盾构隧道上浮解决措施
- 格式:docx
- 大小:13.35 KB
- 文档页数:1
盾构管片错台及上浮处理8月31日在下行线盾构掘进第32环完成时,隧道从25环到32环共计8环管片突然全部发生不同程度的错台。
经过测量确认最大错台量接近2.5cm(27mm),此8环管片相对于原拼装位置均发生了不同程度的上浮其最大上浮量为7cm(27环)。
1原因分析(1)我部对现场管片拼装质量每环都有专门的值班人员进行现场检查,当时25至31环在拼装完成后检查结果均满足规范要求,且螺栓均进行了2次复紧。
局部出现突然性的错台,而且主要集中在隧道底部,可以确定隧道管片在底部应该受到较大的外力作用,造成管片上浮错动,初步分析可能在此区段存在岩层裂隙(中山西路站底板施工过程中就出现过岩层突水的情况),地下水通过裂隙及水头压力进入隧道底部,从而造成较大的浮力,造成管片错台。
因为当盾构向前掘进出该区段后,后续管片就再未出现错台超限的情况,另外原来错台的管片发生了回弹,错台情况有回落的趋势,可能是盾构向前掘进后地层内的空间变大该区段的应力集中得到了释放。
2管片浮力计算选取下行线26环管片附近的地层作为计算的对象。
该段掘进区域内的地层主要有细砂、圆粒、强风化泥质粉砂岩和中风化泥质粉砂岩。
地下潜水位表面局隧道顶部距离约为5.85m左右。
图2-1 下行线第26环附近地层剖面图对于盾构隧道拼装的管片, 主要受到浮力及其自重的影响。
对单位长度管片进行计算,盾构隧道管片所受浮力按照隧道排出的水的体积计算:2-1管片自重:2-2可见,管片混凝土自重小于其所受浮力,当管片处于地下水中时会出现上浮的现象。
同时,隧道同步注浆浆液采用单浆液,初凝时间需8~10小时,低强度浆液不仅无法对管片提供约束, 相反管片可视为浸泡在液体之中而提供了上浮力。
(2)部分管片壁后注浆量不够,富水砂砾层稳定性较差,且水=228.9F gV kN 浮22()F=134.2354D d kN混压较高,盾尾壁后注浆腔口容易被外界砂砾石给堵塞,给注浆带来一定的难度,所以在下行线掘进期间,同步注浆系统常出现堵管等问题,使得浆液不能及时充填管片间隙。
关于盾构管片高程偏差、管片破裂原因及解决方法简介2012年9月11日作者:风流无情在盾构隧道过程中,最容易出现的问题是盾构姿态问题。
中线偏差,以及高程偏差。
我自己认为中线偏差一般不会出现什么过大的偏差,这个以后再论。
从8月16日大连地铁某区间左线始发到现在80环处,前后两次出现高程偏差较大,而且伴随着管片破裂。
通过这两次管片姿态测量和对管片破损程度的观察,认为造成这种现象的根本原因是管片拼装问题。
从根本上来说,管片破裂其实就是力学问题,管片之所以会破裂,是因为他所受的力超过了其最大强度,从而导致管片破裂。
此次破裂有几个特点,一、管片破裂主要沿左侧连续破裂;二、左侧管片错台严重,错台现象为管片中间凸起而两边平整;三、管片破裂伴随着管片上浮;四、中线偏差基本正常首先,我从力学方面分析。
管片受力破坏有如下几个原因;一、因液压千斤顶推力过大而导致破裂;二、液压千斤顶两侧推力差较大,导致管片偏心受压,从而导致推力小的管片内侧因挤压而破坏;三、由于盾尾间隙过小,管片脱离盾尾时,由于盾尾刷的挤压而破坏;四、管片拼装成为鸡蛋形状,管片左侧受拉,右侧受压。
当盾构机掘进时,根据单轴抗压分析,受拉的管片极易破碎,从而导致管片边角以及边崩裂。
第一第二两种情况可以从盾构机推进参数上直接得出,无需多讲,而第三种情况也可通过每一环掘进完后用钢尺量出气盾尾间隙。
关键是第四种情况的分析,管片为何能拼装成如此形状。
