第 9 讲 电源的等效变换
- 格式:doc
- 大小:1.10 MB
- 文档页数:12
电源模型等效变换法导语:电源模型等效变换法是电路分析中常用的一种方法,通过将电源与负载等效为简单的电路模型,可以更加方便地分析和计算电路的性质和参数。
本文将介绍电源模型等效变换法的原理和应用,并通过实例来说明该方法的具体操作。
一、电源模型等效变换法的原理在电路分析中,电源经常需要与负载连接,而电源的内部结构通常较为复杂,不利于直接进行分析。
为了简化电路的分析过程,人们提出了电源模型等效变换法。
电源模型等效变换法的基本原理是将电源与负载等效为简单的电路模型,从而简化电路的计算。
这样做的好处是可以将电路的分析问题转化为简单电路模型的分析问题,从而更容易得到电路的性质和参数。
二、电源模型等效变换法的应用1. 直流电源的等效模型在直流电路中,常用的电源模型是理想电压源和理想电流源。
理想电压源的等效电路模型是一个电压源与一个串联电阻,而理想电流源的等效电路模型是一个电流源与一个并联电阻。
通过将实际电源与这些等效模型替代,可以更方便地进行电路分析。
2. 交流电源的等效模型在交流电路中,电源常常是交流信号的源波形。
为了分析交流电路的性质,可以将交流电源等效为一个恒定幅度、恒定频率的正弦波信号。
这样,可以将交流电路问题转化为正弦波信号的问题,进而进行分析和计算。
三、电源模型等效变换法的实例操作为了更好地理解电源模型等效变换法的具体操作,下面通过一个实例来说明。
假设有一个电源与一个负载相连接,电源的电压为10V,负载为一个电阻R。
我们需要计算电路中的电流和电压。
我们可以将电源等效为一个理想电压源与一个串联电阻。
假设电源的内阻为r,那么等效电路模型如下图所示:(此处省略图片链接)接下来,我们可以通过串并联电阻的方法来计算电路中的电流和电压。
根据欧姆定律,电流为I=V/(R+r),其中V为电源的电压,R 为负载电阻,r为电源的内阻。
通过以上的等效变换和计算,我们成功地将复杂的电路问题简化为了简单的电路模型问题,并得到了电路中的电流和电压。
1. 理解电源等效变换的基本原理和定义。
2. 掌握电压源与电流源之间的等效变换方法。
3. 通过实际操作,验证电源等效变换的正确性和实用性。
二、实验原理在电路分析中,电源的等效变换是指将电路中的电压源或电流源用一个等效的电源来代替,而不会改变电路的外部特性。
常见的电源等效变换包括:1. 电压源与内阻的等效电压源变换。
2. 电流源与内阻的等效电流源变换。
3. 电压源与电流源的等效变换。
根据基尔霍夫电压定律和基尔霍夫电流定律,可以推导出以下等效变换公式:1. 电压源与内阻的等效电压源变换:\( E = U + Ir \),其中 \( E \) 为等效电压源的电动势,\( U \) 为实际电压源的电压,\( I \) 为电路中的电流,\( r \) 为电压源的内阻。
2. 电流源与内阻的等效电流源变换:\( I = \frac{U}{R} \),其中 \( I \) 为等效电流源的电流,\( U \) 为电路中的电压,\( R \) 为电流源的内阻。
3. 电压源与电流源的等效变换:\( E = I \cdot r \),其中 \( E \) 为等效电压源的电动势,\( I \) 为等效电流源的电流,\( r \) 为等效内阻。
三、实验器材1. 直流稳压电源2. 电压表3. 电流表4. 电阻5. 连接线6. 电路实验板1. 将电路连接好,接通电源。
2. 测量电路中的电压和电流值。
3. 根据测得的值,计算电路的等效电压源或等效电流源。
4. 将实际电源替换为等效电源,重新测量电路中的电压和电流值。
5. 比较实际电源和等效电源的电压和电流值,验证等效变换的正确性。
五、实验数据及分析实验1:电压源与内阻的等效电压源变换1. 实际电压源:电动势 \( E = 10V \),内阻 \( r = 2\Omega \)。
