化工热力学课后答案
- 格式:doc
- 大小:1.78 MB
- 文档页数:44
第1章1. 凡是体系的温度升高时,就一定吸热,而温度不变时,则体系既不吸热也不放热。
答:错。
等温等压的相变化或化学变化始、终态温度不变,但有热效应。
气体的绝热压缩,体系温度升高,但无吸收热量。
2. 当n 摩尔气体反抗一定的压力做绝热膨胀时,其内能总是减少的。
答:对。
绝热:Q=0;反抗外压作功:W <0;∆U=Q +W=W<0。
3. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
答:对4. 理想气体的焓和热容仅是温度的函数。
答:对5. 理想气体的熵和吉氏函数仅是温度的函数。
答:错。
理想气体的熵和吉氏函数不仅与温度有关,还与压力或摩尔体积有关。
6.要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。
答:错。
V 也是强度性质7.封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
答:对。
状态函数的变化仅决定于初、终态与途径无关。
8. 状态函数的特点是什么?答:状态函数的变化与途径无关,仅决定于初、终态。
9. 对封闭体系而言,当过程的始态和终态确定后,下列哪项的值不能确定:A QB Q + W, ∆U C W (Q=0),∆U D Q (W=0),∆U答:A 。
因为Q 不是状态函数,虽然始态和终态确定,但未说明具体过程,故Q 值不能确定 。
10. 下列各式中哪一个不受理想气体条件的限制 A △H = △U+P△V B CPm - CVm=R C = 常数 D W = nRTln (V2╱V1)答:A11.对于内能是体系的状态的单值函数概念的错误理解是: A 体系处于一定的状态,具有一定的内能B 对应于某一状态,内能只能有一数值,不能有两个以上的数值C 状态发生变化,内能也一定跟着变化D 对应于一个内能值,可以有多个状态答:C 。
第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对) 3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
) 二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
化工热力学课后谜底(填空、判断、画图)之马矢奏春创作第1章 绪言一、是否题1.封闭体系的体积为一常数.(错) 2.封闭体系中有两个相βα,.在尚未达到平衡时,βα,两个相都是均相关闭体系;达到平衡时,则βα,两个相都等价于均相封闭体系.(对)3.理想气体的焓和热容仅是温度的函数.(对)4.理想气体的熵和吉氏函数仅是温度的函数.(错.还与压力或摩尔体积有关.)5.封闭体系的1mol 气体进行了某一过程,其体积总是变动着的,可是初态和终态的体积相等,初态和终态的温度分别为T1和T2,则该过程的⎰=21T T V dTC U∆;同样,对初、终态压力相等的过程有⎰=21T T P dT C H ∆.(对.状态函数的变动仅决定于初、终态与途径无关.) 二、填空题1.状态函数的特点是:状态函数的变动与途径无关,仅决定于初、终态 .2.封闭体系中,温度是T 的1mol 理想气体从(Pi,Vi)等温可逆地膨胀到(Pf,Vf),则所做的功为()f i rev V V RT W ln =(以V 暗示)或()i f rev P P RT W ln = (以P 暗示).3.封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T1、P1和V1可逆地变动至P2,则A 等容过程的 W= 0 ,Q=()1121T P P R C ig P ⎪⎪⎭⎫⎝⎛--,∆U=()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H=1121T P P C ig P ⎪⎪⎭⎫⎝⎛-. B 等温过程的 W=21ln P P RT -,Q=21ln P P RT ,∆U= 0 ,∆H= 0 .第2章P-V-T关系和状态方程一、是否题1.纯物质由蒸汽酿成液体,必需经过冷凝的相变动过程.(错.可以通过超临界流体区.)2.当压力年夜于临界压力时,纯物质就以液态存在.(错.若温度也年夜于临界温度时,则是超临界流体.)3.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1.(错.如温度年夜于Boyle 温度时,Z >1.)4.纯物质的三相点随着所处的压力或温度的分歧而改变.(错.纯物质的三相平衡时,体系自由度是零,体系的状态已经确定.)5.在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等.(对.这是纯物质的汽液平衡准则.)6.纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变动值均年夜于零.(错.只有吉氏函数的变动是零.)7.气体混合物的virial 系数,如B,C…,是温度和组成的函数.(对.)C 绝热过程的 W=()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q= 0 ,∆U=()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig P C R igPP P R V P R C ,∆H=1121T P P C ig P C R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛. 4.1MPa=106Pa=10bar=9.8692atm=7500.62mmHg.5.普适气体常数R=8.314MPa cm3 mol-1 K-1=83.14bar cm3 mol-1 K-1=8.314J mol-1 K-1=1.980cal mol-1 K-1.三、填空题1.表达纯物质的汽平衡的准则有()()()()sl sv sl sv V T G V T G T G T G ,,==或(吉氏函数)、vapvapsV T H dT dP∆∆=(Claperyon 方程)、()⎰-=svslV V slsv s V V P dV V T P ),((Maxwell 等面积规则).它们能(能/不能)推广到其它类型的相平衡.2.Lydersen 、Pitzer 、Lee-Kesler 和Teja 的三参数对应态原理的三个参数分别为c r r Z P T ,,、ω,,r r P T 、ω,,r r P T 和ω,,r r P T .3.