第一种情况通过量测盾尾间隙基本排除,因为盾尾间隙左侧大而右侧小,随着管片拼装左侧有增大局势,右侧有减少局势,而管片连续破碎是在左侧。
且管片两侧盾尾间隙之和在减小,这种情况只能说明一点管片拼装成了椭圆形。
要是椭圆形,那么管片不会只有一侧破裂,而且是盾尾间隙较大的一侧,且是连续破裂。
所以,还有另一种可能,就是拼装成了如图1.我自己认为拼成这种图形的起因是右侧某一块标准块朝外有个角度,也就是右侧在人为因素下拼装成外八字,而左侧管片在右侧拼装成外八字前提下被动的被一环一环的拉长,从而造成管片左侧的连续错台,而且是管片两侧必须压低中心凸出,管片左侧整体受拉的情况。
盾构隧道管片上浮原因分析及应对措施高伟发表时间:2018-05-24T17:23:57.303Z 来源:《基层建设》2018年第7期作者:高伟[导读] 摘要:衬砌管片上浮是盾构隧道施工过程中普遍存在的问题,一直困扰着盾构隧道的施工。
中铁上海工程局城市轨道交通工程分公司上海市 201900摘要:衬砌管片上浮是盾构隧道施工过程中普遍存在的问题,一直困扰着盾构隧道的施工。
针对宁波地铁3号线一期体育馆站到明楼站区间盾构隧道施工过程中出现的管片上浮问题,分析了盾构掘进过程中管片上浮的原因,并从地质条件、注浆方法、浆液选择、注浆参数控制、隧道上覆土、盾构姿态入手,提出了施工、设计过程中控制衬砌管片上浮的对策和针对性措施,为盾构隧道的施工和设计提供了参考。
关键词:盾构隧道管片;上浮原因分析;应对措施引言地铁盾构掘进施工过程中,管片上浮问题比较突出,部分项目甚至严重到需设置调坡以适合线路设计,造成了较大的工期及经济损失。
为了确保地铁隧洞线型满足设计及保证工程质量,需将管片上浮位移量控制在规定的合理范围内。
盾构掘进时管片的上浮主要是因为管片抗浮能力不足所引起,管片上浮问题受到多种复杂因素的影响,包括水文地质、工程地质、掘进工法及工艺措施、管片构造、管片后压浆等。
本文依托此项目的工程实例,从盾构工法特征、盾构作业姿态及管片后压浆等多方面着手,对管片上浮问题产生的原因进行了系统的分析及研究,并采取针对性施工对策及措施,很好地控制了管片的上浮[1]。
1管片上浮的危害隧道管片的局部上浮会带来一系列连锁反应:①由于管片上浮直接影响成型隧道的轴线偏差,并引起了衬砌结构侵入隧道的建筑限界;②管片上浮会引起管片间的错台,使纵向连接螺栓受剪,出现管片裂缝,严重着会剪断纵向连接螺栓,影响结构安全;③螺栓的剪断或管片间出现裂缝和错台等,都可能破坏管片的防水结构,进而引起渗漏。
不及时补救,破坏程度蔓延,某些地层中可能出现严重的管涌、流沙等事故;④上覆土受土体自重和管片上浮力的影响,产生局部裂缝或压缩现象,严重者会出现贯通裂缝,如果地层不透水,加之上覆土也受到浮力作用的影响,上覆荷载相应减小,无疑增加了隧道管片的上浮幅度;⑤在同步注浆的施工中,由管片上浮引发的上覆土裂缝会使浆液外流,注浆量也会明显增加,裂缝中水的补给会阻碍浆液凝固,更不利于上浮现象的改善;⑥千斤顶顶在管片上为盾构掘进提供所需的推力,如果局部管片上浮,将会导致盾构推进施工时上浮管片和临近管片的偏心受力,管片内力重新分布,甚至会引发管片裂缝或更严重的破坏;⑦因局部管片上浮导致的纵向连接螺栓受到的剪力会传输给相邻的管片上,致使管片内力重新分布,而且同样可能引发管片裂缝或更大的破坏。
盾构隧道管片上浮原因分析及应对措施朱宝龙摘要:盾构施工过程中会受地质、水、同步浆液等因素的影响,管片脱出尾盾后,经常会发生管片向上位移现象,即所谓的管片上浮。
管片上浮会造成成型姿态超限,严重时影响线路设计中隧道的高程、走向和净空,同时增加施工成本。
