2310.000 0.0000006 0.000000 0.0000007 1.000000 0.0000008 37.00000 0.0000009 0.000000 0.000000结果分析:生产的最优进度,利润最大化为SC320生产100个单位,SC325生产101个单位,SC340生产137个单位,SC370生产100个单位。
(2)对偶价格:Lingo语句:min=4800*Y1+9600*Y2+4700*Y3+4500*Y4;10.5*Y1+20.4*Y2+3.2*Y3+5.0*Y4>=9.4;9.3*Y1+24.6*Y2+2.5*Y3+5.0*Y4>=10.8;11.6*Y1+17.7*Y2+3.6*Y3+5.0*Y4>=8.75;8.2*Y1+26.5*Y2+5.5*Y3+5.0*Y4>=7.8;Y1>=0; Y2>=0; Y3>=0; Y4>=0;end运行结果:Global optimal solution found.Objective value: 4448.199Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced Cost Y1 0.1995031 0.000000 Y2 0.3636025 0.000000 Y3 0.000000 3294.783 Y4 0.000000 2214.286Row Slack or Surplus Dual Price1 4448.199 -1.0000002 0.1122733 0.0000003 0.000000 -218.63354 0.000000 -238.50935 3.471391 0.0000006 0.1995031 0.0000007 0.3636025 0.0000008 0.000000 0.0000009 0.000000 0.000000 结果分析:应提升套管(第三种)的操作能力。