对纯物质,一定温度下的泡点压力与露点压力相同的(相同/分歧);一定温度下的泡点与露点,在P -T 图上是重叠的(重叠/分开),而在P-V 图上是分开的(重叠/分开),泡点的轨迹称为饱和液相线,露点的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包围的区域称为汽液共存区.纯物质汽液平衡时,压力称为蒸汽压,温度称为沸点.4.对三混合物,展开PR 方程常数a 的表达式,∑∑==-=3131)1(i j ij jj ii ji k a a y y a =其中,下标相同的相互作用参数有332211,k k k 和,其值应为1;下标分歧的相互作用参数有),,(,,123132232112123132232112处理已作和和和k k k k k k k k k k k k ===,通常它们值是如何获得?从实验数据拟合获得,在没有实验数据时,近似作零处置. .5.正丁烷的偏心因子ω=0.193,临界压力Pc=3.797MPa 则在Tr=0.7时的蒸汽压为2435.0101==--ωc s P P MPa.五、图示题1.试定性画出纯物质的P-V 相图,并在图上指出 (a)超临界流体,(b)气相,(c )蒸汽,(d )固相,(e )汽液共存,(f )固液共存,(g )汽固共存等区域;和(h)汽-液-固三相共存线,(i)T>Tc 、T<Tc 、T=Tc 的等温线.2.试定性讨论纯液体在等压平衡汽化过程中,M (= V 、S 、G )随T 的变动(可定性作出M-T 图上的等压线来说明).六、证明题1.由式2-29知,流体的Boyle 曲线是关于0=⎪⎭⎫⎝⎛∂∂TP Z 的点的轨迹.证明vdW 流体的Boyle 曲线是()0222=+--ab abV V bRT a证明:001=⎪⎭⎫ ⎝⎛∂∂+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+=⎪⎭⎫ ⎝⎛∂∂T T T V P V P V P P V RT P Z 得由由vdW 方程得整理得Boyle 曲线第3章 均相封闭体系热力学原理及其应用一、是否题1.热力学基本关系式dH=TdS+VdP 只适用于可逆过程.(错.不需要可逆条件,适用于只有体积功存在的封闭体系)2.当压力趋于零时,()()0,,≡-P T M P T M ig (M 是摩尔性质).(错.当M =V 时,不恒即是零,只有在T =TB 时,才即是零)3.纯物质逸度的完整界说是,在等温条件下,f RTd dG ln =.(错.应该是=-ig G G 0()0ln P f RT 等)4.那时0→P ,∞→P f.(错.那时0→P ,1→P f )5. 因为⎰⎪⎭⎫ ⎝⎛-=PdP P RT V RT 01ln ϕ,那时0→P ,1=ϕ,所以,0=-PRTV .(错.从积分式看,那时→P ,PRT V -为任何值,都有1=ϕ;实际上,0lim 0=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=→BTT P P RT V6.吉氏函数与逸度系数的关系是()()ϕln 1,,RT P T G P T G ig ==-.(错,(),(T G P T G ig -fRT P ln )1==)7.由于偏离函数是两个等温状态的性质之差,故不成能用偏离函数来计算性质随着温度的变动.(错.因为:()()()()[]()()[]()()[]0102011102221122,,,,,,,,P T M P T M P T M P T M P T MP T M P T M P T M igigigig-+---=-)三、填空题1.状态方程P Vb R T()-=的偏离焓和偏离熵分别是bP dP P R T b P RTdP T V T V HH PP P ig=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-=-⎰⎰00和0ln 0000=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-=+-⎰⎰dP P R P R dP T V P R P P R S S PP P ig;若要计算()()1122,,P T H P T H -和()()1122,,P T S P T S -还需要什么性质?igP C ;其计算式分别是()()1122,,P T H P T H -()()[]()()[]()()[]()dTC P P b dTC bP bP T H T H T H P T H T H P T H T T igP T T igP ig ig ig ig ⎰⎰+-=+-=-+---=2121121212111222,,和()()1122,,P T S P T S -()()[]()()[]()()[]dTTC P P R dT T C P P R P P R P T S P T S P T S P T S P T S P T S TT igP T T ig P ig ig ig ig ⎰⎰+-=++-=-+---=2121120102010201110222ln ln ln ,,,,,,.2.对混合物体系,偏离函数中参考态是与研究态同温.同组成的理想气体混合物.五、图示题1.将下列纯物质经历的过程暗示在P-V,lnP-H,T-S 图上(a)过热蒸汽等温冷凝为过冷液体;(b)过冷液体等压加热成过热蒸汽;(c)饱和蒸汽可逆绝热膨胀;(d)饱和液体恒容加热;(e)在临界点进行的恒温膨胀.解:第4章非均相封闭体系热力学一、是否题1.偏摩尔体积的界说可暗示为{}{}ii x P T i n P T i i x V n nV V ≠≠⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂=,,,,∂.(错.因对一个均相关闭系统,n 是一个变数,即(){}0,,≠∂∂≠i n P T i n n )2.对理想溶液,所有的混合过程性质变动均为零.(错.V,H,U,CP,CV 的混合过程性质变动即是零,对S,G,A 则不即是零)3.对理想溶液所有的逾额性质均为零.(对.因is E M M M -=) 4.体系混合过程的性质变动与该体系相应的逾额性质是相同的.(错.同于4)5.理想气体有f=P,而理想溶液有i i ϕϕ=ˆ.(对.因i i i i i i is i is i PfPx x f Px f ϕϕ====ˆˆ) 6.温度和压力相同的两种理想气体混合后,则温度和压力不变,总体积为原来两气体体积之和,总热力学能为原两气体热力学能之和,总熵为原来两气体熵之和.(错.总熵不即是原来两气体的熵之和)7.因为GE(或活度系数)模型是温度和组成的函数,故理论上i γ与压力无关.(错.理论上是T,P,组成的函数.只有对高压下的液体,才近似为T 和组成的函数)8.