本文,以某盾构隧道工程为依托,结合现场盾构管片上浮监测结果,考虑到管片衬砌结构的重要性,对盾构施工中管片上浮原因进行总结概括,提出了相应控制对策,通过现场监测,管片上浮量得到了有效地控制,验证了控制措施的有效性。
关键词:盾构隧道;管片上浮;姿态调整;衬砌背后注浆1.工程简介某地铁工程建(构)筑物主要包括1~4层居民房屋、红日山湖小区和金源橘子郡小区。
区间埋深约为19.6~30m,穿越地层以强风化至中风化泥质粉砂岩为主,岩性软弱,强度较低,埋深20m范围内地下水主要有松散岩层孔隙水和孔隙裂隙水2种类型。
2管片上浮原因分析结合隧道周围地质环境因素,对引发管片上浮的因素进行分析,主要受到工程水文地质条件、管片与围岩间建筑空隙、衬砌背后注浆质量、盾构掘进参数及姿态控制等方面的影响。
2.1工程水文地质条件影响此段上浮明显的管片位于强、中风化泥质粉砂岩不同地层交界处。
由于断面内岩层软弱不均,造成盾构掘进大量蛇形运动,加大了环向建筑空隙。
同时下部地层自稳能力较强,刀盘受到的阻力大于上部,造成刀盘切削上部软弱土体过量,下部硬岩切削较少,导致围岩与管片间的空隙得不到减小。
施工阶段为当地雨季,地层地下水位较高,在透水地层中施工时,管片浸泡产生的巨大浮力,使管片产生上浮趋势。
2.2管片与围岩间建筑空隙盾构前行时盾尾受力转移到临近管片上,盾构掘进扰动周围土体,导致管片脱尾后管片安装外径与周围围岩之间并非贴合紧密,存在着一定的环向建筑空隙。
此建筑空隙的存在,为管片提供了上浮空间。
在软弱地层中,管片脱出盾尾后,若注浆不及时,无法填充环向建筑空隙,拱顶围岩便会产生变形。
对于软弱地层,地表沉降可自动消除环向建筑空隙,有利于约束管片上浮。
盾构推进施工过程中隧道管片上浮问题分析摘要:盾构隧道管片上浮控制是确保隧道线型符合设计要求和隧道建筑限界的关键,文章从盾构工法特性、衬背注浆、盾构姿态及线路走向等影响因素着手,对盾构掘进过程中管片产生上浮的现象、原因进行了分析研究,并提出了控制措施。
关键词:盾构隧道,管片上浮,位移控制1前言近年来在我国上海等软土地区城市地铁建设中,常常会遇到盾构隧道在施工阶段的上浮问题,严重者甚至要通过调坡等来满足线路设计要求。
盾构隧道管片上浮位移控制是确保隧道线型符合设计要求、满足隧道建筑限界的关键,在盾构掘进过程中,盾构隧道的上浮问题主要由于隧道在地层中失去抗浮能力所致,它受盾构衬砌同步注浆、盾构工法特性、工程地质及水文地质条件、盾构姿态和线路走向等因素影响。
上海轨道交通2号线西延伸段VI标区间隧道所在工程区域土体物理力学性质差、地下水位高、埋深浅、急曲线、大坡度设计线路等特点,致使施工阶段隧道上浮量最大达到9cm.因此,本文结合上海轨道交通2号线西延伸段VI标区间隧道管片上浮的工程实例,从盾构工法特性、同步注浆、盾构姿态及线路走向等方面着手,重点对盾构掘进过程中管片产生上浮的现象、原因及施工对策进行分析研究,为解决软土地区盾构隧道上浮问题提供一些建议.2工程概况及地质条件分析2。
1工程概况上海轨道交通2号线西延伸工程Ⅵ标区间盾构隧道单线全长1258米,区间隧道平面总体走向呈“C”字形,纵断面总体走向呈“V"字形。
隧道最大覆土厚度约为15.5米,隧道水平曲线最小转弯半径为399。
851米,最大纵坡为37%。
隧道外径为6200mm,内径为5500mm,衬砌为环宽1200mm的通缝管片,管片采用通缝拼装,M30双头直螺栓联接;环缝及纵缝间防水材料采用三元乙丙弹性密封垫.2.2工程及水文地质条件分析本区段隧道埋深中间深,两端浅,隧道顶板标高—1。
361~-11.129m。