2. 电路连接:将实际电压源与一个 \( 5\Omega \) 的电阻串联。
3. 测量数据:电压 \( U = 7.5V \),电流 \( I = 1.5A \)。
电源的等效变换(总12页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第二章电阻电路的等效变换2讲授板书1、掌握电压源、电流源的串联和并联;2、掌握实际电源的两种模型及其等效变换;3、掌握输入电阻的概念及计算。
1、电压源、电流源的串联和并联2、输入电阻的概念及计算实际电源的两种模型及其等效变换1. 组织教学 5分钟3. 讲授新课 70分钟1)电源的串并联202)实际电源的等效变换253)输入电阻的计算352. 复习旧课 5分钟电阻的等效4.巩固新课 5分钟5.布置作业 5分钟一、学时:2二、班级:06电气工程(本)/06数控技术(本)三、教学内容:[讲授新课]:第二章电阻电路的等效变换(电压源、电流源等效变换)§2-5 电压源、电流源的串联和并联电压源、电流源的串联和并联问题的分析是以电压源和电流源的定义及外特性为基础,结合电路等效的概念进行的。
1. 理想电压源的串联和并联(1)串联图示为n个电压源的串联,根据KVL得总电压为:注意:式中u sk的参考方向与u s的参考方向一致时,在式中取“+”号,不一致时取“-”号。
usk根据电路等效的概念,可以用图(b)所示电压为Us的单个电压源等效替代图(a)中的n个串联的电压源。
通过电压源的串联可以得到一个高的输出电压。
(2)并联(a)(b)图示为2个电压源的并联,根据KVL得:上式说明只有电压相等且极性一致的电压源才能并联, 此时并联电压源的对外特性与单个电压源一样,根据电路等效概念,可以用(b)图的单个电压源替代(a)图的电压源并联电路。
注意:(1)不同值或不同极性的电压源是不允许串联的,否则违反KVL。
(2)电压源并联时,每个电压源中的电流是不确定的。
2.电压源与支路的串、并联等效(1)串联图(a)为2个电压源和电阻支路的串联,根据KVL得端口电压、电流关系为:根据电路等效的概念,图(a)电路可以用图(b)所示电压为u s的单个电压源和电阻为R的单个电阻的串联组合等效替代图(a),其中(2)并联图(a)为电压源和任意元件的并联,设外电路接电阻R,根据KVL和欧姆定律得端口电压、电流为:即:端口电压、电流只由电压源和外电路决定,与并联的元件无关,对外特性与图(b)所示电压为u s的单个电压源一样。
2.2 电源的连接及等效变换21、理想电压源只有电压数值、极性完全相同的理想电压源才可并联。
所连接的各电压源流过同一电流。
一、理想电源的连接及等效变换:(1)串联:(2)并联:2、理想电流源所连接的各电流源端为同一电压。
只有电流数值、方向完全相同的理想电流源才可串联.(1)并联:等效变换式:(2)串联:3二、实际电源模型:1、实际电压源模型(1)伏安关系:实际电压源模型可等效为一个理想电压源U s 和电阻R s 的串联组合。
Rs称之为电压源的内阻。
(2)电路模型:42、实际电流源模型实际电流源模型可等效为一个理想电流源I s 和电阻R s 的并联组合。
R s 称为实际电流源的内阻。
(2)电路模型:(1)伏安关系:5有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)6三、实际电源模型的等效变换等效条件:保持端口伏安关系相同1、已知电压源模型,求电流源模型等效变换原则有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)72、已知电流源模型,求电压源模型 :等效条件:保持端口伏安关系相同等效变换原则注意:(1)等效条件:对外等效,对内不等效。
(2)实际电源可进行电源的等效变换。