纯流体的汽液平衡准则为f v=f l.(对)9.混合物体系达到汽液平衡时,总是有l iv i l v l i v i f f f f f f ===,,ˆˆ.(错.两相中组分的逸度、总体逸度均纷歧定相等)10. 理想溶液一定符合Lewis-Randall 规则和Henry 规则.(对.)、填空题1.填表2.有人提出了一定温度下二元液体混合物的偏摩尔体积的模型是)1(),1(122211bx V V ax V V +=+=,其中V1,V2为纯组分的摩尔体积,a,b 为常数,问所提出的模型是否有问题?由Gibbs-Duhem 方程得,b V x V x a 1122=, a,b 不成能是常数,故提出的模型有问题;若模型改为)1(),1(21222211bx V V ax V V +=+=,情况又如何?由Gibbs-Duhem 方程得,b V V a 12=,故提出的模型有一定的合理性_. 3.常温、常压条件下二元液相体系的溶剂组分的活度系数为32221ln x x βαγ+=(βα,是常数),则溶质组分的活度系数表达式是=2ln γ3121232x x ββα-+. 解: 由0ln ln 2211=+γγd x d x ,得从()1021==γ此时x 至任意的1x 积分,得 五、图示题1.下图中是二元体系的对称归一化的活度系数21,γγ与组成的关系部份曲线,请补全两图中的活度系数随液相组成变动的曲线;指出哪一条曲线是或12~x γ;曲线两端点的含意;体系属于何种偏差.21,γγ解,以上虚线是根据活度系数的对称归一化和分歧毛病称归一化条件而获得的.第5章 非均相体系热力学性质计算一、是否题1.在一定压力下,组成相同的混合物的露点温度和泡点温度不成能相同.(错,在共沸点时相同)2.在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,则11x y >,22x y <.(错,若系统存在共沸点,就可以呈现相反的情况)3.在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则体系的压力,随着1x 的增年夜而增年夜.(错,理由同6)4.纯物质的汽液平衡常数K 即是1.(对,因为111==y x )5.下列汽液平衡关系是毛病的i i Solvent i v i i x H Py *,ˆγϕ=.(错,若i 组分采纳分歧毛病称归一化,该式为正确)6.对理想体系,汽液平衡常数Ki(=yi/xi),只与T 、P 有关,而与组成无关.(对,可以从理想体系的汽液平衡关系证明)7.对负偏差体系,液相的活度系数总是小于1.(对)8.能满足热力学一致性的汽液平衡数据就是高质量的数据.(错)9.逸度系数也有归一化问题.(错)10. EOS +γ法既可以计算混合物的汽液平衡,也能计算纯物质的汽液平衡.(错) 、填空题1.说出下列汽液平衡关系适用的条件(1) l iv i f f ˆˆ= ______无限制条件__________;(2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i s i i x P Py γ= _________高压条件下的非理想液相__________.2.丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x1=y1=0.796,恒沸温度为327.6K,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是A12=______0.587_____,A21=____0.717____(已知van Laar 方程为 221112212112x A x A x x A A RT G E+=)1.组成为x1=0.2,x2=0.8,温度为300K 的二元液体的泡点组成y1的为(已知液相的3733,1866),/(75212121==+=s sE t P P n n n n G Pa)___0.334____________.2.若用EOS +γ法来处置300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s 4.251=饱和蒸气压太高,不容易简化;( EOS+γ法对高压体系需矫正).3.EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何获得相互作用参数的值?_从混合物的实验数据拟合获得.4.由Wilson 方程计算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数Ai,Bi,Ci; Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij =-λλ,Wilson 方程的能量参数是如何获得的?能从混合物的有关数据(如相平衡)获得. 五、图示题 1描述下列二元y x T --图中的变动过程D C B A →→→:这是一个等压定(总)组成的降温过程.A 处于汽相区,降温到B 点时,即为露点,开始有液滴冷凝,随着温度的继续下降,发生的液相量增加,而汽相量减少,当达到C 点,即泡点时,汽相消失,此时,液相的组成与原始汽相组成相同.继续降温达到D 点.描述下列二元y x P --图中的变动过程D C B A →→→:这是一等温等压的变组成过程.从A 到B,是液相中轻组分1的含量增加,B 点为泡点,即开始有汽泡呈现.B 至C 的过程中,系统中的轻组分增加,汽相相对液相的量也在不竭的增加,C 点为露点,C 点到D 点是汽相中轻组分的含量不竭增加.PA B C DT =常数1.将下列T-x-y图的变动过程A→B→C→D→E和P-x-y图上的变动过程F→G→H→I→J暗示在P-T图(组成=0.4)上.。
化工热力学答案—课后总习题答案详解第二章习题解答一.问答题:2-1为什么要研究流体的"VT关系?【参考答案】:流体P-V-T关系是化工热力学的基石,是化工过程开发和设讣、安全操作和科学研究必不可少的基础数据。
(I)流体的PVT关系可以直接用于设汁。
(2)利用可测的热力学性质(T, P, V等)计算不可测的热力学性质(H, S, G.等)。
只要有了旷/T关系加上理想气体的C;;, 可以解决化工热力学的大多数问题匚以及该区域的特征:同时指岀其它重要的点、2- 2 ⅛ P-V图上指出超临界萃取技术所处的区域,而以及它们的特征。
【参考答案】:1)超临界流体区的特征是:环、P>Pco2)临界点C的数学特征:(^PM Z)/ =° (在C点)($2p/刃2)・0 (在C点)3)饱和液相线是不同压力下产生第一个气泡的那个点的连线:4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。
