当前位置:文档之家› 基于划分的聚类算法

基于划分的聚类算法

基于划分的聚类算法
基于划分的聚类算法

文献阅读报告

课程名称:《模式识别》课程编号:题目: 基于划分的聚类算法

研究生: 学号:

论文评语:

成绩: 任课教师: 评阅日期:

基于划分的聚类算法

2016-11-20

摘要: 聚类分析是数据挖掘的一个重要研究分支,已经提出了许多聚类算法,划分方法是其中之一。基于划分的聚类算法就是用统计分析的方法研究分类问题。本文介绍了聚类的定义以及聚类算法的种类,详细阐述了K 均值聚类算法和K中心点聚类算法的基本原理并对他们的性能进行分析,对近年来各学者对基于划分的聚类算法的研究现状进行梳理,对其具体应用实例作简要介绍。

关键字:数据挖掘;聚类;K 均值聚类算法;K 中心点聚类算法;K众数算法;k多层次聚类算法

Partitional clustering algorithms

Abstract:Clustering analysis is an important branch of data mining, many clustering algorithms have been proposed, the dividing method is one of them. Based on the clustering algorithm is divided into classification problems using the method of statistical analysis. In this paper,we introduces the definition of clustering and type of clustering algorithm,the basic principle of k-means clustering algorithm and

K-center clustering algorithm are expounded in detail,we also analyze their performance,the scholars in recent years the study of the clustering algorithm based on partitioning present situation has carried on the comb,make a brief introduction to its specific application instance.

Key words:Data mining;clustering;k-means clustering algorithms;k-medoids clustering algorithms;k-modes clustering algorithms ;k-prototype clustering algorithms

1.引言

把单个的数据对象的集合划分为相类似的样本组成的多个簇或多个类的过程,这就叫聚类[1]。在无监督的情况下,具有独立的学习能力,这就是聚类。将数据空间中的所有数据点分别划分到不同的类中,相近距离的划分到相同类,较远距离的划分到不同类,这就是聚类的目的.聚类分析常作为一种数据的预处理过程被用于许多应用当中,它是更深一步分析数据、处理数据的基础。人们通过聚类分析这一最有效的手段来认识事物、探索事物之间的在联系,而且,关联规则等分析算法的预处理步骤也可以用它。现在,在气象分析中,在图像处理时,在模式识别领域,在食品检验过程中,都有用到它。随着现代科技水平的不断提高、网络的迅猛发展、计算机技术的不断改革和创新,大批量的数据不断涌现。怎样从这些数据中提取有意义的信息成为人们关注的问题。这对聚类分析技术来说无疑是个巨大的挑战。只有具有处理高维的数据的能力的聚类算法才能解决该问题. 研究者们开始设计各种聚类算法,于是,基于划分的聚类算法便应运而生,而且,取得了很好的效果。

2.正文

1 聚类概述

1.1定义

聚类的定义[2]为:在已知的数据的集合中,寻找数据点集的同类的集合.其中,每一个数据集合为一个类,还确定了一个区域,区域中的对象的密度高于其他区域中的对象的密度.聚类的实质就是“把数据集合中的所有数据分成许多的类簇,其中必有一个类簇的实体它们都是相似的,而其它不同类簇的实体它们是不相似的;一个类簇是被测试空间中的点的会聚,而且,同一个类簇的任意两个点之间的距离小于不同的类簇的任意两个点之间的距离;一个包含的密度相对较高的点集的多维空间中的连通区域可以被描述为一个类簇,这时,它们可以借助包含的密度相对较低的点集的区域与其他的区域分离开来。”

1.2聚类算法的种类

截止目前,经典的聚类方法[3]有基于划分的方法,也有基于层次的方法,更有基于密度的方法,还有基于网格的方法及基于模型的方法。

1.2.1划分方法(partitioning methods)

给定一个数据集D,其包含有n 个数据对象,用一个划分方法来构建数据的k 个划分,每一个划分表示一个类,且k≤n。即它将数据对象划分为个簇,并满足以下两点要求:1)每一个组至少包含一个数据对象;2)每一个数据对象必须属于某一个组.假定要构建的划分其数目为k,划分方法就是:首先,先创建一个初始的划分,然后,再采用一种迭代的重定位的技术,通过将数据对象在划分间来回的移动来改进划分.一个好划分的准则为:同一类中的数据对象之间要尽可能的“接近”,而不同的类中的数据对象之间要尽可能的“远离”。

