2019贵州国考行测逢考必胜之牛吃草问题
- 格式:doc
- 大小:51.00 KB
- 文档页数:2
行测数学运算解题方法之牛吃草问题专家提醒您:在公务员考试的行政职业能力测验中,数学运算一直是重头戏,而数学运算中有许多问题都有着一定的难度,使得一些考生望而却步。
下面讲到的牛吃草问题即是这样的难题之一,当然,万变不离其宗,掌握问题本质,再难的问题都可以迎刃而解。
方法回顾牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗原有草量);4、最后求出可吃天数。
例题讲解例1:牧场上有一片青草,牛每天吃草,草每天以均匀的速度生长。
这片青草供给10 头牛可以吃20 天,供给15 头牛吃,可以吃10 天。
供给25 头牛吃,可以吃多少天?A.15B.10C.5D.12【专家分析】如果草的总量一定,那么,牛的头数与吃草的天数的积应该相等。
现在够10 头牛吃20 天,够15 头牛吃10 天,10×20 和15×10 两个积不相等,这是因为10 头牛吃的时间长,长出的草多,所以,用这两个积的差,除以吃草的天数差,可求出每天的长草量。
①求每天的长草量( 10×20-15×10 )÷( 20-10 )= 5 ( 单位量)说明牧场每天长出的草够5 头牛吃一天的草量。
②求牧场原有草量因为牧场每天长出的草量够5 头牛吃一天,那么,10 头牛去吃,每天只有10-5=5( 头)牛吃原有草量,20 天吃完,原有草量应是:( 10-5 )×20=100 ( 单位量)或:10 头牛吃20 天,一共吃草量是10×20=200 ( 单位量)一共吃的草量-20 天共生长的草量=原有草量200-100 = 100(单位量)③求25 头牛吃每天实际消耗原有草量因为牧场每天长出的草量够5 头牛吃一天, 25 头牛去吃,(吃的-长的= 消耗原草量)即:25 - 5= 20 ( 单位量)④25 头牛去吃,可吃天数牧场原有草量÷ 25 头牛每天实际消耗原有草量= 可吃天数100 ÷ 20 =5 ( 天)【解答】C。
行测数量关系:牛的生活之牛吃草问题最近经常刷短视频的同学们应该有很多被不想上学想放羊的小女孩吸粉了吧!但是,放羊其实也是个技术活呢,我们也需要根据草场上草生长情况,来判断到底能放几只羊。
我们计算的内容,就涉及到了今天要谈到的牛吃草问题。
跟着我们来看一下这种题目的基础题型:【例题】在一片草地上,草在均匀的生长,现在这片草地上的草可以供20头牛吃4周,或供12头牛吃8周,问:可以供8头牛吃几天?读完题我们会发现,题目中所描述的,原来的草地有一定的原始草量,每天消耗原始的草量为每天牛吃的草量减草生长的量;那么原始草量被吃完,即:原始草量=(牛吃草的速度-草生长的速度)×时间。
为了方便计算,我们假设一头牛每天吃1份草,草一天长x份草;可以供8头牛吃t天。
由题可知,牛吃草的速度在数值上就等于牛的数量。
所以,我们就可以代入原始草量的式子:原始草量=4(20-x)=8(12-x)=(8-x)t 解方程可得x=4,t=16。
所以,可以供8头牛吃12周。
由上可总结为:对于牛吃草问题,我们可以设一头牛一天吃1份草,草一天长x 份。
那么N头牛一天吃N份草,可以吃t天;代入式子,可得公式:原始草量=(N-x)t大家可以来做一下这个题目我们是不是可以快速得到结果呢?【小试牛刀】乌古丽想在自己家的草场中放一群羊,假设这片草场每天都在均匀生长,已知这片草地,可以供17只羊吃60天,或者可以供19只羊吃48天,那么乌古丽最多可以在这片草场上放多少只羊,才能保证永远也吃不完?A15 B12 C9 D6中公解析:在题目中,我们可以得到,草在均匀生长,那么羊就对应了牛吃草问题中的牛;所以设:一只羊一天吃1份草,草一天长x份。