5)过冷液体区的特征:给左压力下液体的温度低于该压力下的泡点温度。
6)过热蒸气区的特征:给左压力下蒸气的温度髙于该压力下的露点温度。
7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。
2-3要满足什么条件,气体才能液化?【参考答案】:气体只有在低于7;条件下才能被液化。
2-4不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决左偏离理想气体程度的最本质因素?【参考答案】:不同。
真实气体偏离理想气体程度不仅与7∖ P有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子7;, /和Q。
2-5偏心因子的概念是什么?为什么要提出这个槪念?它可以直接测呈:吗?【参考答案】:偏心因子。
为两个分子间的相互作用力偏离分子中心之间的作用力的程度。
其物理意义为:一般流体与球形非极性简单流体(氮,氟、毎)在形状和极性方而的偏心度。
为了提高计算复杂分子压缩因子的准确度。
化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对) 3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。
第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)2. 当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
.第二章流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400 ℃、 4.053MPa 下甲烷气体的摩尔体积。
( 1 )理想气体方程;( 2 ) RK 方程;( 3)PR 方程;( 4 )维里截断式( 2-7)。
其中 B 用 Pitzer 的普遍化关联法计算。
[解 ] ( 1 )根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积V id为V id RT8.314(400273.15) 1.381 103m3mol 1p 4.053106(2)用 RK 方程求摩尔体积将RK 方程稍加变形,可写为V RT a(V b)b(E1)p T 0.5 pV (V b)其中0.42748R2T c2.5ap c0.08664 RT cbp c从附表 1 查得甲烷的临界温度和压力分别为T c=190.6K,p c=4.60MPa,将它们代入a, b 表达式得a0.42748 8.3142 190.62.5 3.2217m 6 Pa mol -2 K 0.54.60106b0.086648.314190.6 2.9846 10 5 m3 mol 14.60106以理想气体状态方程求得的V id为初值,代入式( E1)中迭代求解,第一次迭代得到V1值为V18.314673.15 2.984610 54.053106.3.2217 (1.381 100.56673.15 4.053 10 1.381 103 2.9846 10 5 )3(1.381 10 3 2.984610 5 )1.38110 32.984610 5 2.124610 51.3896331 10m mol第二次迭代得 V2为V2 1.381103 2.98461053.2217(1.389610 3 2.984610 5)673.15 0.5 4.05310 61.389610 3(1.389610 3 2.984610 5)1.38110 32.984610 5 2.112010 51.389710 3 m3 mol1V1和 V2已经相差很小,可终止迭代。
习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。
而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。
因此,流体的p –V –T 关系的研究是一项重要的基础工作。
2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。
严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。
理想气体状态方程是最简单的状态方程:RT pV =2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。
实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,cs s r p p p = 对于不同的流体,α具有不同的值。
但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。
对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的sr p log 值之差来表征。
Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。
2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。
化工热力学课后谜底(填空、判断、画图)之公保含烟创作第1章 绪言一、是否题1.封锁体系的体积为一常数.(错) 2.封锁体系中有两个相βα,.在尚未到达平衡时,βα,两个相都是均相封锁体系;到达平衡时,则βα,两个相都等价于均相封锁体系.(对)3.理想气体的焓和热容仅是温度的函数.(对)4.理想气体的熵和吉氏函数仅是温度的函数.(错.还与压力或摩尔体积有关.)5.封锁体系的1mol 气体停止了某一进程,其体积总是变卦着的,然则初态和终态的体积相等,初态和终态的温度辨别为T1和T2,则该进程的⎰=21T T V dT C U ∆;同样,关于初、终态压力相等的进程有⎰=21T T P dT C H ∆.(对.状态函数的变卦仅决议于初、终态与途径无关.) 二、填空题1.状态函数的特点是:状态函数的变卦与途径无关,仅决议于初、终态 .2.封锁体系中,温度是T 的1mol 理想气体从(Pi ,Vi)等温可逆地膨胀到(Pf ,Vf),则所做的功为()f i rev V V RT W ln =(以V 暗示)或()i f rev P P RT W ln = (以P 暗示).3.