1.2.2层次方法(hierarchical methods)

对给定的数据对象的集合进行层次的分解就是层次的方法.依据层次分解的形成过程,该方法可分为凝聚的层次聚类和分裂的层次聚类两类. 自底向上进行的层次分解为凝聚的(agglomerative)层次聚类;自顶向下进行的层次分解为分裂的(divisive)层次聚类. 分裂的层次聚类先把全体对象放在一个类中,再将其渐渐地划分为越来越小的类,依此进行,一直到每一个对象能够自成一类.而凝聚的层次聚类则是先将每一个对象作为一个类,再将这些类逐渐地合并起来形成相对较大的类,依此进行,一直到所有的对象都在同一个类中方结束。

1.2.3密度方法(density-based methods)

大多数的聚类算法都是用距离来描述数据间的相似性性质的,这些方法只能发现球状的类,而在其他形状的类上,这些算法都无计可施.鉴于此,就只能用密度(密度实际就是对象或数据点的数目)将其的相似性予以取代,该方法就是基于密度的聚类算法。密度的方法的思想:一旦“领域”的密度超过某一个阈值,就将给定的簇继续的增长.该算法还能有效的去除噪声。

1.2.4网格的方法(grid-based methods)

先把对象空间量化成有限数目的单元,将其形成一个网格空间,再对该空间进行聚类,这就是网格的方法.其主要优点为处理速度快,因为它的处理速度只与量化空间中的每一维的单元数目相

关,而与数据对象的数目无关.

1.2.5模型的方法(model-based methods)

基于模型的方法就是先给每一个聚类假定一个模型,再去寻找能较好的满足该模型的数据的集合。此模型也许是数据点在空间中的密度分布的函数,也许是其它.其潜在的假定为: 一系列概率的分布决定该目标数据的集合. 统计方案、神经网络方案通常是其研究的两种方向。

2基于划分的聚类算法

给定一个数据集D,其包含有n个数据对象,用一个划分方法来构建数据的k个划分,每一个划分表示一个类,且k≤n。根据D 的属性,使得同一类中的数据对象之间尽可能的“接近”,而不同的类中的数据对象之间尽可能的“远离”。

2.1K-均值聚类算法

2.1.1K均值聚类算法[4]基本原理

随机选k个点作为初始的聚类的中心点,根据每个样本到聚类的中心之间的距离,把样本归类到相距它距离最近的聚类中心代表的类中,再计算样本均值.如若相邻的两个聚类中心无变化,调整立即结束,如若不然,该过程不断重复进行。其特点是:在每次迭代的时候,均要检查每一个样本分类,看该分类是否正确,不正确的话,就要在全部的样本中进行调整,调整好后,对聚类的中心进行修改,再进行下一次迭代;如若分类正确,聚类的中心就不再调整了,标准测度函数也就收敛了,算法也就结束了。

2.1.2K均值聚类算法步骤

输入项为:簇的数目k及包含有n个对象的数据的集合。输出项为:k个簇。具体的方法:

1)在数据的对象的集合中,任选k个对象作为初始的簇的中心;

2)依据簇中的对象的平均值,为每一个对象重新予以最相似的簇;

3)更新簇的平均值(即计算每一个簇中的对象的平均值);

4)重复2)3)两个步骤;

5)一直到不再发生变化为止。

图1 K-means算法过程示意图

Fig 1 K-means algorithm process diagram

2.1.3K均值聚类算法性能分析

优点:该算法的运算速度非常快,而且其结构也很简洁;其类簇之间的区别也很明显;最重要的是其时间复杂度为O(nkt),所以,在处理大型数据集时,它具有可伸缩性和高效性.其中,n是样本的数目,k是类簇的数目,t是迭代的次数,通常k≤n 且t≤n。缺点:该算法需要事先给定簇类的数目k;它不适合非凸形状的簇,也不适合存在大小差别很大的簇的数据的集合;其对数据集合的噪声和离群点的敏感较高,因为此类数据也许会对均值造成一定的影响;因为其对初始中心的选择的依赖性较强,所以,产生局部的最优解发生的概率非常大。

