信号分析与处理实验报告1
- 格式:doc
- 大小:112.50 KB
- 文档页数:2
实验一1、基本信号的表示及可视化(1)单位冲激信号 (t)程序:t=-1:0.001:1; %定义时间向量for i=1:3; %采用循环语句观察i取不同值时的图形dt=1/(i^4);X=(1/dt)*((t>=(-1/2*dt))-(t>=(1/2*dt)));%计算函数值subplot(1,3,i);%将图像分成三部分同时观察stairs(t,X);title('单位冲激信号δ(t)');end(2)单位阶跃信号程序:t=-0.5:0.001:1;%定义时间变量,间隔为0.001S=stepfun(t,0);%定义单位阶跃信号S1=stepfun(t,0.5);%定义单位阶跃延迟信号figure(1);plot(t,S);axis([-0.5 1 -0.2 1.2]);title('单位阶跃信号')%画出图形figure(2);plot(t,S1);axis([-0.5 1 -0.2 1.2]);title('单位阶跃延迟信号')(3)抽样信号f=sin(t)./t;程序:t=-10:0.6:10; %向量t时间范围t=t1:p:t2,p为时间间隔f=sin(t)./t;plot(t,f,'o'); %显示该信号的时域波形title('f(t)=Sa(t)(时间间隔为0.6s)'); %标题xlabel('t') %横坐标标题axis([-10,10,-0.4,1.1]) %横坐标和纵坐标范围(4)单位样值序列和单位阶跃序列A.单位序列δ(k)B.单位阶跃序列ε(k)程序:n1=-10;n2=10;%输入序列的起始点n=n1:n2;k=length(n);x1=zeros(1,k);x1(1,-n1+1)=1;%产生单位样值序列subplot(2,1,1);%绘图stem(n,x1,'filled');x2=ones(1,k);x2(1,1:-n1)=0;subplot(2,1,2);stem(n,x2,'filled');2、信号的频域分析已知周期方波信号0||2()0||22E t f t T t ττ⎧<⎪⎪=⎨⎪<<⎪⎩,当02T τ=, 04T τ=,08T τ=时,画出其幅度谱和相位谱,观察不同周期下,()f t 的频谱图有何区别。
时域采样定理实验日志1实验题目:时域采样定理实验目的:1. 学习掌握matlab 的编程知识及其matalab 在数字信号处理方面常用的12个函数2. 熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。
实验要求:1;能对时域上的信号转化为频域上的信号。
2:学会用两种不同的方法保存matlab程序。
3:对给定的模拟信号X a(t) = Ae sin(Ω0t )U (t ) 进行采样!(fm=500),然后把fm改为1500.看看图像的变化实验主要步骤:1:打开matlab编程软件2:输入代码>>n = 0:50-1;>>fs =1000;>>string ='1000';>>Xa=444.128*ex p((-222.144)*n/fs).*sin(222.144*n/fs);>>DF T(Xa,50,str i ng);实验结果:思考题:1,观察实验内容1 中,在分别采用500Hz,1000Hz,1500Hz采样后,对所得的到的信号Xa(n) 绘制的3 个幅频特性曲线有何不同,并分析为什么?结合时域采样定理的内容对图形进行解释;心得体会:时域离散系统及其响应实验日志21:实验题目时域离散系统及其响应2实验目的:1. 继续熟悉掌握m atlab 的使用和编程。
2. 熟悉掌握时域离散系统的时域特性。
并验证时域卷积定理3:实验要求1:能熟练的运用DFT函数,以及DFT函数调用的返回值,并且能运用conv卷积函数2:对于不同的定义域之间的函数卷积,取相同的定义域部分4:实验步骤编写DFT代码编写conv卷积代码:5:实验结果系统h1 (n) = δ(n) + 2.5δ(n −1) + 2.5δ(n −2) + δ(n −3)的图像及其作DFT变换的图像如下输入为x1 (n) = δ(n)的图像及其DFT变换的图像是关于h1和x1作卷积后的变换,以及DFT变换后的图像输入信号为x2 (n) = R10 (n)上述信号作卷积及其DFT变换后的图像输入信号为x3 (t ) = R5 (n)图像及其DFT变换6:实验思考1.比较y1 (n) 和h1 (n) 的时域和频域特性,注意它们之间有无差别,用所学理论解释所得结果。