封锁体系中的1mol 理想气体(已知ig P C ),按下列途径由T1、P1和V1可逆地变卦至P2,则A 等容进程的 W= 0 ,Q=()1121T P P R CigP⎪⎪⎭⎫⎝⎛--,∆U=()1121T P P R C ig P ⎪⎪⎭⎫⎝⎛--,∆H=1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-. B 等温进程的 W=21ln P P RT -,Q=21ln P P RT ,∆U= 0 ,∆H=0 .第2章P-V-T关系和状态方程一、是否题1.纯物质由蒸汽酿成液体,必需经过冷凝的相变卦进程.(错.可以通过超临界流体区.)2.当压力年夜于临界压力时,纯物质就以液态存在.(错.若温度也年夜于临界温度时,则是超临界流体.)3.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1.(错.如温度年夜于Boyle 温度时,Z >1.)4.纯物质的三相点随着所处的压力或温度的分歧而改动.(错.纯物质的三相平衡时,体系自由度是零,体系的状态已经确定.)5.在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等.(对.这是纯物质的汽液平衡准则.)6.纯物质的平衡汽化进程,摩尔体积、焓、热力学能、吉氏函数的变卦值均年夜于零.(错.只有吉氏函数的变卦是零.)7.气体混合物的virial 系数,如B ,C…,是温度和组成的函数.(对.)C 绝热进程的 W=()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q= 0 ,∆U=()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig P C R igPP P R V P R C ,∆H=1121T P P C igP C R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛. 4.1MPa=106Pa=10bar=9.8692atm=7500.62mmHg. 5.普适气体常数R=8.314MPa cm3 mol-1 K-1=83.14bar cm3 mol-1 K-1=8.314J mol-1 K-1=1.980cal mol-1 K-1.三、填空题1.表达纯物质的汽平衡的准则有()()()()sl sv sl sv V T G V T G T G T G ,,==或(吉氏函数)、vapvapsV T H dT dP∆∆=(Claperyon 方程)、()⎰-=svslV V slsv s V V P dV V T P ),((Maxwell 等面积规则).它们能(能/不能)推广到其它类型的相平衡.2.Lydersen 、Pitzer 、Lee-Kesler 和Teja 的三参数对应态原理的三个参数辨别为c r r Z P T ,,、ω,,r r P T 、ω,,r r P T 和ω,,r r P T .3.关于纯物质,一定温度下的泡点压力与露点压力相同的(相同/分歧);一定温度下的泡点与露点,在P -T 图上是重叠的(重叠/分开),而在P-V 图上是分开的(重叠/分开),泡点的轨迹称为饱和液相线,露点的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包围的区域称为汽液共存区.纯物质汽液平衡时,压力称为蒸汽压,温度称为沸点.4.关于三混合物,展开PR 方程常数a 的表达式,∑∑==-=3131)1(i j ij jj ii jik a a yy a =()()()311313233232122121323222121121212k a a y y k a a y y k a a y y a y a y a y -+-+-+++,其中,下标相同的相互作用参数有332211,k k k 和,其值应为1;下标分歧的相互作用参数有),,(,,123132232112123132232112处理已作和和和k k k k k k k k k k k k ===,通常它们值是如何失掉?从实验数据拟合失掉,在没有实验数据时,近似作零处置. .5.正丁烷的偏心因子ω2435.0101==--ωc s P P MPa.五、图示题1.试定性画出纯物质的P-V 相图,并在图上指出 (a)超临界流体,(b)气相,(c )蒸汽,(d )固相,(e )汽液共存,(f )固液共存,(g )汽固共存等区域;和(h)汽-液-固三相共存线,(i)T>Tc 、T<Tc 、T=Tc 的等温线.2.试定性讨论纯液体在等压平衡汽化进程中,M (= V 、S 、G )随T 的变卦(可定性作出M-T 图上的等压线来说明).六、证明题1.由式2-29知,流体的Boyle 曲线是关于0=⎪⎭⎫ ⎝⎛∂∂TP Z 的点的轨迹.证明vdW 流体的Boyle 曲线是()0222=+--ab abV V bRT a证明:001=⎪⎭⎫ ⎝⎛∂∂+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+=⎪⎭⎫ ⎝⎛∂∂T T T V P V P V P P V RT P Z 得由由vdW 方程得整理得Boyle 曲线第3章 均相封锁体系热力学原理及其应用一、是否题1.热力学根本关系式dH=TdS+VdP 只适用于可逆进程.(错.不需要可逆条件,适用于只有体积功存在的封锁体系)2.当压力趋于零时,()()0,,≡-P T M P T M ig (M 是摩尔性质).(错.当M =V 时,不恒等于零,只有在T =TB 时,才等于零)3.纯物质逸度的完整定义是,在等温条件下,f RTd dG ln =.(错.应该是=-ig G G 0()0ln P f RT 等)4.事先0→P ,∞→P f.(错.事先0→P ,1→P f )5. 因为⎰⎪⎭⎫ ⎝⎛-=PdP P RT V RT 01ln ϕ,事先0→P ,1=ϕ,所以,0=-PRT V .(错.从积分式看,事先0→P ,PRT V -为任何值,都有1=ϕ;实际上,0lim 0=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=→BT T P P RT V 6.吉氏函数与逸度系数的关系是()()ϕln 1,,RT P T G P T G ig ==-.(错,(),(T G P T G ig -fRT P ln )1==)7.由于偏离函数是两个等温状态的性质之差,故不成能用偏离函数来计算性质随着温度的变卦.(错.因为:()()()()[]()()[]()()[]0102011102221122,,,,,,,,P T M P T M P T M P T M P T MP T M P T M P T M igigigig-+---=-)三、填空题1.