2.2K-中心点聚类算法

2.2.1K中心点聚类算法[5]基本原理

首先,针对每个类,先为其随机的选择一个实际样本,将其作为初始的中心点,而数据集剩余的其他样本则依据其与中心点样本的相似度,将其分配到最相似的中心点所在的簇类,然后,再选择新的中心点对象将原来的中心点对象替换掉,以此达到提高聚类质量(聚类质量是由数据集的各个样本与所属簇的中心点间的平均相异度来度量的。)的目的,如此反复的选择,一直到聚类质量不再提高为止.用接近聚类中心的一个数据对象来表示K中心点聚类算法的簇,而在K均值聚类算法中,用该簇中数据对象的平均值来表示每个簇。

2.2.2最早提出的K中心点聚类算法

PAM[6](Partioning around Medoid)是最早提出的K 中心点聚类算法.其原理为:先为每个类任选一个代表对象,而剩下的数据对象则根据其与代表对象的距离远近而相应的加入到最近的类中,再尝试着用非代表数据对象将代表数据对替换掉,如此反复尝试,直至收敛。

图2 对象i被对象h替换的4种情况示意图

Fig 2 diagram of 4 cases of object I replaced by object h

为了判定一个非代表对象O h是否是当前一个代表对象O i的好的替代,对于每一个非中心点对象O j,下面的四种情况被考虑:

●第一种情况:假设O i被O h代替作为新的中心点,O j当前隶属于中心点对象O i。

如果O j离这个新的中心点O h最近,那么O j被分配给O h。

●第二种情况:假设O i被O h代替作为新的中心点,但是O j当前隶属于另一个中心

点对象O t,t≠i。如果O j依然离O t最近,那么对象的隶属不发生变化。

●第三种情况:假设O i被O h代替作为新的中心点,O j当前隶属于中心点对象O i。

如果O j离某个中心点O t最近,i≠t,那么O j被重新分配给O t。

●第四种情况:假设O i被O h代替作为新的中心点,但是O j当前隶属于另一个中心

点对象O t,t≠i。如果O j离这个新的中心点O h最近,那么O i被重新分配给O h。

2.2.3 PAM算法步骤

输入项为:簇的数目k及包含有n个对象的数据的集合。输出项为:k个簇。具体的方法:

1)在数据的对象的集合中,任选k个对象作为初始的簇的中心;

2)对每一个由非中心对象h 和中心对象i,计算i 被h 替代的总代价Tc ih =∑j C jih ;

3)对每一个有h 和i 组成的对象对,如果Tc ih <0,i 被h 替换,然后将每一个非中心点对象根据与中心点的距离分配给离它最近的中心点;

4)重复2)3)两个步骤;

5) 一直到不再发生变化为止。

2.2.4 K 中心点聚类算法性能分析

K 中心点聚类算法有很强的鲁棒性,因为它用簇真实样本作为簇中心,这样可以降低噪音及离群点对聚类结果做产生的影响.但缺点是,它不适合于大型的数据集,由其初始的中心是随机选的,仍会存在局部最优解,且时间复杂度为O (k(n-k)2),时间复杂度较大。由此看来,只要确定恰当的聚类数目k 值及初始的聚类中心点,才能加快聚类过程的收敛的速度,以提高聚类的效率。

2.3 K-众数聚类算法

K —Modes 聚类算法[7]是通过对K —Means 聚类算法的扩展,使其应用于分类属性数据聚类.它采用简单匹配方法度量同一分类属性下两个属性值之间的距离,用Mode 代替K —Means 聚类算法中的Means ,通过基于频率的方法在聚类过程中不断更新Modes .

相关性d 的计算公式是比较两记录之间所有属性,如果属性不同则给d 加1,如相同则不加,所以d 越大,记录间的不相关程度越强。假设X ,Y 是数据集中的两个对象,它们用m 维属性描述,则这两个对象之间的相异度为:d(X,Y)= m 1(,)j j

j x y δ-∑,当x j =y j 时,x δj j (,y )=0;当x j ≠y j 时,

x δj j (,y )=1。更新modes ,使用一个簇的每个属性出现频率最大的那个属性值作为代表簇的属性值(如{[a,1][a,2][b,1][a,1][c,3]}代表模式为[a,1])。重新调整记录所属的簇,直到不会再产生变化。

2.4 K-prototypes 聚类算法

K-Prototype 算法[8]是结合K-Means 与K-modes 算法,针对混合属性的。解决两个核心问题如下:

度量具有混合属性的方法是,数值属性采用K-means 方法得到P1,分类属性采用K-modes 方法P2,那么D=P1+a*P2,a 是权重。如果觉得分类属性重要,则增加a ,否则减少a,a=0时即只有数值属性;更新一个簇的中心的方法,是结合K-Means 与K-modes 的更新。

2.5 基于划分的聚类算法研究现状

近几年来,人们对于基于划分的聚类挖掘技术的研究,研究最多的、发展较快的也就是对K 均值聚类算法的改进.Mac Queen 在1967 年提出了K 均值聚类算法的概念, 但该算法不能发现非凸面,而且,对噪声数据的敏感过强.于是,学者们又对其进行改进,在1990 年的时候, Rousseeuw 等人提出了PAM 和CLARA (Clustering Large Applications )算法。国外研究者们大都把目光集中在聚类中心的初始化和聚类数目k 值的确定问题上,但是,聚类中心的初始化和聚类数目k 值并没有普遍适用的解决的办法。

各种聚类算法及改进算法的研究

论文关键词:数据挖掘;聚类算法;聚类分析论文摘要:该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点,以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。 1 引言随着经济社会和科学技术的高速发展,各行各业积累的数据量急剧增长,如何从海量的数据中提取有用的信息成为当务之急。聚类是将数据划分成群组的过程,即把数据对象分成多个类或簇,在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。它对未知数据的划分和分析起着非常有效的作用。通过聚类,能够识别密集和稀疏的区域,发现全局的分布模式,以及数据属性之间的相互关系等。为了找到效率高、通用性强的聚类方法人们从不同角度提出了许多种聚类算法,一般可分为基于层次的,基于划分的,基于密度的,基于网格的和基于模型的五大类。 2 数据挖掘对聚类算法的要求(1)可兼容性:要求聚类算法能够适应并处理属性不同类型的数据。(2)可伸缩性:要求聚类算法对大型数据集和小数据集都适用。(3)对用户专业知识要求最小化。(4)对数据类别簇的包容性:即聚类算法不仅能在用基本几何形式表达的数据上运行得很好,还要在以其他更高维度形式表现的数据上同样也能实现。(5)能有效识别并处理数据库的大量数据中普遍包含的异常值,空缺值或错误的不符合现实的数据。(6)聚类结果既要满足特定约束条件,又要具有良好聚类特性,且不丢失数据的真实信息。(7)可读性和可视性:能利用各种属性如颜色等以直观形式向用户显示数据挖掘的结果。(8)处理噪声数据的能力。(9)算法能否与输入顺序无关。 3 各种聚类算法介绍随着人们对数据挖掘的深入研究和了解,各种聚类算法的改进算法也相继提出,很多新算法在前人提出的算法中做了某些方面的提高和改进,且很多算法是有针对性地为特定的领域而设计。某些算法可能对某类数据在可行性、效率、精度或简单性上具有一定的优越性,但对其它类型的数据或在其他领域应用中则不一定还有优势。所以,我们必须清楚地了解各种算法的优缺点和应用范围,根据实际问题选择合适的算法。 3.1 基于层次的聚类算法基于层次的聚类算法对给定数据对象进行层次上的分解,可分为凝聚算法和分裂算法。 (1)自底向上的凝聚聚类方法。这种策略是以数据对象作为原子类,然后将这些原子类进行聚合。逐步聚合成越来越大的类,直到满足终止条件。凝聚算法的过程为:在初始时,每一个成员都组成一个单独的簇,在以后的迭代过程中,再把那些相互邻近的簇合并成一个簇,直到所有的成员组成一个簇为止。其时间和空间复杂性均为O(n2)。通过凝聚式的方法将两簇合并后,无法再将其分离到之前的状态。在凝聚聚类时,选择合适的类的个数和画出原始数据的图像很重要。 [!--empirenews.page--] (2)自顶向下分裂聚类方法。与凝聚法相反,该法先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一簇,或者达到了某个终结条件。其主要思想是将那些成员之间不是非常紧密的簇进行分裂。跟凝聚式方法的方向相反,从一个簇出发,一步一步细化。它的优点在于研究者可以把注意力集中在数据的结构上面。一般情况下不使用分裂型方法,因为在较高的层很难进行正确的拆分。 3.2 基于密度的聚类算法很多算法都使用距离来描述数据之间的相似性,但对于非凸数据集,只用距离来描述是不够的。此时可用密度来取代距离描述相似性,即基于密度的聚类算法。它不是基于各种各样的距离,所以能克服基于距离的算法只能发现“类圆形”的聚类的缺点。其指导思想是:只要一个区域中的点的密度(对象或数据点的数目)大过某个阈值,就把它加到与之相近的聚类中去。该法从数据对象的分布密度出发,把密度足够大的区域连接起来,从而可发现任意形状的簇,并可用来过滤“噪声”数据。常见算法有DBSCAN,DENCLUE 等。[1][2][3]下一页 3.3 基于划分的聚类算法给定一个N个对象的元组或数据库,根据给定要创建的划分的数目k,将数据划分为k个组,每个组表示一个簇类(<=N)时满足如下两点:(1)每个组至少包含一个对象;(2)每个对