(3)实际电源等效变换时注意等效参数的计算、电源数值与方向的关系。
(4)理想电源不能进行电流源与电压源之间的等效变换。
(5)与理想电压源并联的支路对外可以开路等效;与理想电流源串联的支路对外可以短路等效。
8有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)9例1 将图示电路化简为最简等效电路。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)不存在等效电压源有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)。
电源等效变换例题及解析摘要:一、电源等效变换的概念与意义二、电源等效变换的方法与应用1.直流电源等效变换2.交流电源等效变换三、电源等效变换的步骤与注意事项四、电源等效变换在实际工程中的应用案例五、总结与展望正文:一、电源等效变换的概念与意义电源等效变换是指在电路分析中,将复杂的电源系统转换为等效的单一电源,以便于电路的分析和计算。
这种变换能够简化电路模型,提高计算效率,同时保持电路的整体性能不变。
电源等效变换在电路设计、电气工程、通信工程等领域具有广泛的应用。
二、电源等效变换的方法与应用1.直流电源等效变换在直流电路中,根据需要可以将多个直流电源转换为一个等效的直流电源。
等效后的直流电源电压值等于原电源电压之和,等效内阻等于各电源内阻之和。
这种等效变换在复杂直流电路分析中能够简化计算过程。
2.交流电源等效变换对于交流电路,可以根据幅值、相位和内阻等参数将多个交流电源转换为单一等效的交流电源。
等效后的交流电源电压幅值等于原电源电压幅值之和的平方根,相位差为原电源相位差的一半,内阻等于各电源内阻的平方根之和。
这种等效变换在交流电路分析和计算中具有重要意义。
三、电源等效变换的步骤与注意事项1.确定变换的目标:根据电路分析的需要,明确等效变换的目的,如简化电路、降低计算复杂度等。
2.分析原电源系统:分析原电源系统的结构、参数和特性,为等效变换提供依据。
3.选择合适的等效参数:根据电路特性和需求,选择合适的等效参数,如电压、内阻等。
4.进行等效变换:根据等效参数,将原电源系统转换为等效的单一电源。
5.验证等效变换结果:通过电路仿真或实际测试,验证等效变换结果的正确性和有效性。
注意事项:- 在进行电源等效变换时,应确保电路的性能不变,即等效后的电路应与原电路在各项性能指标上保持一致。
- 选择合适的等效参数,既能简化电路分析,又能在一定程度上保持电路的性能。
- 在进行等效变换时,应注意电路中的元器件参数、连接方式等,以免影响等效结果。
电源等效变换实验报告电源等效变换实验报告引言:电源等效变换是电力系统中常见的一种技术,它可以将电源的输出电压和电流进行调节和变换,以满足不同设备的需求。
在本次实验中,我们将探索电源等效变换的原理和应用,并通过实验验证其效果。
一、实验目的本次实验的目的是通过实际操作和测量,了解电源等效变换的工作原理,以及掌握其在电力系统中的应用。
具体目标如下:1. 理解电源等效变换的定义和基本原理;2. 学会使用实验仪器测量电源的电压和电流;3. 掌握电源等效变换的实际应用。
二、实验原理电源等效变换是通过电路中的变压器、电容器和电感器等元件,将电源的输出电压和电流进行调节和变换,以满足不同设备的需求。
在电力系统中,电源等效变换常用于电压变换、电流变换和频率变换等方面。
1. 电压变换电压变换是电源等效变换的一种常见应用。
通过变压器,可以将输入电压的大小进行调节,以适应不同设备的工作电压要求。
变压器的工作原理是利用电磁感应的原理,通过线圈的匝数比例来改变电压大小。
2. 电流变换电流变换也是电源等效变换的一种重要应用。
通过电感器和电容器等元件,可以将输入电流的大小进行调节,以满足设备对电流的需求。
电感器和电容器的选择和连接方式,可以实现电流的升降变换。