状态方程P Vb R T()-=的偏离焓和偏离熵辨别是bP dP P R T b P RTdP T V T V HH PP P ig=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-=-⎰⎰00和0ln 0000=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-=+-⎰⎰dP P R P R dP T V P R P P R S S PP P ig;若要计算()()1122,,P T H P T H -和()()1122,,P T S P T S -还需要什么性质?ig P C ;其计算式辨别是()()1122,,P T H P T H -()()[]()()[]()()[]()dTC P P b dTC bP bP T H T H T H P T H T H P T H T T igP T T igP ig ig ig ig ⎰⎰+-=+-=-+---=2121121212111222,,和()()1122,,P T S P T S -()()[]()()[]()()[]dTTC P P R dT T C P P R P P R P T S P T S P T S P T S P T S P T S TT igP T T ig P ig ig ig ig ⎰⎰+-=++-=-+---=2121120102010201110222ln ln ln ,,,,,,.2.关于混合物体系,偏离函数中参考态是与研究态同温.同组成的理想气体混合物.五、图示题1.将下列纯物质阅历的进程暗示在P-V ,lnP-H ,T-S 图上(a)过热蒸汽等温冷凝为过冷液体;(b)过冷液体等压加热成过热蒸汽;(c)饱和蒸汽可逆绝热膨胀;(d)饱和液体恒容加热;(e)在临界点停止的恒温膨胀.解:第4章非均相封锁体系热力学一、是否题1.偏摩尔体积的定义可暗示为{}{}ii x P T i n P T i i x V n nV V ≠≠⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂=,,,,∂.(错.因关于一个均相封锁系统,n 是一个变数,即(){}0,,≠∂∂≠i n P T i n n )2.关于理想溶液,所有的混合进程性质变卦均为零.(错.V ,H ,U ,CP ,CV 的混合进程性质变卦等于零,对S ,G ,A 则不等于零)3.关于理想溶液所有的逾额性质均为零.(对.因is E M M M -=) 4.体系混合进程的性质变卦与该体系相应的逾额性质是相同的.(错.同于4)5.理想气体有f=P ,而理想溶液有i i ϕϕ=ˆ.(对.因i i i i i i is i is i PfPx x f Px f ϕϕ====ˆˆ) 6.温度和压力相同的两种理想气体混合后,则温度和压力不变,总体积为原来两气体体积之和,总热力学能为原两气体热力学能之和,总熵为原来两气体熵之和.(错.总熵不等于原来两气体的熵之和)7.因为GE(或活度系数)模型是温度和组成的函数,故实际上i γ与压力无关.(错.实际上是T ,P ,组成的函数.只有对高压下的液体,才近似为T 和组成的函数)8.纯流体的汽液平衡准则为f v=f l.(对)9.混合物体系到达汽液平衡时,总是有l iv i l v l i v i f f f f f f ===,,ˆˆ.(错.两相中组分的逸度、总体逸度均纷歧定相等)10. 理想溶液一定契合Lewis-Randall 规则和Henry 规则.(对.)、填空题1.填表2.有人提出了一定温度下二元液体混合物的偏摩尔体积的模型是)1(),1(122211bx V V ax V V +=+=,其中V1,V2为纯组分的摩尔体积,a ,b 为常数,问所提出的模型是否有问题?由Gibbs-Duhem 方程得,b V x V x a 1122=, a,b 不成能是常数,故提出的模型有问题;若模型改为)1(),1(21222211bx V V ax V V +=+=,情况又如何?由Gibbs-Duhem 方程得, b V V a 12=,故提出的模型有一定的合感性_.3.常温、常压条件下二元液相体系的溶剂组分的活度系数为32221ln x x βαγ+=(βα,是常数),则溶质组分的活度系数表达式是=2ln γ3121232x x ββα-+. 解: 由0ln ln 2211=+γγd x d x ,得从()1021==γ此时x 至任意的1x 积分,得五、图示题1.下图中是二元体系的对称归一化的活度系数21,γγ与组成的关系局部曲线,请补全两图中的活度系数随液相组成变卦的曲线;指出哪一条曲线是或12~x γ;曲线两端点的含义;体系属于何种偏差.21,γγ条件而失掉的.第5章 非均相体系热力学性质计算一、是否题1.在一定压力下,组成相同的混合物的露点温度和泡点温度不成能相同.(错,在共沸点时相同)2.在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,则11x y >,22x y <.(错,若系统存在共沸点,就可以呈现相反的情况)3.在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则体系的压力,随着1x 的增年夜而增年夜.(错,理由同6)4.纯物质的汽液平衡常数K 等于1.(对,因为111==y x )5.下列汽液平衡关系是毛病的i i Solvent i v i i x H Py *,ˆγϕ=.(错,若i 组分采用分歧毛病称归一化,该式为正确)6.关于理想体系,汽液平衡常数Ki(=yi/xi),只与T 、P 有关,而与组成无关.(对,可以从理想体系的汽液平衡关系证明)7.关于负偏差体系,液相的活度系数总是小于1.(对)8.能满足热力学一致性的汽液平衡数据就是高质量的数据.(错) 9.逸度系数也有归一化问题.(错)10. EOS +γ法既可以计算混合物的汽液平衡,也能计算纯物质的汽液平衡.(错) 、填空题1.说出下列汽液平衡关系适用的条件(1) l iv i f f ˆˆ= ______无限制条件__________;(2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________;(3)i i s i i x P Py γ= _________高压条件下的非理想液相__________.2.丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x1=y1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是 (已知van Laar 方程为221112212112x A x A x x A A RT G E+=) 1.