基于密度的最佳聚类数确定方法.

基于密度的最佳聚类数确定方法 [关键字]聚类评估,聚类数,聚类有效性指标 0 引言 聚类是数据挖掘研究中重要的分析手段,其目的是将数据集中对象聚集成类,使得同一类中的对象是相似的,而不同类中的对象是不同的。迄今研究者已经提出了为数众多的聚类算法,并已经在商务智能、图形分析、生物信息等领域得到了广泛应用。作为一种非监督学习的方法,对学习得到的聚类结果进行评估是非常有必要的。因为许多聚类算法需要用户给定数据集的聚类数量,而在实际应用中这通常是事先不知道的。确定数据集的聚类数问题目前仍是聚类分析研究中的基础性难题之一 [1][2]。 聚类评估用于评价聚类结果的质量,这被认为是影响聚类分析成功与否的重要因素之一[3]。它在聚类分析过程中的位置如图1所示。聚类评估的一些重要问题包括确定数据集的聚类趋势、确定正确的类个数、将聚类分析结果与已知的客观结果比较等,本文主要研究其中的最佳聚类数的确定。 通常最佳聚类数的确定是通过以下计算过程来确定的。在给定的数据集上,通过使用不同的输入参数(如聚类数)运行特定的聚类算法,对数据集进行不同的划分,计算每种划分的聚类有效性指标,最后比较各个指标值的大小或变化情况,符合预定条件的指标值所对应的算法参数被认为是最佳的聚类数 [4]。 迄今为止,已有各种类型的度量指标从不同角度来评估数据集划分的有效性,这些指标称为聚类有效性指标(Clustering Validation Indices)。一般地,用于评估聚类的各方面的评估度量指标可分成以下两类[5]。 1)外部指标(External index):指聚类分析的评价函数是针对基准问题的,其簇的个数及每个数据对象的正确分类均为已知。代表性外部指标有熵、纯度、F-measure等。 2)内部指标(Internal index):指数据集结构未知的情况下,聚类结果的评价只依靠数据集自身的特征和量值。在这种情况下,聚类分析的度量追求两个目标:类内紧密度和类间分离度。这也是本文的主要研究领域,代表性内部指标有DB,CH,XB,SD等。 从其他不同角度,聚类有效性指标又可分为分割指标与层次指标,模糊指标与非模糊指标,统计指标与几何指标。 用内部指标来评估聚类有效性,获取数据集最佳划分或最佳聚类数的过程一般分为以下4步[6]:

各种密度聚类算法

什么是聚类?聚类:- 将一个对象的集合分割成几个类,每个类内的对象之间是相似的,但与其他类的对象是不相似的。评判聚类好坏的标准:1 ,能够适用于大数据量。 2 ,能应付不同的数据类型。 3 ,能够发现不同类型的聚类。 4 ,使对专业知识的要求降到最低。 5 ,能应付脏数据。 6 ,对于数据不同的顺序不敏感。 7 ,能应付很多类型的数据。 8 ,模型可解释,可使用。 二,聚类所基于的数据类型。 聚类算法通常基于“数据矩阵”和“ Dissimilarity 矩阵”。 怎么样计算不同对象之间的距离? 1 ,数值连续的变量(体重,身高等):度量单位的选取对于聚类的结果的很重要的。例如将身高的单位从米变为尺,将体重的单位从公斤变为磅将对聚类的结果产生很大的影响。为了避免出现这种情况,我们必须将数据标准化:将数据中的单位“去掉”。 A, 计算绝对背离度。B, 计算标准量度。下面我们考虑怎样来计算两个对象之间的差异。 1 ,欧几里得距离。 2 ,曼哈顿距离。这两种算法有共同之处:d(i,j)>=0,d(i,i)=0, d(i,j)=d(j,i),d(i,j)=