代入公式可得:原始草量=60(17-x)=48(19-x),记得x=9要想永远也吃不完,即羊吃草的速度≤草生长的速度。
所以乌古丽最多可以放9头牛,这片草地上的草永远也吃不完。
选择C项。
同学们,经过上面的解释,我们再见到牛吃草问题是不是就可以直接代公式了呢?大家可以抽时间稍作练习,就可以很快掌握了。
牛吃草问题行测一、基础题型。
1. 牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?- 解析:- 设每头牛每天的吃草量为1份。
- 首先求草的生长速度,因为10头牛20天的总吃草量为10×20 = 200份,15头牛10天的总吃草量为15×10=150份。
- 20天的总草量比10天的总草量多的部分就是(20 - 10)天生长出来的草,所以草的生长速度为(200 - 150)÷(20 - 10)=5份/天。
- 然后求牧场原有的草量,根据10头牛吃20天的情况,原有的草量为10×20 - 5×20 = 100份。
- 对于25头牛,设可以吃x天,可列出方程100+(5x)=25x。
- 解得x = 5天。
2. 有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?- 解析:- 设每头牛每天吃草量为1份。
- 27头牛6天吃草量为27×6 = 162份,23头牛9天吃草量为23×9 = 207份。
- 草的生长速度为(207 - 162)÷(9 - 6)=15份/天。
- 牧场原有的草量为27×6 - 15×6 = 72份。
- 设21头牛可以吃x天,方程为72+(15x)=21x。
- 解得x = 12天。
3. 由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?- 解析:- 设每头牛每天吃草量为1份。
- 20头牛5天吃草量为20×5 = 100份,15头牛6天吃草量为15×6 = 90份。
- 草每天减少的量为(100 - 90)÷(6 - 5)=10份。
- 牧场原有的草量为20×5+10×5 = 150份。
公考牛吃草问题经典例题公考牛吃草问题,听着是不是有点让人头疼?别急,咱们一块儿聊聊,保准让你轻松搞懂。
这类问题其实一点也不复杂,只要你放松点,像在和朋友聊八卦一样,慢慢琢磨,答案就会在脑袋里清晰得像晴天一样。
首先啊,咱们得知道,牛吃草这种问题,归根结底是在考你如何理解“速度”和“时间”的关系。
你可以把它当作一场牛吃草的比赛,看看每头牛用多长时间吃完草,再算算草的总量。
简简单单,关键是得捋清楚每一部分。
想象一下,草地上有一堆草,旁边有一头牛,它慢慢地吃着,吃着,慢慢就能把草吃完。
你可能会问,牛吃草的速度快不快?如果只有一头牛,那它吃完草可能得很长时间,甚至你都能在旁边睡上一觉。
可要是有两头牛呢?它们分工合作,速度就能加快。
更妙的是,若是三头牛,你估计连吃草的机会都没得抢。
这种问题其实就像是大家一起去参加接力赛,每个人负责一段,大家合力完成,时间自然就短了。
别看这个问题简单,实际上一点也不简单。
咱们得有点策略才行。
假设题目给了你牛吃草的时间,告诉你一头牛吃完草需要多长时间。
比如,一头牛吃完草得10天。
那么问题来了,别的牛吃草是不是也能更快呢?答案是肯定的!如果有两头牛,它们的吃草速度肯定是加起来的,所以吃草的总时间就短了。
你可以想象成两个人合作画画,两个小伙伴一起工作,完成任务的时间自然缩短。
牛吃草也是这个道理,合作得好,时间自然就缩短了。