3. 频率变换频率变换是电源等效变换的另一个重要应用。
在某些特殊情况下,设备需要的工作频率与电源提供的频率不一致。
通过变频器等设备,可以将电源的频率进行调节,以适应设备的工作要求。
三、实验步骤1. 准备实验仪器和元件:变压器、电容器、电感器、示波器等;2. 连接电路:根据实验要求,将变压器、电容器和电感器等元件连接到电路中;3. 测量电压和电流:使用示波器等仪器,测量电路中的电压和电流;4. 调节电源参数:根据实验要求,调节电源的输入电压和电流;5. 观察和记录:观察电路中的电压和电流变化,并记录实验数据;6. 分析实验结果:根据实验数据,分析电源等效变换的效果和应用。
四、实验结果与分析通过实验测量和数据分析,我们得出了以下结论:1. 变压器可以实现电压的变换,通过改变变压器的匝数比例,可以调节输出电压的大小;2. 电感器和电容器可以实现电流的变换,通过选择合适的电感和电容值,可以调节输出电流的大小;3. 变频器可以实现频率的变换,通过调节变频器的参数,可以改变电源输出的频率。
课内试验项目操作分析单班级__ ______姓名___ ____学号_______一、仪器设备:ZH-12通用电学实验台、万用表、电阻若干、导线若干二、注意事项:1、试验之前应先检查设备、器材的好坏。
2、电路连接时,要注意电源极性,避免反接。
3、使用万用表时,要正确选择档位,且要规范操作。
三、试验电路:图1 (Us=9V)四、试验内容和操作步骤:1、试验项目1:选取内阻Rs=10Ω,取R L的值为200Ω,470Ω,680Ω,1KΩ,2KΩ,5KΩ,6KΩ时R L两端的电压U(1)按图1电路连接好电路,并在电路中串入一只50mA的安培表。
(2)分别选取R L的值为200Ω,470Ω,680Ω,1KΩ,2KΩ,5KΩ,6KΩ,测量此时两端的电压,以及流过电路的电流,记入表1中。
(3)根据表1中数据画出伏安特性曲线。
2、试验项目2:选取内阻R S=100Ω,取R L的值为200Ω,470Ω,680Ω,1KΩ,2KΩ,5KΩ,6KΩ测量R L两端的电压U,以及流过电路的电流,记入表2中。
试验步骤同上。
五、结果汇总S=10Ω时负载两端电压和电路中电流的关系S=100Ω时负载两端电压和电路中电流的关系六、结果分析1、根据表1中数据画出伏安特性曲线,并表述其关系。
2、根据表2中数据画出伏安特性曲线,并表述其关系。
七、评分1、操作规范(40%)2、试验结果(30%)总分:_________ 3、结果分析(30%)课题9:电流源与电压源及其等效变换课型:讲练结合教学目的:知识目标:(1)掌握直流电压源和电流源的表示方法和伏安特性(2)掌握电压源和电流源的相互转换(3)了解实际电源和理想电源的关系技能目标:(1)进一步熟悉电压、电流的测试方式。
(2)加深对电压源伏安特性的理解。
重点、难点:教学重点:电压源和电流源的相互转换教学难点:电压源和电流源的相互转换教学分析:本次课主要还是利用例题的计算和分析,来阐述电压源和电流源的特点和相互等效转换的条件和相关注意事项。
复习、提问:(1)全电路欧姆定律的表述公式?(2)大家认为电源是什么?教学过程:导入:电源我们经常听到,也经常用到。
任何电器设备要工作都要用电源。
如实验台上我们就可以看到以电压形式存在的电压源和以电流形式存在的电流源。
那么电源它有什么样的特性呢?电压源、电流源是否可以转换呢?这节课我们要学习的是电源的形式及电源的等效转换,通过各个电源之间的转换,将其变为简单的电压源电路或电流源电路,然后再用欧姆定律求解。
电源是电流流动的源动力,实际电路中电源以两种形式存在即独立电源和受控源。
独立电源是指不受外电路控制而独立存在的电源,比如电池、发电机。
受控源是指它们的电压或电流受电路中其他部分的电压或电流控制的电源。
任何一个实际电源在进行电路分析时,都可以用一个电压源或与之等效的电流源来表示。