(完整word版)各种聚类算法介绍及对比

一、层次聚类 1、层次聚类的原理及分类 1)层次法(Hierarchical methods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法就是一开始每个个体(object)都是一个 类,然后根据linkage寻找同类,最后形成一个“类”。自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”。这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。至于根据Linkage判断“类” 的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 2)Hierarchical methods中比较新的算法有BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK(A Hierarchical Clustering Algorithm for Categorical Attributes)主要用在categorical的数据类型上;Chameleon(A Hierarchical Clustering Algorithm Using Dynamic Modeling)里用到的linkage是kNN(k-nearest-neighbor)算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,O(n^2)。 2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。

各种密度聚类算法

一,什么是聚类? 聚类: - 将一个对象的集合分割成几个类,每个类内的对象之间是相似的,但与其他类的对象是不相似的。评判聚类好坏的标准: 1 ,能够适用于大数据量。 2 ,能应付不同的数据类型。 3 ,能够发现不同类型的聚类。 4 ,使对专业知识的要求降到最低。 5 ,能应付脏数据。 6 ,对于数据不同的顺序不敏感。 7 ,能应付很多类型的数据。 8 ,模型可解释,可使用。 二,聚类所基于的数据类型。 聚类算法通常基于“数据矩阵”和“ Dissimilarity 矩阵”。 怎么样计算不同对象之间的距离? 1 ,数值连续的变量(体重,身高等):度量单位的选取对于聚类的结果的很重要的。例如将身高的单位从米变为尺,将体重的单位从公斤变为磅将对聚类的结果产生很大的影响。为了避免出现这种情况,我们必须将数据标准化:将数据中的单位“去掉”。 A, 计算绝对背离度。 B, 计算标准量度。 下面我们考虑怎样来计算两个对象之间的差异。 1 ,欧几里得距离。 2 ,曼哈顿距离。这两种算法有共同之处: d(i,j)>=0,d(i,i)=0, d(i,j)=d(j,i),d(i,j)=

一种基于密度的快速聚类算法

第37卷第11期 2000年11月计算机研究与发展JOU RNAL O F COM PU T ER R ESEA RCH &D EV ELO PM EN T V o l 137,N o 111N ov .2000 原稿收到日期:1999209220;修改稿收到日期:1999212209.本课题得到国家自然科学基金项目(项目编号69743001)和国家教委博士点教育基金的资助.周水庚,男,1966年生,博士研究生,高级工程师,主要从事数据库、数据仓库和数据挖掘以及信息检索等的研究.周傲英,男,1965年生,教授,博士生导师,主要从事数据库、数据挖掘和W eb 信息管理等研究.曹晶,女,1976年生,硕士研究生,主要从事数据库、数据挖掘等研究.胡运发,男,1940年生,教授,博士生导师,主要从事知识工程、数字图书馆、信息检索等研究. 一种基于密度的快速聚类算法 周水庚 周傲英 曹 晶 胡运发 (复旦大学计算机科学系 上海 200433) 摘 要 聚类是数据挖掘领域中的一个重要研究方向.聚类技术在统计数据分析、模式识别、图像处理等领域有广泛应用.迄今为止人们提出了许多用于大规模数据库的聚类算法.基于密度的聚类算法DBSCAN 就是一个典型代表.以DBSCAN 为基础,提出了一种基于密度的快速聚类算法.新算法以核心对象邻域中所有对象的代表对象为种子对象来扩展类,从而减少区域查询次数,降低I O 开销,实现快速聚类.对二维空间数据测试表明:快速算法能够有效地对大规模数据库进行聚类,速度上数倍于已有DBSCAN 算法. 关键词 空间数据库,数据挖掘,聚类,密度,快速算法,代表对象 中图法分类号 T P 311.13;T P 391 A FAST D ENSIT Y -BASED CL USTER ING AL G OR ITH M ZHOU Shu i 2Geng ,ZHOU A o 2Y ing ,CAO J ing ,and HU Yun 2Fa (D ep a rt m en t of Co mp u ter S cience ,F ud an U n iversity ,S hang ha i 200433) Abstract C lu stering is a p rom ising app licati on area fo r m any fields including data m in ing ,statistical data analysis ,p attern recogn iti on ,i m age p rocessing ,etc .In th is paper ,a fast den sity 2based clu stering algo rithm is developed ,w h ich con siderab ly speeds up the o riginal DB SCAN algo rithm .U n like DB SCAN ,the new DB SCAN u ses on ly a s m all num ber of rep resen tative ob jects in a co re ob ject’s neighbo rhood as seeds to exp and the clu ster so that the execu ti on frequency of regi on query can be decreased ,and con sequen tly the I O co st is reduced .Experi m en tal resu lts show that the new algo rithm is effective and efficien t in clu stering large 2scale databases ,and it is faster than the o riginal DB SCAN by several ti m es . Key words spatial database ,data m in ing ,clu stering ,den sity ,fast algo rithm ,rep resen tative ob jects 1 概 述 近10多年来,数据挖掘逐渐成为数据库研究领域的一个热点[1].其中,聚类分析就是广为研究的问题之一.所谓聚类,就是将数据库中的数据进行分组,使得每一组内的数据尽可能相似而不同组内的数据尽可能不同.聚类技术在统计数据分析、模式识别、图像处理等领域都有广泛的应用前景.迄今为止,人们已经提出了许多聚类算法[2~7].所有这些算法都试图解决大规模数据的聚类问题.以基于密度的聚类算法DB SCAN [4]为基础,本文提出一种基于密度的快速聚类算法.通过选用核心对象附近区域包含的所有对象的代表对象作为种子对象来扩展类,快速算法减少了区域查询的次数,从而减低了聚类时间和I O 开销 .本文内容安排如下:首先在第2节中介绍基于密度的聚类算法DB SCAN 的基本思想,并分析它的局限