说到这里,你可能会心想:“好啊,那如果我有三头牛呢?”呵呵,三头牛更是能让你眼前一亮。
想象一下,它们三个人同时吃草,肯定是分担了更多的任务。
时间一下子就从10天缩短成了几天,牛吃草的速度比原来快多了。
怎么样,是不是有点像打游戏,团队合作,分工明确,任务就能很轻松完成呢?不过,事情也不是永远都这么简单。
草地的草量可能不固定,草可能吃不完或者有些剩余。
这个时候,你就得注意了,要根据题目提供的草量来计算,别光想着自己有多牛。
有些题目还特别喜欢搞一些小花样,像是草的生长速度、牛的吃草速度不一致等等。
2019年国家公务员考试行测技巧:牛吃草问题速解宝典大家知道在国家公务员考试数量关系中,行程问题包含了很多种不同种类的题型,所以大家每次遇到行程问题的时候大多会选择放弃,中公教育专家今天带领大家学习在行程问题中较为简单的一种题型——牛吃草问题,那我们一起走进今天的主角:一、特征判断1.有初始量2.有均匀增长量3.有排比句例1.一个牧场长满青草,青草每天均匀生长。
若放养27头牛可吃6天,若放养23头牛可吃9天,那么放养21头牛可吃多少天。
例2.由于天气逐渐变冷,牧场上的草以均匀的速度减少。
牧场上的草可供20头牛吃5天,或可供15头牛吃6天,照此计算,可供多少头牛吃10天。
二、模型求解宝典模型一:追及型牛吃草问题例3.一个牧场长满青草,青草每天均匀生长。
若放养27头牛可吃6天,若放养23头牛可吃9天,那么放养21头牛可吃多少天。
【中公解析】牛在吃草,草每天均匀生长,所以是牛吃草问题中的追击问题,原有草量=(牛每天吃掉的草-每天生长的草)×天数,设每头牛每天吃草量为“1”,每天生长的草量为X,可供21头牛吃T天,所以(27-X)×6=(23-X)×9=(21-X)×T,解得T=12.模型二:相遇型牛吃草问题例4.由于天气逐渐变冷,牧场上的草以均匀的速度减少。
牧场上的草可供20头牛吃5天,或可供15头牛吃6天,照此计算,可供多少头牛吃10天。
【中公解析】牛在吃草,草每天均匀减少,所以是牛吃草问题中的相遇问题,原有草量=(牛每天吃掉的草+每天生长的草)×天数,设每头牛每天吃草量为“1”,每天生长的草量为X,可供N头牛吃21天,所以(20+X)×5=(15+X)×6=(N+X)×10,解得N=5.模型三:极值型牛吃草问题例5.有一个牧场长满青草,青草每天均匀生长。
如果放养24头牛那么6天可以把草吃完,如果放养21头牛那么8天可以把草吃完,要让草永远吃不完,最多放养多少头牛。
⽜吃草问题经常给出不同头数的⽜吃同⼀⽚次的草,这块地既有原有的草,⼜有每天新长出的草。
由于吃草的⽜头数不同,求若⼲头⽜吃的这⽚地的草可以吃多少天。
解题关键是弄清楚已知条件,进⾏对⽐分析,从⽽求出每⽇新长草的数量,再求出草地⾥原有草的数量,进⽽解答题总所求的问题。
这类问题的基本数量关系是: 1.(⽜的头数×吃草较多的天数-⽜头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。
2.⽜的头数×吃草天数-每天新长量×吃草天数=草地原有的草。
下⾯来看⼏道典型试题: 例1. 由于天⽓逐渐变冷,牧场上的草每天⼀均匀的速度减少。
经计算,牧场上的草可供20头⽜吃5天,或供16头⽜吃6天。
那么可供11头⽜吃⼏天?( )A.12B.10C.8D.6 【答案】C。
解析:设每头⽜每天吃1份草,则牧场上的草每天减少(20×5-16×6)÷(6-5)=4份草,原来牧场上有20×5+5×4=120份草,故可供11头⽜吃120÷(11+4)=8天。