实验一LabVIEW中的信号分析与处理一、实验目的:1、熟悉各类频谱分析VI的操作方法;2、熟悉数字滤波器的使用方法;3、熟悉谐波失真分析VI的使用方法。
二、实验原理:1、信号的频谱分析是指用独立的频率分量来表示信号;将时域信号变换到频域,以显示在时域无法观察到的信号特征,主要是信号的频率成分以及各频率成分幅值和相位的大小,LabVIEW中的信号都是数字信号,对其进行频谱分析主要使用快速傅立叶变换(FFT)算法:·“FFT Spectrum(Mag-Phase).vi”主要用于分析波形信号的幅频特性和相频特性,其输出为单边幅频图和相频图。
·“FFT.vi”以一维数组的形式返回时间信号的快速傅里叶运算结果,其输出为双边频谱图,在使用时注意设置FFT Size为2的幂。
·“Amplitude and Phase Spectrum .vi”也输出单边频谱,主要用于对一维数组进行频谱分析,需要注意的是,需要设置其dt(输入信号的采样周期)端口的数据。
2、数字滤波器的作用是对信号进行滤波,只允许特定频率成份的信号通过。
滤波器的主要类型分为低通、高通、带通、带阻等,在使用LabVIEW中的数字滤波器时,需要正确设置滤波器的截止频率(注意区分模拟频率和数字频率)和阶数。
3、“Harmonic Distortion Analyzer .vi”用于分析输入的波形数据的谐波失真度(THD),该vi还可分析出被测波形的基波频率和各阶次谐波的电平值。
三、实验内容:(1) 时域信号的频谱分析设计一个VI,使用4个Sine Waveform.vi(正弦波形)生成频率分别为10Hz、30Hz、50Hz、100Hz,幅值分别为1V、2V、3V、4V的4个正弦信号(采样频率都设置为1kHz,采样点数都设置为1000点),将这4个正弦信号相加并观察其时域波形,然后使用FFT Spectrum(Mag-Phase).vi对这4个正弦信号相加得出的信号进行FFT频谱分析,观察其幅频和相频图,并截图保存。
华北电力大学实验报告||实验名称FFT的软件实现实验(Matlab)IIR数字滤波器的设计课程名称信号分析与处理||专业班级:电气化1308 学生姓名:袁拉麻加学号: 2 成绩:指导教师:杨光实验日期: 2015-12-17快速傅里叶变换实验一、实验目的及要求通过编写程序,深入理解快速傅里叶变换算法(FFT)的含义,完成FFT和IFFT算法的软件实现。
二、实验内容利用时间抽取算法,编写基2点的快速傅立叶变换(FFT)程序;并在FFT程序基础上编写快速傅里叶反变换(IFFT)的程序。
三:实验要求1、FFT和IFFT子程序相对独立、具有一般性,并加详细注释;2、验证例6-4,并能得到正确结果。
3、理解应用离散傅里叶变换(DFT)分析连续时间信号频谱的数学物理基础。
四、实验原理:a.算法原理1、程序输入序列的元素数目必须为2的整数次幂,即N=2M,整个运算需要M 级蝶形运算;2、输入序列应该按二进制的码位倒置排列,输出序列按自然序列排列;3、每个蝶形运算的输出数据军官占用其他输入数据的存储单元,实现“即位运算”;4、每一级包括N/2个基本蝶形运算,共有M*N/2个基本蝶形运算;5、第L级中有N/2L个群,群与群的间隔为2L。
6、处于同一级的各个群的系数W分布相同,第L级的群中有2L-1个系数;7、处于第L级的群的系数是(p=1,2,3,…….,2L-1)而对于第L级的蝶形运算,两个输入数据的间隔为2L-1。