各种聚类算法的比较

各种聚类算法的比较 聚类的目标是使同一类对象的相似度尽可能地小;不同类对象之间的相似度尽可能地大。目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。摘自数据挖掘中的聚类分析研究综述这篇论文。 1、层次聚类算法 1.1聚合聚类 1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离 1.1.2最具代表性算法 1)CURE算法 特点:固定数目有代表性的点共同代表类 优点:识别形状复杂,大小不一的聚类,过滤孤立点 2)ROCK算法 特点:对CURE算法的改进 优点:同上,并适用于类别属性的数据 3)CHAMELEON算法 特点:利用了动态建模技术 1.2分解聚类 1.3优缺点 优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力 缺点:大大延长了算法的执行时间,不能回溯处理 2、分割聚类算法 2.1基于密度的聚类 2.1.1特点 将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类

1)DBSCAN:不断生长足够高密度的区域 2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合 3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进 2.2基于网格的聚类 2.2.1特点 利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构; 1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据 2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性 2.2.2典型算法 1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率2)STING+:改进STING,用于处理动态进化的空间数据 3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据4)WaveCluster:以信号处理思想为基础 2.3基于图论的聚类 2.3.1特点 转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边 1)优点:不需要进行相似度的计算 2.3.2两个主要的应用形式 1)基于超图的划分 2)基于光谱的图划分 2.4基于平方误差的迭代重分配聚类 2.4.1思想 逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解

聚类算法比较

聚类算法: 1. 划分法:K-MEANS算法、K-M EDOIDS算法、CLARANS算法; 1)K-means 算法: 基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。 K-Means聚类算法主要分为三个步骤: (1)第一步是为待聚类的点寻找聚类中心 (2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去 (3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止 下图展示了对n个样本点进行K-means聚类的效果,这里k取2: (a)未聚类的初始点集 (b)随机选取两个点作为聚类中心 (c)计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (d)计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 (e)重复(c),计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (f)重复(d),计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 优点: 1.算法快速、简单; 2.对大数据集有较高的效率并且是可伸缩性的; 3.时间复杂度近于线性,而且适合挖掘大规模数据集。 缺点: 1. 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。 2. 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响。