一、直流电压源直流电压源是电子学应用中最重要的能源之一,所以了解其特性是十分重要的。
理想电压源为负载提供不变的电压,即使负载电阻是变化的。
1、理想电压源图1(a)所示为理想电压源的常用符号。
无论什么样的负载电阻接在输出端上,它的两端A和B之间的电压总保持不变。
图1(b)连接了一个负载电阻R L。
全部的电源电压U S都加在负载电阻R L的两端。
理想情况下,R L可以变成任何非零值,而电压保持不变。
理想电压源的内阻为零。
2、实际电压源实际上并没有理想的电压源。
也就是说,所有的电压源基于物理和化学结构都有固有的内阻,这可以表示为一个与理想电压源串联的电阻,如图2(a)所示。
R S为电压源内阻,U S 为源电压。
无外接电阻时,输出电压(A到B的电压)为U S。
这个电压有时称为开路电压。
图2 实际电压源3、电压源的负载特性当一个负载电阻连接到输出端时,如图2 (b)所示,并不是全部的源电压都加在RL上。
因为RS和RL串联,所以一部分电压加在了RS上。
如果RS比RL小很多,那么电源接近理想情况,几乎所有的电源电压US都加在电阻RL上,内阻RS两端的电压降很小。
如果RL变化,只要RL比RS大很多,输出端就仍保持绝大部分电源电压。
所以输出电压的变化很小。
与RS 相比,RL越大,输出电压的变化就越小。
测试试验电路1中不同RL 和RS 两种情况可以发现,在RS 一定的情况下,RL 越大,输出电压变化越小,越接近于电源两端电压;在RL 一定的情况下,改变串进去的内阻RS 的大小,输出电压有些微弱变化,RS 越小,输出电压越稳定。
例1 图3中,计算当R L 取值为100Ω,560Ω和1.0KΩ时,电源电压的输出值。
解:当R L =100Ω时,输出电压为:当R L =560Ω时,V V V OUT 2.98100570560=⎪⎭⎫⎝⎛ΩΩ=当R L =1.0K Ω时,V V V OUT 0.9910010101000=⎪⎭⎫⎝⎛ΩΩ=注意输出电压的变化在源电压Us 的10%范围内,这是因为在R L 所取的3个值中,R L 至少是Rs 的10倍。
与RS相比,RL越大,输出电压的变化就越小,输出越稳定。
思考题:图3中,当Rs =50Ω,R L =10KΩ时,计算V OUT 的值。
例2 图3中,计算当R L =10Ω,R L =1.0Ω时V OUT 的值。
解:当R L =10Ω时,输出电压为:V V V RR R V S L S L OUT5010020100=⎪⎭⎫ ⎝⎛ΩΩ=⎪⎪⎭⎫ ⎝⎛+= 当R L =1.0Ω时,V V V OUT 09.9100110.1=⎪⎭⎫⎝⎛ΩΩ= 例2中,当R L 相对于Rs 变得更小时,输出电压明显降低。
此例说明为保持输出电压接近于其开路电压,必须要求R L 远大于Rs 。
二、电流源电流源是对负载电阻(即使负载电阻阻值变化)提供理想恒定电流的另一种供能元件。
电流源的概念对某些晶体管电路来说很重要。
1、理想电流源图4(a )所示为理想电流源的符号。
箭头指明了源电流Is 的方向。
理想电流源为负载提供恒定的电流-无论负载的值多大。
图4(b )中所示的负载电阻接在电流源的A 和B 两端,说明了这个概念。
理想电流源的内阻为无穷大。
虽然可利用理想电流源进行绝大部分的分析工作,但实际上理想的器件并不存在。
2、实际电流源图5描述了一个实际电流源,其内阻与理想电流源并联。
如果内阻Rs 远大于负载电阻,则实际电流源接近理想电流源。
如图5中的实际电流源所示,电流Is 的一部分流经Rs ,另一部分流经R L 。
电阻Rs 和R L 起电流分流器作用。
如果Rs 远大于R L ,则绝大部分电流流经R L ,而只有很少的电流经Rs 。
只要R L 远小于Rs ,流经R L 的电流就为常量,而无论它变化多少。