例2. 有⼀⽚牧场,24头⽜6天可以将草吃完;21头⽜8天可以吃完,要使牧草永远吃不完,⾄多可以放牧⼏头⽜?( )A.8B.10C.12D.14 【答案】C。
解析:设每头⽜每天吃1份草,则牧场上的草每天⽣长出(21×8-24×6)÷(8-6)=12份,如果放牧12头⽜正好可吃完每天长出的草,故⾄多可以放牧12头⽜。
例3. 有⼀个⽔池,池底有⼀个打开的出⽔⼝。
⽤5台抽⽔机20⼩时可将⽔抽完,⽤8台抽⽔机15⼩时可将⽔抽完。
如果仅靠出⽔⼝出⽔,那么多长时间将⽔漏完?( )A.25B.30C.40D.45 【答案】D。
解析:出⽔⼝每⼩时漏⽔为(8×15-5×20)÷(20-15)=4份⽔,原来有⽔8×15+4×15=180份,故需要180÷4=45⼩时漏完。
给人改变未来的力量数量关系解题技巧之牛吃草问题解题思路一般情况下,解答牛吃草问题,考生们都是被动地记公式“原有草量=(牛头数-草的生长速度)×吃的天数(即:y=(N-x)×t)”,然后机械式地代数据解方程,一个固定的模式求解牛吃草问题。
但与其每次解类似的方程组,何不先找出解方程的思路,如果一道题中存在两类牛吃草的情况,即可得:y=(N1-x)×t1y=(N2-x)×t2解得:x=(N1×t1- N2×t2)÷(t1 - t2)(注意:N1×t1>N2×t2、t1 >t2) 口诀:(乘积的大数 - 小数)÷(天数的大数 - 小数)因此,解答牛吃草问题时,不用列方程,就能直接解出x。
例1、有一块牧场,11头牛8天恰好可以将牧场的草吃完;8头牛12天恰好可以将牧场的草吃完,则该牧场可供5头牛吃()天。
A. 20B. 24 C .30 D. 36解析:显然,本题属于牛吃草问题,两种牛吃草的情况,直接求x,x=(12×8-8×11)÷(12-8)=2,y=(11-2)×8=72,那5头牛可以吃:72÷(5-2)=24天。
故答案为B。
例2、一片草地每天草量定额增加,如果放养24头马,6天可以吃完。
如果放养21头马,8天可以吃完,每头马每天吃草量相等,则要使草地牧马可持续,最多可以放养( )头马?A. 10B. 15C. 12D. 18解析:本题属于牛吃草问题。
题干要求实现可持续,因此,每天牛吃草的量应恒等于每天的增加量,才能实现可持续,即求出x即可。
依题可得:x=(21×8-24×6)÷(8-6)=12。
故答案为C。
公务员考试⾏测技巧:⽜吃草问题逢考必胜 店铺为您整理《公务员考试⾏测技巧:⽜吃草问题逢考必胜》,希望给您带来帮助!更多相关资讯请继续关注本⺴站的更新!在这⾥祝您考试顺利通过! 公务员考试⾏测技巧:⽜吃草问题逢考必胜 四百多年前,英国著名的物理学家⽜顿曾编过这样⼀道:牧场上有⼀⽚⻘草,每天都⽣⻓得⼀样快。
这⽚⻘草供给10头⽜吃,可以吃22天,或者供给16头⽜吃,可以吃10天,期间⼀直有草⽣⻓。
如果供给25头⽜吃,可以吃多少天?这就是著名的⽜顿问题,我们也称为⽜吃草问题。
今天⽜吃草问题仍活跃在⾏测考试的舞台,并且也是给我们送分的好伙伴。
那么这种题型如何求解呢?在此⽤三次元转为⼆次元的图形,⼀起认识⼀下⽜吃草问题。
⼀、⽜吃草模型 ⽜吃草的本质是消⻓问题,即原来有⼀⽚草AB段,在B点时来了⼀群⽜。
此后,草继续保持原来的形式向右点⽣⻓,⽽⽜开始吃草。
在C点时,⽜将新⻓出来的草和原来的草全都吃完了。
将这个模型抽象成⼆维空间的图如下,可以发现,跟我们学过的追及问题是⾮常类似的,因此类⽐追及问题来推导⽜吃草问题的公式: M:原来每块地有M份草。
N:有N头⽜,每头⽜每天吃1份草。
因此⽜吃草的速度为N份/天。
x:每块地每天⻓x份草。
t:⽜吃光草的时间。
并根据追及问题推出公式:M=(N-x)t 【例1】牧场上有⼀⽚⻘草,每天都⽣⻓得⼀样快。