组成为x1=0.2,x2=0.8,温度为300K 的二元液体的泡点组成y1的为(已知液相的3733,1866),/(75212121==+=s sE t P P n n n n G Pa) ___0.334____________.2.若用EOS +γ法来处置300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s 4.251=饱和蒸气压太高,不容易简化;( EOS+γ法关于高压体系需矫正).3.EOS 规律计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何失掉相互作用参数的值?_从混合物的实验数据拟合失掉.4.由Wilson 方程计算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数Ai,Bi,Ci; Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij =-λλ,Wilson 方程的能量参数是如何失掉的?能从混合物的有关数据(如相平衡)失掉. 五、图示题 1描述下列二元y x T --图中的变卦进程D C B A →→→:这是一个等压定(总)组成的降温进程.A 处于汽相区,降温到B 点时,即为露点,开端有液滴冷凝,随着温度的持续下降,发作的液相量增加,而汽相量增加,当到达C 点,即泡点时,汽相消失,此时,液相的组成与原始汽相组成相同.持续降温抵达D 点.描述下列二元y x P --图中的变卦进程D C B A →→→:这是一等温等压的变组成进程.从A 到B ,是液相中轻组分1的含量增加,B 点为泡点,即开端有汽泡呈现.B 至C 的进程中,系统中的轻组分增加,汽相相关于液相的量也在不竭的增加,C 点为露点,C 点到D 点是汽相中轻组分的含量不竭增加.T=常数1.将下列T-x-y图的变卦进程A→B→C→D→E和P-x-y图上的变卦进程F→G→H→I→J暗示在P-T图(组成=0.4)上.。
2习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。
(错。
和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。
当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。
(错)3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。
(错。
V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。
(错。
) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。
(错。
有时可能不一致)10. 自变量与独立变量是不可能相同的。
(错。
有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。
3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。
4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。
第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
) 二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的以V 表示)(以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ⎪⎪⎭⎫ ⎝⎛--,∆U =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,∆U = 0 ,∆H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,∆U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211PC RigPP P R V P R C ,∆H =1121T P P C igPC R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。
4. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg 。
5. 普适气体常数R =8.314MPa cm 3 mol -1 K -1=83.14bar cm 3 mol -1 K -1=8.314 J mol -1 K -1=1.980cal mol -1 K -1。
四、计算题1. 某一服从P (V-b )=RT 状态方程(b 是正常数)的气体,在从1000b 等温可逆膨胀至2000b ,所做的功应是理想气体经过相同过程所做功的多少倍?解:000722.12ln 9991999ln ln ln1212=⎪⎭⎫⎝⎛=----=V V RT b V bV RT W W igrevEOS rev2. 对于igP C 为常数的理想气体经过一绝热可逆过程,状态变化符合下列方程γγ)1(1212-⎥⎦⎤⎢⎣⎡=P P T T ,其中ig Vig P C C =γ,试问,对于2cT bT a C igP ++=的理想气体,上述关系式又是如何? 以上a 、b 、c 为常数。
解:理想气体的绝热可逆过程,PdV W dU rev -=-=δ()()()()0ln 2ln,,0ln 0ln 122122121212211212221=--+-+==+⎪⎭⎫⎝⎛++-=+-++→-=-⎰P P R T T cT T b T T a T T P P V V V V R dT cT b T R a V Rd dT TRcTbT a dVVRTdT R C T T ig P故又3. 一个0.057m 3气瓶中贮有的1MPa 和294K 的高压气体通过一半开的阀门放入一个压力恒定为0.115MPa 的气柜中,当气瓶中的压力降至0.5MPa 时,计算下列两种条件下从气瓶中流入气柜中的气体量。
(假设气体为理想气体) (a)气体流得足够慢以至于可视为恒温过程;(b)气体流动很快以至于可忽视热量损失(假设过程可逆,绝热指数4.1=γ)。
解:(a )等温过程66.11294314.8570005.0294314.8570001112111=⨯⨯-⨯⨯=-=RT V P RT V P n ∆mol(b)绝热可逆过程,终态的温度要发生变化18.24115.02944.114.111212=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛=--rPP T T γK11.918.241314.8570005.0294314.8570001212111=⨯⨯-⨯⨯=-=RT V P RT V P n ∆mol 第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)2. 当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