盾构隧道穿越地层分布较稳定,分层界限明显,土层起伏变化不大。
盾构隧道上浮解决措施
(1)问题分析
在隧道掘进施工中,拼装后的成形隧道或多或少会产生不稳定的现象,根据施工经验隧道产生的上浮现象比较常见,而隧道的上浮会对隧道质量产生严重的影响,因此分析其成因并制定相应的措施在本工程中是必不可少的。
(2)总结以往施工经验,该现象产生的成因有如下几点:
①对于盾构掘进后的建筑空隙浆液没有及时填充;
②由于建筑空隙的存在致使地下水、裂隙水的涌入造成隧道上浮;
③浆液凝固时间长;
④盾构掘进速度过快;
(3)施工技术措施
为了减少隧道的上浮量,使隧道尽快稳定,控制隧道可能会发生上浮的现象,确保隧道的稳定。
因此采取下列措施:
①施工期间严格控制隧道轴线,使盾构尽量沿着设计轴线推进,每环均匀纠偏,减少对土体的扰动。
②均衡施工,必要时减慢隧道掘进速度,让填充的浆液有充足的时间凝固,确保拼装好的管片稳定性。
③根据推进监测的结果对注浆方案进行针对性的调整。
如调整注浆部位、注浆量、配制快凝及提高早期强度的浆液等。
④为了正确观测隧道纵向变形,消除潮汐对隧道的影响,正确地判断隧道是否稳定,必要时采用连通管进行纵向变形监测。
⑤加强对管片的监测工作,以指导盾构机姿态调整,如果出现管片上浮和下沉量突变,则应加大监测频次,并采取二次压注双液浆的方法对管片进行稳定,防止情况进一步恶化。
⑥在盾构刚始发掘进时,由于盾构处于试推进阶段,所以盾构掘进较慢,有利于隧道的稳定。
另外,由于试推进本身的目的就在于摸索盾构对本标段地层的适应性,所以在掘进此段时,可以通过加强监测,制定相应的对策如壁后二次注浆、调整浆液配比、调整注浆位置等措施来解决此问题。
盾构隧道硬岩段施工管片上浮超标案例分析及解决方案2.广东建科建设咨询有限公司广东广州 510000引言城市地铁隧道的掘进大量采用盾构法进行施工,盾构工法相较明挖及矿山法作业有明显的优势,如盾构工法征地拆迁少、对复杂地质适应性强、施工速度快、安全性高、技术成熟等。
但盾构施工也存在一些施工难点及质量通病,如在施工过程中不加以重视及控制往往会对隧道区间的验收及运营造成不利影响。
在盾构法施工中盾构管片上浮的控制是盾构法施工控制中的重中之重,一但盾构管片上浮超标,将严重影响隧道区间的施工质量,甚至造成隧道局部区间限速。
1盾构管片上浮的应对措施盾构法施工质量控制的核心就是盾构管片轴线的误差控制,即把盾构管片的实际施工轴线与设计轴线的误差控制在合理范围,根据GB50299-2018《地下铁道工程施工验收规范》规定:管片拼装后,隧道轴线的高程和水平位移不得超过±50mm,成型隧道验收要求的隧道轴线的高程和水平位移不得超过±100mm。
在盾构管片安装直至盾构管片趋于稳定的过程中,盾构管片存在一定的高程及水平方向的位移,这些位移要通过一定的措施加以控制,否则盾构管片的施工轴线很容易偏位超标,盾构管片轴线偏位超标最常见的情况即是管片上浮。
管片上浮的因素很多,一般受隧道区间地质情况、地下水情况、管片同步注浆浆液情况、管片二次补浆情况及盾构掘进参数等多种因素综合影响。
管片上浮量主要发生在盾构管片脱出盾尾后24h~36h范围,之后的管片上浮量一般趋于稳定。
根据管片上浮的因素及权重制定控制管片上浮的措施,施工中常采用的措施有管片拼装时施工控制轴线下压、拼装管片采用垫片、施作止水环、采用半堕性同步浆液、合理控制盾构掘进参数、脱盾尾管片加重物压载等多种方式。
在实际工程案例中往往会选取以上多种控制方式的组合以达到预期控制效果。