3、电流源的伏安特性曲线如果存在一个常量电流源,一般可以认为负载R L 与Rs 相比小到可以忽略的程度,这就将电流源简化为理想情况,使分析更简单。
例3 计算图6中的负载电流值,R L 分别取以下值:100Ω,560Ω和1 KΩ。
解:当R L =100Ω时,负载电流为:mAA I RR R I S L S L L99011.1010=⎪⎭⎫ ⎝⎛KΩKΩ=⎪⎪⎭⎫ ⎝⎛+= 当R L =560时,mAA I L 9471561.1010=⎪⎭⎫⎝⎛KΩKΩ=当R L =1.0KΩ时,mAA I L 90911110=⎪⎭⎫ ⎝⎛KΩKΩ=从例3中, 说明当R L 远小于Rs 时,R L 的变化对负载电流的影响。
一般情况下,Rs 应该至少是R L 的10倍(10R L ≤Rs )。
注意输出电流I L 的变化在源电流的10%范围内,这是因为Rs 至少是R L 的10倍。
三、电压源和电流源的等效变换从前面的分析,可以知道电压源和电流源的伏安特性曲线是相同的,所以电压源和电流源两者之间是可以等效变换的。
(a)实际电压源电路 (b)实际电流源电路图7 两种实际电源的等效变换 分析:从图7(a)电路可得: U=E-I R 0将上式两边除以R0再移项,得 I=E/ R 0-U/ R 0 (1) 从图7 (b)可得:I=I S -U/ R 0′ (2)因此,只要满足条件I S=E/ R0R0= R0′(1)、(2)两式完全相等。
所以,1、等效条件(1)电压源转换为电流源的等效条件为:I S=E/ R0R0= R0′(2)电流源转换为电压源的等效条件为:E =I S R0 R0′ = R0可见,对一个外电路来说,一个内阻不为零或无穷大的实际电源,既可用电压源表示,又可以用等效的电流源表示。
所谓的电压源或电流源不过是同一实际电源的两种不同表示方法而已。
实际上,内阻较大的电源用电流源表示,内阻较小的用电压源表示比较方便。
例4将图8中的电压源转化为等效电流源,并画出等效电路。
解:内阻相等。
所以图9所示即为等效电流源电路。
提问:对于Us=12V和Rs=10Ω的电压源,计算其等效电流源的Is和Rs值。
例5 将图10中的电流源转化为等效电压源,并画出其等效电路。
解:内阻相等。
所以等效电压源电路如图11。
3、电压源和电流源等效变换时应注意的问题:(1)形式:电压源为理想电压源和内阻串联;电流源为理想电流源和内阻并联。
(2)极性必须一致:电流源流出电流的一端为电压源的正极性端。
(3)等效是相对于外电路而言的。
(4)理想电压源和理想电流源不能进行这种等效变换。
(5)在变换关系中,Rs不仅仅局限于内阻,也可扩展至任一电阻。
(6)理想电压源和理想电流源相串联时等效为电流源;相并联时等效为电压源。
例6 电路如图12,已知E1=12V,E2=24V,R1=R2=20Ω,R3=50Ω,试用电压源与电流源等效变换的方法求出通过电阻R3的电流I3。
图12解:解题思路:先将两个电压源分别转为电流源,然后利用电流源的叠加将其转换为一个电流源的电路,再利用分流公式即可求出。
也可再将其转为电压源电路再解答。
各步电路如图12(a)(b)。
12(a) 12(b)(a)I S1=E1/R1=0.6A,I S2=E2/R2=1.2A,I S= -I S1+ I S2=0.6A(选I S2的方向)(b)I3=-[R/(R+R3)]* I S=-0.1A(负号说明电流I3的实际方向与参考方向相反)例7 用电源模型等效变换的方法求图(a )电路的电流I 1和I 2。
解:将原电路变换为图(c )电路,由此可得:四、受控源前面讨论的电压源和电流源,都是独立电源,电压源的端电压和电流源的输出电流都只取决于电源本身,而不受电源外部电路的控制。
但在电子线路中经常会遇到晶体管和场效应管等有源器件,它们的电压或电流受电路中其他部分的电压或电流控制,既不同于无源元件又不同于独立电源,是一种非独立电源,其电路模型我们用受控源来表示。