b.码位倒置程序流程图开始检测A序列长度nk=0j=1x1(j)=bitget(k,j);j=j+1Yj<m?Nx1=num2str(x1);y(k+1)=bin2dec(x1);clear x1k=k+1c.蝶形运算程序流程图五、程序代码与实验结果a.FFT程序:%%clear all;close all;clc;%输入数据%A=input('输入x(n)序列','s');A=str2num(A);% A=[1,2,-1,4]; %测试数据%%%%校验序列,%n=length(A);m=log2(n);if (fix(m)~=m)disp('输入序列长度错误,请重新输入!');A=input('输入x(n)序列','s');A=str2num(A);elsedisp('输入正确,请运行下一步')end%%%码位倒置%for k=0:n-1for j=1:m %取M位的二进制数%x1(j)=bitget(k,j); %倒取出二进制数%endx1=num2str(x1); %将数字序列转化为字符串%y(k+1)=bin2dec(x1); %二进制序列转化为十进制数%clear x1endfor k=1:nB(k)=A(y(k)+1); %时间抽取序列%endclear A%%%计算%for L=1:m %分解为M级进行运算%LE=2^L; %第L级群间隔为2^L%LE1=2^(L-1); %第L级中共有2^(L-1)个Wn乘数,进行运算蝶运算的两数序号相隔LE1%W=1;W1=exp(-1i*pi/LE1);for R=1:LE1 %针对第R个Wn系数进行一轮蝶运算,共进行LE1次%for P=R:LE:n %每个蝶的大小为LE% Q=P+LE1;T=B(Q)*W;B(Q)=B(P)-T;B(P)=B(P)+T;endW=W*W1;endendB %输出X(k)%%%验证结果:例6-4b.IFFT程序:%%clear all;close all;clc;%输入数据%A=input('输入X(k)序列','s');A=str2num(A);% A=[6,2+2i,-6,2-2i]; %测试数据%%%%校验序列,%n=length(A);m=log2(n);if (fix(m)~=m)disp('输入序列长度错误,请重新输入!');A=input('输入x(n)序列','s');A=str2num(A);elsedisp('输入正确,请运行下一步')end%%%码位倒置%for k=0:n-1for j=1:m %取M位的二进制数%x1(j)=bitget(k,j); %倒取出二进制数%endx1=num2str(x1); %将数字序列转化为字符串%y(k+1)=bin2dec(x1); %二进制序列转化为十进制数%clear x1endfor k=1:nB(k)=A(y(k)+1); %时间抽取序列%endclear A%%%计算%for L=1:m %分解为M级进行运算%LE=2^L; %第L级群间隔为2^L%LE1=2^(L-1); %第L级中共有2^(L-1)个Wn乘数,进行运算蝶运算的两数序号相隔LE1%W=1;W1=exp(-1i*pi/LE1);for R=1:LE1 %针对第R个Wn系数进行一轮蝶运算,共进行LE1次%for P=R:LE:n %每个蝶的大小为LE%Q=P+LE1;T=B(Q)*W;B(Q)=B(P)-T;B(P)=B(P)+T;endW=W*W1;endendB=conj(B); %取共轭%B=B/n %输出x(n)%验证结果:六、实验心得与结论本次实验借助于Matlab软件,我避开了用C平台进行复杂的复数运算,在一定程度上简化了程序,并添加了简单的检错代码,码位倒置我通过查阅资料,使用了一些函数,涉及到十-二进制转换,数字-文本转换,二-文本转换,相对较复杂,蝶运算我参考了书上了流程图,做些许改动就能直接实现。
武汉工程大学电气信息学院三、实验数据与结果分析1、2、四、思考:2. 3.四、思考:1、代数运算符号*和.*的区别是?*是矩阵相乘,是矩阵A行元素与B的列元素相乘的和.*是数组相乘,表示数组A和数组B中的对应元素相乘实验内容实验三连续时间信号的卷积一、实验内容1、已知两连续时间信号如下图所示,绘制信号f1(t)、f2(t)及卷积结果f(t)的波形;设时间变化步长dt分别取为0.5、0.1、0.01,当dt取多少时,程序的计算结果就是连续时间卷积的较好近似?2、、计算信号()()()11==-a t u e t f at 和()()t tu t f sin 2=的卷积f(t),f 1(t)、f 2(t)的时间范围取为0~10,步长值取为0.1。
绘制三个信号的波形。