这⽚⻘草供给10头⽜吃,可以吃22天,或者供给16头⽜吃,可以吃10天,期间⼀直有草⽣⻓。
如果供给25头⽜吃,可以吃多少天? 【答案解析】根据公式可得:M=(10-x)×22=(16-x)×10。
解得x=5,M=110。
问25头⽜可吃多少天则可列⽅程:M=(25-x)×t,带⼊可得t=5.5天。
⼆、模型变形 1、极值型 若将问题改为,为了不让草被吃光最多可以养多少头⽜,我们会发现,只要⽜吃草的速度追不上草⽣⻓的速度,即草永远不会被吃光,此时最多可以养x头⽜。
2019贵州国考行测逢考必胜之牛吃草问题四百多年前,英国著名的物理学家牛顿曾编过这样一道:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,期间一直有草生长。
如果供给25头牛吃,可以吃多少天?这就是著名的牛顿问题,我们也称为牛吃草问题。
今天牛吃草问题仍活跃在行测考试的舞台,并且也是给我们送分的好伙伴。
那么这种题型如何求解呢?中公教育专家在此用三次元转为二次元的图形,一起认识一下牛吃草问题。
一、牛吃草模型
牛吃草的本质是消长问题,即原来有一片草AB段,在B点时来了一群牛。
此后,草继续保持原来的形式向右点生长,而牛开始吃草。
在C点时,牛将新长出来的草和原来的草全都吃完了。
将这个模型抽象成二维空间的图如下,可以发现,跟我们学过的追及问题是非常类似的,因此类比追及问题来推导牛吃草问题的公式:
M:原来每块地有M份草。
N:有N头牛,每头牛每天吃1份草。
因此牛吃草的速度为N份/天。
x:每块地每天长x份草。
t:牛吃光草的时间。
并根据追及问题推出公式:M=(N-x)t
【例1】牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,期间一直有草生长。
如果供给25头牛吃,可以吃多少天?
【中公解析】根据公式可得:M=(10-x)×22=(16-x)×10。
解得x=5,M=110。
问25头牛可吃多少天则可列方程:M=(25-x)×t,带入可得t=5.5天。
二、模型变形
1、极值型
若将问题改为,为了不让草被吃光最多可以养多少头牛,我们会发现,只要牛吃草的速度追不上草生长的速度,即草永远不会被吃光,此时最多可以养x头牛。
因此在牛吃草问题中,若出现极值型的题目,一般考虑N=x的情况。
【例2】有一条河流,沙子每天都匀速堆积。
如果开24条采砂船,那么6个月就可以把沙子挖光,如果开21条采砂船,8个月可以把沙子挖光。
要让沙子永远挖不完,最多可以开几条采砂船?
【中公解析】根据公式可得:M=(24-x)×6=(21-x)×8。
解得x=12,M=72。
即沙子每个月都沉积5份,为了让沙子永远不被挖光,最多只能开5艘采砂船。
2、相遇型
当冬天天气转冷,牛每天吃草的同时草每天也在枯萎,此时牛吃的量与草枯死的量之和应该等于原有草量。
因此当题干中的牛与草是同消同长时,牛吃草问题的公式转变为M=(N+x)t
【例2】秋天到了,果树上的果子每天均匀掉落。
如果果园派20个人来摘果子,5天可以摘完,如果派15人来摘果子,6天可以摘完。
假设没人每天摘的量是一样的,照此计算,想在10天内摘完果子需要派多少人?
【中公解析】根据题意,工人摘果子是让果子总量减少,果子掉落也让果子总量减少,因此根据公式可得:M=(20+x)×5=(15+x)×6。
解得x=10,M=150。
想要在10天内摘完则有M=(N+x)10。
可得N=5。
牛吃草问题一般都是比较简单基础的题型,因此只要把基础模型和常见的变形形式掌握即可快速解题,中公教育专家希望考生们秒杀此类题型!。