)3. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。
(错。
如温度大于Boyle 温度时,Z >1。
)4. 纯物质的三相点随着所处的压力或温度的不同而改变。
(错。
纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。
)5. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。
(对。
这是纯物质的汽液平衡准则。
)6. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。
(错。
只有吉氏函数的变化是零。
) 7. 气体混合物的virial 系数,如B ,C …,是温度和组成的函数。
(对。
) 二、选择题1. 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C 。
参考P -V 图上的亚临界等温线。
) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽2. T 温度下的过冷纯液体的压力P (A 。
参考P -V 图上的亚临界等温线。
)A. >()T P sB. <()T P sC. =()T P s3. T 温度下的过热纯蒸汽的压力P (B 。
参考P -V 图上的亚临界等温线。
)A. >()T P sB. <()T P sC. =()T P s4. 纯物质的第二virial 系数B (A 。
virial 系数表示了分子间的相互作用,仅是温度的函数。
)A 仅是T 的函数B 是T 和P 的函数C 是T 和V 的函数D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到(A 。
要表示出等温线在临界点的拐点特征,要求关于V 的立方型方程)A. 第三virial 系数B. 第二virial 系数C. 无穷项D. 只需要理想气体方程6. 当0→P 时,纯气体的()[]P T V P RT ,-的值为(D 。
因()[]0lim lim ,lim 000=⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=-=→→→BT T P T P P P Z P Z RT P T V P RT ,又)A. 0B. 很高的T 时为0C. 与第三virial 系数有关D. 在Boyle 温度时为零三、填空题1. 表达纯物质的汽平衡的准则有()()()()sl sv sl sv V T G V T G T G T G ,,==或(吉氏函数)、vapvapsV T HdT dP ∆∆=(Claperyon 方程)、()⎰-=svslV V sl sv s V V P dV V T P ),((Maxwell 等面积规则)。
它们能(能/不能)推广到其它类型的相平衡。
2. Lydersen 、Pitzer 、Lee-Kesler 和Teja 的三参数对应态原理的三个参数分别为c r r Z P T ,,、ω,,r r P T 、ω,,r r P T 和ω,,r r P T 。
3. 对于纯物质,一定温度下的泡点压力与露点压力相同的(相同/不同);一定温度下的泡点与露点,在P -T 图上是重叠的(重叠/分开),而在P-V 图上是分开的(重叠/分开),泡点的轨迹称为饱和液相线,露点的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包围的区域称为汽液共存区。
纯物质汽液平衡时,压力称为蒸汽压,温度称为沸点。
4. 对于三混合物,展开PR 方程常数a 的表达式,∑∑==-=3131)1(i j ij jj ii jik a a yy a =中,下标相同的相互作用参数有332211,k k k 和,其值应为1;下标不同的相互作用参数有),,(,,123132232112123132232112处理已作和和和k k k k k k k k k k k k ===,通常它们值是如何得到?从实验数据拟合得到,在没有实验数据时,近似作零处理。
。
5. 正丁烷的偏心因子ω=0.193,临界压力P c =3.797MPa 则在T r =0.7时的蒸汽压为2435.0101==--ωc s P P MPa 。
四、计算题1. 在常压和0℃下,冰的熔化热是334.4Jg -1,水和冰的质量体积分别是1.000和1.091cm 3 g -1,且0℃时水的饱和蒸汽压和汽化潜热分别为610.62Pa 和2508Jg -1,请由此估计水的三相点数据。
解:在温度范围不大的区域内,汽化曲线和熔化曲线均可以作为直线处理。
对于熔化曲线,已知曲线上的一点是273.15K ,101325Pa ;并能计算其斜率是7103453.1⨯-=∆∆=fusm fus m VT H dT dP PaK -1熔化曲线方程是()15.273103453.11013257-⨯-=T P m对于汽化曲线,也已知曲线上的一点是273.15K ,610.62Pa ;也能计算其斜率是4688.262.61015.273314.815.2732508=⨯⨯=∆≈∆∆=svb vapvap b vap s V T H V T H dT dP PaK -1汽化曲线方程是()15.2734688.262.610-+=T P s解两直线的交点,得三相点的数据是:09.615=t P Pa ,1575.273=t T K2. 试由饱和蒸汽压方程(见附录A-2),在合适的假设下估算水在25℃时的汽化焓。
解:dTP d RTHRTH T RZ H T Z R H dT P d svapvapvap vap vap vap s ln ln 2222=→≈==∆∆∆∆∆低压下由Antoine 方程()2ln ln T C BdT P d T C B A P s s+=+-=得 查附录C-2得水和Antoine 常数是47.45,36.3826-==C B 故()84.44291115.29847.4536.3826314.812222=⎪⎭⎫⎝⎛+-⨯=⎪⎭⎫ ⎝⎛+=+=T C RB RT T C BH vap ∆Jmol -13. 一个0.5m 3的压力容器,其极限压力为2.75MPa ,出于安全的考虑,要求操作压力不得超过极限压力的一半。