二、实验方法与步骤1、绘制信号f 1(t)、f 2(t)及卷积结果f(t)的波形,当dt 取0.01时程序的计算结果就是连续时间卷积的较好近似程序代码如下:clear allclose allclcdt=0.01t1=0:dt:2;t2=-1:dt:1;f1=0.5*t1;f2=0.5*(t2+1);y=dt*conv(f1,f2); %计算卷积t0=t1(1)+t2(1); %计算卷积结果的非零样值的起点位置2.实验内容三、实验数据与结果分析1.2.实验内容实验五连续时间信号的频域分析一、实验内容1、如图5.4所示的奇谐周期方波信号,周期为T1=1,幅度为A=1,将该方波信号展开成三角形式Fourier级数并分别采用频域矩形窗和Hanning窗加权,绘制两种窗函数加权后的方波合成图像。
时间范围取为-2~2,步长值取为0.01。
2、将图5.5中的锯齿波展开为三角形式Fourier级数,按(2)式求出Fourier级数的系数,并在频域分别采用矩形窗、Hanning窗和三角窗加权,观察其Gibbs效应及其消除情况。
时间范围取为-2~2,步长值取为0.01。
实验一图像信号频谱分析及滤波一:实验原理FFT不是一种新的变化,而是DFT的快速算法。
快速傅里叶变换能减少运算量的根本原因在于它不断地把长序列的离散傅里叶变换变为短序列的离散傅里叶变换,在利用的对称性和周期性使DFT运算中的有些项加以合并,达到减少运算工作量的效果。
为了消除或减弱噪声,提取有用信号,必须进行滤波,能实现滤波功能的系统成为滤波器。
按信号可分为模拟滤波器和数字滤波器两大类。
数字滤波器的关键是如何根据给定的技术指标来得到可以实现的系统函数。
从模拟到数字的转换方法很多,常用的有双线性变换法和冲击响应不变法,本实验主要采用双线性变换法。
双线性变换法是一种由s平面到z平面的映射过程,其变换式定义为:数字域频率与模拟频率之间的关系是非线性关系。
双线性变换的频率标度的非线性失真是可以通过预畸变的方法去补偿的。
变换公式有Ωp=2/T*tan(wp/2)Ωs=2/T*tan(ws/2)二:实验内容1.图像信号的采集和显示选择一副不同彩色图片,利用Windows下的画图工具,设置成200*200像素格式。
然后在Matlab软件平台下,利用相关函数读取数据和显示图像。
要求显示出原始灰度图像、加入噪声信号后的灰度图像、滤波后的灰度图像。
2.图像信号的频谱分析要求分析和画出原始灰度图像、加入噪声信号后灰度图像、滤波后灰度图像信号的频谱特性。
3.数字滤波器设计给出数字低通滤波器性能指标:通带截止频率fp=10000 Hz,阻带截止频率fs=15000 Hz,阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB,采样频率40000Hz。
三:实验程序clear allx=imread('D:\lan.jpg');%原始彩色图像的数据读取x1=rgb2gray(x);%彩色图像值转化为灰度图像值[M,N]=size(x1);%数据x1的长度,用来求矩阵的大小x2=im2double(x1);%unit8转化为double型x3=numel(x2);%计算x2长度figure(1);subplot(1,3,1);imshow(x2);title('原始灰度图')z1=reshape(x2,1,x3);%将二维数据转化成一维数据g=fft(z1);%对图像进行二维傅里叶变换mag=fftshift(abs(g));%fftshift是针对频域的,将FFT的DC分量移到频谱中心K=40000;Fs=40000;dt=1/Fs;n=0:K-1;f1=18000;z=0.1*sin(2*pi*f1*n*dt);x4=z1+z;%加入正弦噪声f=n*Fs/K;y=fft(x4,K);z2=reshape(x4,M,N);%将一维图转换为二维图subplot(1,3,2);imshow(z2);title('加入噪声后')g1=fft(x4);mag1=fftshift(abs(g1));%设计滤波器ws=0.75*pi;wp=0.5*pi;fs=10000;wp1=2*fs*tan(wp/2);ws1=2*fs*tan(ws/2);rs=50;rp=3;% [n,wn]=buttord(wp/pi,ws/pi,rp,rs);% [bz,az]=butter(n,wn);[n,wn]=buttord(wp1,ws1,rp,rs,'