密度聚类算法 DENCLUE 2.0

DENCLUE2.0:Fast Clustering based on Kernel Density Estimation Alexander Hinneburg1and Hans-Henning Gabriel2 1Institute of Computer Science Martin-Luther-University Halle-Wittenberg,Germany hinneburg@informatik.uni-halle.de 2Otto-von-Guericke-University Magdeburg,Germany Hans-Henning.Gabriel@web.de Abstract.The Denclue algorithm employs a cluster model based on kernel density estimation.A cluster is de?ned by a local maximum of the estimated density function.Data points are assigned to clusters by hill climbing,i.e.points going to the same local maximum are put into the same cluster.A disadvantage of Denclue1.0is,that the used hill climbing may make unnecessary small steps in the beginning and never converges exactly to the maximum,it just comes close. We introduce a new hill climbing procedure for Gaussian kernels,which adjusts the step size automatically at no extra costs.We prove that the procedure converges exactly towards a local maximum by reducing it to a special case of the expectation maximization algorithm.We show experimentally that the new procedure needs much less iterations and can be accelerated by sampling based methods with sacri?cing only a small amount of accuracy. 1Introduction Clustering can be formulated in many di?erent ways.Non-parametric methods are well suited for exploring clusters,because no generative model of the data is assumed.Instead,the probability density in the data space is directly estimated from data instances.Kernel density estimation[15,14]is a principled way of doing that task.There are several clustering algorithms,which exploit the adaptive nature of a kernel density estimate.Examples are the algorithms by Schnell [13]and Fukunaga[5]which use the gradient of the estimated density function. The algorithms are also described in the books by Bock[3]and Fukunaga[4] respectively.The Denclue framework for clustering[7,8]builds upon Schnells algorithm.There,clusters are de?ned by local maxima of the density estimate. Data points are assigned to local maxima by hill climbing.Those points which are assigned to the same local maximum are put into a single cluster. However,the algorithms use directional information of the gradient only. The step size remains?xed throughout the hill climbing.This implies certain disadvantages,namely the hill climbing does not converges towards the local maximum,it just comes close,and the number of iteration steps may be large

(完整版)聚类算法总结.doc

1.聚类定义 “聚类是把相似的对象通过静态分类的方法分成不同的组别或者 更多的子集( subset),这样让在同一个子集中的成员对象都有一 些相似的属性”—— wikipedia “聚类分析指将物理或抽象对象 的集合分组成为由类似的对象组 成的多个类的分析过程。它是一种重要的人类行为。聚类是将数 据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对 象有很大的相似性,而不同簇间的对象有很大的相异性。”——百度百科 说白了,聚类( clustering)是完全可以按字面意思来理解的——将相同、相似、相近、相关的对象实例聚成一类的过程。简单理 解,如果一个数据集合包含 N 个实例,根据某种准则可以将这 N 个 实例划分为 m 个类别,每个类别中的实例都是相关的,而不同类别 之间是区别的也就是不相关的,这个过程就叫聚类了。 2.聚类过程 : 1)数据准备 :包括特征标准化和降维 . 2)特征选择 :从最初的特征中选择最有效的特征 ,并将其存储于向量 中 . 3)特征提取 :通过对所选择的特征进行转换形成新的突出特征.

4)聚类 (或分组 ):首先选择合适特征类型的某种距离函数 (或构造新的距离函数 )进行接近程度的度量 ;而后执行聚类或分组 . 5)聚类结果评估 :是指对聚类结果进行评估 .评估主要有 3 种 :外部有效性评估、内部有效性评估和相关性测试评估. 3聚类算法的类别 没有任何一种聚类技术(聚类算法 )可以普遍适用于揭示各种多维数据集所呈现出来的多种多样的结构,根据数据在聚类中的积聚规则以及应用这些规则的方法,有多种聚类算法.聚类算法有多种分类方法将聚类算法大致分成层次化聚类算法、划分式聚类算 法、基于密度和网格的聚类算法和其他聚类算法,如图1 所示的4 个类别.

各种聚类算法介绍及对比教学内容

各种聚类算法介绍及 对比

一、层次聚类 1、层次聚类的原理及分类 1)层次法(Hierarchical methods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法就是一开始每个个体(object)都是一个类,然后根据linkage寻找同类,最后形成一个“类”。自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”。这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。至于根据Linkage判断“类”的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 2)Hierarchical methods中比较新的算法有BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK(A Hierarchical Clustering Algorithm for Categorical Attributes)主要用在categorical的数据类型上;Chameleon(A Hierarchical Clustering Algorithm Using Dynamic Modeling)里用到的linkage是kNN(k-nearest-neighbor)算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,O(n^2)。 2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。

相关主题
文本预览
相关文档 最新文档