2工程实例基本情况广州市轨道交通七号线二期大沙东站~姬堂站区间,区间隧道埋深10.21~29.06m,区间左线长2695.41m,右线长2693.50m。
盾构推进施工过程中隧道管片上浮问题分析随着城市化进程的不断加快,越来越多的地下工程需要被建造。
在地下工程中,隧道的建造是常见的一种情况。
而在隧道建设中,盾构施工是一种常用的施工方式。
但是,在盾构推进施工过程中,隧道管片上浮问题却时有发生。
下面将对该问题进行分析探讨。
首先,我们需要知道什么是盾构施工。
盾构是一种用于隧道施工的机械化设备。
在盾构施工中,隧道开挖是由推力装置推进钻杆和刀具的机械,主体结构较为稳固的“盾构机”实现的。
盾构推进的同时,施工人员会在盾构机尾部安装和拼装预制的环形混凝土管片,使隧道得以保持稳固。
盾构推进施工中,隧道管片上浮问题是一个常见的问题。
其原因主要有两种,一种是过量注浆,另一种则是隧道管片的缺陷。
先来看看过量注浆的情况。
在盾构推进施工中,注浆是一项重要的工作,它可以起到加固土层和隧道管片的作用。
但是在注浆时如果过量,就会使注浆剂溢出管片,在管片下方形成空洞,导致管片上浮。
除此之外,过量注浆也会增加隧道压力,导致隧道失稳。
另外一种原因是隧道管片的缺陷。
隧道管片是由混凝土浇筑而成的,它需要满足特定的强度和成品质量要求。
但是,在生产和运输管片的过程中,管片有时会出现破损、变形或者内外侧面有厚薄不一等问题。
如果这些缺陷不能及时发现和处理,在管片安装后,就会造成管片上浮。
针对隧道管片上浮问题,有一些预防和解决措施可以采用。
首先,注浆时一定要控制好注浆量,避免过量。
同时,还需要在施工中严格按照管片质量要求选用管片,并进行全面质量检查。
如果发现管片有问题,应及时更换。
此外,隧道装配管理也是避免管片上浮的重要措施。
在装配管片时,要安装准确、牢固,避免缝隙和空洞产生,影响施工质量。
总之,隧道管片上浮问题是盾构施工中常见的问题。
我们需要在施工前提前预防,而在施工时采取措施解决,以确保隧道施工的顺利进行。
盾构隧道上浮解决措施
(1)问题分析
在隧道掘进施工中,拼装后的成形隧道或多或少会产生不稳定的现象,根据施工经验隧道产生的上浮现象比较常见,而隧道的上浮会对隧道质量产生严重的影响,因此分析其成因并制定相应的措施在本工程中是必不可少的。
(2)总结以往施工经验,该现象产生的成因有如下几点:
①对于盾构掘进后的建筑空隙浆液没有及时填充;
②由于建筑空隙的存在致使地下水、裂隙水的涌入造成隧道上浮;
③浆液凝固时间长;
④盾构掘进速度过快;
(3)施工技术措施
为了减少隧道的上浮量,使隧道尽快稳定,控制隧道可能会发生上浮的现象,确保隧道的稳定。
因此采取下列措施:
①施工期间严格控制隧道轴线,使盾构尽量沿着设计轴线推进,每环均匀纠偏,减少对土体的扰动。
②均衡施工,必要时减慢隧道掘进速度,让填充的浆液有充足的时间凝固,确保拼装好的管片稳定性。
③根据推进监测的结果对注浆方案进行针对性的调整。
如调整注浆部位、注浆量、配制快凝及提高早期强度的浆液等。
④为了正确观测隧道纵向变形,消除潮汐对隧道的影响,正确地判断隧道是否稳定,必要时采用连通管进行纵向变形监测。
⑤加强对管片的监测工作,以指导盾构机姿态调整,如果出现管片上浮和下沉量突变,则应加大监测频次,并采取二次压注双液浆的方法对管片进行稳定,防止情况进一步恶化。
⑥在盾构刚始发掘进时,由于盾构处于试推进阶段,所以盾构掘进较慢,有利于隧道的稳定。
另外,由于试推进本身的目的就在于摸索盾构对本标段地层的适应性,所以在掘进此段时,可以通过加强监测,制定相应的对策如壁后二次注浆、调整浆液配比、调整注浆位置等措施来解决此问题。