s');[z,p,k]=buttap(n);[b,a]=zp2tf(z,p,k);[B,A]=lp2lp(b,a,wn);[bz,az]=bilinear(B,A,fs);[h,w]=freqz(bz,az,128,fs);L=numel(z2);z3=reshape(z2,1,L);x6=filter(bz,az,double(z3));x7=reshape(x6,M,N);subplot(1,3,3);imshow(x7);g2=fft(x6);mag2=fftshift(abs(g2));title('滤波后')%建立频谱图figure(2);subplot(1,3,1);plot(mag);title('原始Magnitude')subplot(1,3,2);plot(mag1);title('加噪声Magnitude')subplot(1,3,3);plot(mag2);title('滤波后Magnitude')figure(3);subplot(1,2,1)plot(w,abs(h));xlabel('f');ylabel('h');title('滤波器幅谱');subplot(1,2,2);plot(w,angle(h));title('滤波器相谱');四:实验结果与分析图一图二分析:由图二可以知道加入噪声后的幅值谱和原始图的幅值谱明显多了两条幅值线,而这两条幅值线就是我们对原始灰度图加入的正弦噪声,而相应的图一中的加噪声后的图与原始图相比,出现了明显的变化。
一、实验目的1. 理解信号分析的基本概念和原理;2. 掌握信号的时域和频域分析方法;3. 熟悉MATLAB在信号分析中的应用;4. 培养实验操作能力和数据分析能力。
二、实验原理信号分析是研究信号特性的科学,主要包括信号的时域分析和频域分析。
时域分析关注信号随时间的变化规律,频域分析关注信号中不同频率分量的分布情况。
1. 时域分析:通过对信号进行采样、时域卷积、微分、积分等操作,分析信号的时域特性。
2. 频域分析:通过对信号进行傅里叶变换、频域卷积、滤波等操作,分析信号的频域特性。
三、实验内容1. 信号采集与处理(1)采集一段语音信号,利用MATLAB的录音功能将模拟信号转换为数字信号。
(2)对采集到的信号进行采样,选择合适的采样频率,确保满足奈奎斯特采样定理。
(3)绘制语音信号的时域波形图,观察信号的基本特性。
2. 信号频谱分析(1)对采集到的信号进行傅里叶变换,得到信号的频谱。
(2)绘制信号的频谱图,分析信号的频域特性。
3. 信号滤波(1)设计一个低通滤波器,滤除信号中的高频噪声。
(2)将滤波后的信号与原始信号进行对比,分析滤波效果。
4. 信号调制与解调(1)对原始信号进行幅度调制,产生已调信号。
(2)对已调信号进行解调,恢复原始信号。
(3)分析调制与解调过程中的信号变化。
四、实验步骤1. 采集语音信号,将模拟信号转换为数字信号。
2. 对采集到的信号进行采样,确保满足奈奎斯特采样定理。
3. 绘制语音信号的时域波形图,观察信号的基本特性。
4. 对信号进行傅里叶变换,得到信号的频谱。
5. 绘制信号的频谱图,分析信号的频域特性。
6. 设计低通滤波器,滤除信号中的高频噪声。
7. 对滤波后的信号与原始信号进行对比,分析滤波效果。
8. 对原始信号进行幅度调制,产生已调信号。
9. 对已调信号进行解调,恢复原始信号。
10. 分析调制与解调过程中的信号变化。
五、实验结果与分析1. 时域分析通过观察语音信号的时域波形图,可以看出信号的基本特性,如信号的幅度、频率等。
一、实验目的本次信号分析实验旨在通过MATLAB软件,对连续信号进行采样、重建、频谱分析等操作,加深对信号处理基本理论和方法的理解,掌握信号的时域、频域分析技巧,并学会使用MATLAB进行信号处理实验。
二、实验内容1. 连续信号采样与重建(1)实验内容:以正弦信号为例,验证采样定理,分析采样频率与信号恢复质量的关系。
(2)实验步骤:a. 定义连续信号y(t) = sin(2π×24t) + sin(2π×20t),包含12Hz和20Hz 两个等幅度分量。
b. 分别以1/4、1/2、1/3Nyquist频率对信号进行采样,其中Nyquist频率为最高信号频率的两倍。
c. 利用MATLAB的插值函数对采样信号进行重建,比较不同采样频率下的信号恢复质量。
(3)实验结果与分析:a. 当采样频率低于Nyquist频率时,重建信号出现失真,频率混叠现象明显。
b. 当采样频率等于Nyquist频率时,重建信号基本恢复原信号,失真较小。
c. 当采样频率高于Nyquist频率时,重建信号质量进一步提高,失真更小。
2. 离散信号频谱分析(1)实验内容:分析不同加窗长度对信号频谱的影响,理解频率分辨率的概念。
(2)实验步骤:a. 定义离散信号x[n],计算其频谱。
b. 分别采用16、60、120点窗口进行信号截取,计算其频谱。
c. 比较不同窗口长度对频谱的影响。
(3)实验结果与分析:a. 随着窗口长度的增加,频谱分辨率降低,频率混叠现象减弱。
b. 频率分辨率与窗口长度成反比,窗口长度越长,频率分辨率越高。
3. 调频信号分析(1)实验内容:搭建调频通信系统,分析调频信号,验证调频解调原理。
(2)实验步骤:a. 搭建调频通信系统,包括信号源、调制器、解调器等模块。
b. 产生调频信号,并对其进行解调。
c. 分析调频信号的频谱,验证调频解调原理。
(3)实验结果与分析:a. 调频信号具有线性调频特性,其频谱为连续谱。
合肥工业大学电气与自动化工程学院 实验报告
专业 班级 学号 姓名 日期 指导教师 共 页 第 页
实验一 用FFT 实现信号的谱分析
实验报告要求:
1、实验内容为实验指导书实验二第5题、第8题;
2、实验报告包括四部分:实验原理、实验内容、实验程序、结果分析;分别占实验报告总成绩的20%,10%,30%,40%;
3、实验程序及结果分析如内容雷同,均不给分;
4、实验结果图形打印后贴在实验报告中,程序、分析内容手写。
一. 实验原理
关于信号谱分析的步骤和方法参见教材第3章相关内容。
为了解信号的特点,了解信号频谱分布情况,应该对信号进行谱分析,计算出信号的幅度谱、相位谱和功率谱。
信号的谱分析可以用FFT 实现,讨论如下:
1. 谱分析中的参数选择;
A 若已知信号的最高频率c f ,为防止混叠,选定采样频率s f :
c s f f 2≥ (1)
B 根据实际需要,选定频率分辨f ∆,一但选定后,即可确定FFT 所需的点数N
f f N s ∆=/ (2)
我们希望f ∆越小越好,但f ∆越小,N 越大,计算量、存储量也随之增大。
一般取N 为2的整次幂,以便用FFT
计算,若已给定N ,可用补零方法便N 为2的整次幂。
C s f 和N 确定后,即可确定所需相应模拟信号)(t x 的长度
s s NT f N T ==/ (3)
分辨率f ∆反比于T ,而不是N ,在给定的T 的情况下,靠减小s T 来增加N 是不能提高分辨率的,因为s NT T =为
常数
2.谱分析步骤; A 数据准备
()()()a a t nT
x n x t x nT === (4) B 使用FFT 计算信号的频谱 1
()()N kn
N
n X k x n
W -==
∑ (5)
()()()r i X k X k
jX k =+ (6) C 由频谱计算幅度谱()X k
、相位谱k θ和功率谱()G k ()X k =
(7)
()
arctan
()
i k r X k X k θ= (8) 2
2
2
()()()()r i G k X k X k X k ==+ (9)
3.实验中用到的一些基本函数简介
y=fft(x,n) ; 计算n 点的FFT 。
abs(x) ; 取绝对值。
angle(z) ; 取相角。
[Pxx, f]= periodogram (xn, nfft, fs, window) ;%周期图谱估计 [Pxx, f]=pwelch (xn, nfft, fs, window, noverlap);%平均周期图法 Pxx=psd (xn) ;功率谱密度
二.实验内容、实验程序及结果分析
1. 一序列)n (x 是由两个频率相距为f ∆的模拟信号采样得来的,即
n )f .(cos n ).(sin )n (x ∆ππ++=1350213502 n=0,1,…,15
已知序列长度N=16,试采用周期图法,应用DFT 分别计算当f ∆=0.06及f ∆=0.01时的功率谱估计,并通过作图说明从功率谱估计的分布是否能分辨出这两个正弦信号的真实频谱?若N=64又有什么变化?
a) 实验程序
N1=16; N2=64; df1=0.06; df2=0.01; n1=0:N1-1; n2=0:N2-1; fs=1000;
xn1=sin(2*pi*0.135*n1)+cos(2*pi*(0.135+df1)*n1); xn2=sin(2*pi*0.135*n1)+cos(2*pi*(0.135+df2)*n1); xn3=sin(2*pi*0.135*n2)+cos(2*pi*(0.135+df1)*n2); xn4=sin(2*pi*0.135*n2)+cos(2*pi*(0.135+df2)*n2); nfft=1024;
window1=hanning(length(xn1));
[Pxx1,f]=periodogram(xn1,window1,nfft,fs); P1=10*log10(Pxx1); subplot(2,2,1) plot(f,P1);
xlabel('f(Hz)');
ylabel('power spectrun density (dB )'); title('N=16 df=0.06功率谱密度 ') grid;
window2=hanning(length(xn2));
[Pxx2,f]=periodogram(xn2,window2,nfft,fs); P2=10*log10(Pxx2); subplot(2,2,2) plot(f,P2);
xlabel('f(Hz)');
ylabel('power spectrun density (dB )'); title('N=16 df=0.01功率谱密度 ') grid;
window3=hanning(length(xn3));
[Pxx3,f]=periodogram(xn3,window3,nfft,fs); P3=10*log10(Pxx3); subplot(2,2,3)
plot(f,P3);
xlabel('f(Hz)');
ylabel('power spectrun density (dB )'); title('N=64 df=0.06功率谱密度 ') grid;
window4=hanning(length(xn4));
[Pxx4,f]=periodogram(xn4,window4,nfft,fs); P4=10*log10(Pxx4); subplot(2,2,4) plot(f,P4);
xlabel('f(Hz)');
ylabel('power spectrun density (dB )'); title('N=64 df=0.01功率谱密度 ') grid;
b)结果分析:
2. 已知一个被白噪声)(t r 污染的信号)(t x ,
)()2sin(5.0)2sin(5.0)2sin(2)(321t r t f t f t f t x +++=πππ,其中,1f =25Hz ,
2f =75Hz ,3f =150Hz 。
应用Welch 法进行功率谱估计并绘制功率谱图。
a) 实验程序
f1=25; f2=75; f3=150; fs=1000; n=0:1/fs:1; dt=1/fs;
xt=2*sin(2*pi*f1*n*dt)+0.5*sin(2*pi*f2*n*dt)+0.5*sin(2*pi*f3*n*dt)+randn(size(n)); nfft=512;
window=hanning(500); noverlap=250;
[Pxx,f] = pwelch(xt,window,noverlap,nfft,fs); P=10*log10(Pxx) plot(f,P);
xlabel('frequency/Hz');
ylabel('power spectrun density/db'); title('功率谱密度'); grid
b)结果分析:。