当前位置:文档之家› 锚杆计算

锚杆计算

锚杆计算
锚杆计算

、锚杆(索)支护参数设计

1、围岩稳定性分类

根据对该区围岩分析,参照《GB50086-2001煤巷锚杆支护技术规范》(国家安全生产监督管理总局),及《煤矿支护手册》的有关数据,对围岩进行分类。

2、锚杆(索)支护设计

参照《煤巷锚杆支护技术》一书中组合梁及悬吊理论计算是比较合理的。

(1)、顶锚杆长度

L=L1+L2+L3

式中:L1—锚索外露长度,取0.05m

L2—锚杆有效长度 L2取普氏免压拱高(b), f≧3普氏岩石坚固性系数按3计。

L2按岩石破碎带高度

L2=Rp-h

,m

Rp=R0√γΖ

γΖsinφ+C cosφ

= 2.0√(22.6×271.2/(22.6×271.2sin63°26′′

+4.9 cos 63°26′))

=2.056

巷道宽度5.2m时,R0=2.748m

式中:

R0----巷道的掘进半径,2.0m

γ----岩体容重,取Ⅲ类22.6 KN/m2

Ζ----巷道中心距地表深度,271.2m

φ----岩体内摩擦角,(°),本处取Ⅵ类相当软岩石,内摩擦角63°26′C----岩体粘结强度,取4.9KN/m2

h----圆巷h= R0,非圆巷h=等于等效圆中心至顶板的距离,m

Rp----岩体破碎带半径,m

L3=0.55

L3—锚杆锚固段长度,1根锚固剂长0.55m

L=0.05+2.056+0.55=2.655m

通过以上计算,采用φ22×2.4m的锚杆,尚不能满足支护要求,需采用加长锚索进行加强支护。

锚杆直径:

d =3.6√(?

ót

=3.6×√(267.11/14.44)=15.5

?---f3-7,?=18.5f-12=267.14KN,

ót—杆体材料的设计抗拉强度,取14.44Mpa

根据设计要求和施工安全和质量,取22mm。

(2)锚固力N:可按锚杆杆体的屈服载荷计算

(d2σt)

P=π

4

= 3.14/4×((0.022)2×14.44)=112KN

式中:σt----杆体材料的屈服极限Mpa

d----杆体直径

(3)锚杆间排距

锚杆间距D≤1/2L

D≤0.5×2400=1200mm

锚杆排距L0=Nn/2kra L2

=115×103×14/(2×3×24×103×4.0×2.056=1.359m

式中:n——每排锚杆根数

N——设计锚固力,KN/根

K——安全系数,取2-3

r ——上覆岩层平均容重,取24KN/ m3

a——1/2巷道掘进宽度 m

参照以往施工经验、《GB50086-2001煤巷锚杆支护技术规范》及汾西集团的相关规定,为保证施工安全,取锚杆间排距800×800mm。

(2)、锚杆锚固力

根据《GB50086-2001煤巷锚杆支护技术规范》锚杆锚固力100KN。

(6)锚杆材质及直径

锚杆设计锚固力为120KN,故选用高强度带纵筋螺纹钢锚杆,材质为20MnSi,直径22mm,其屈服载荷为104.7KN,极限载荷为160KN。

(7)锚固剂

锚固剂充填长度L锚=nφ2卷L卷/(φ2孔-d2)

L锚:锚固剂出厂长度550mm

式中:n--锚固剂卷数

φ卷--树脂锚固剂直径23mm

L卷--树脂锚固剂长度550mm

φ孔--锚杆孔直径28mm

d--锚杆直径22mm

n=550×(282-222)/(282×550)=0.38

故取n=1卷 ,考虑锚杆快速安装,选用SZCK2860树脂锚固剂和SZZ2860树脂锚固剂各1卷,校核其锚固力。

P锚=3.14φ孔σ1 L锚K

式中:φ孔--锚杆孔直径28mm=0.030m

σ1--锚固剂与孔壁粘结强度,取1.6MPa=1600Kpa

L锚--锚固剂长550mm

K--药卷长度充填系数1.6

P锚=3.14×0.03×2400×0.55×1.6=198.9>120KN满足要求

锚索支护参数的确定:

锚固长度La

La≥fst/πfcs d1

=(1870/3.14×10)×17.8=1060mm

设计锚固长度1.4m>1.06m

式中:d1—锚索钢绞线之径,mm

fst—钢绞线抗拉强度,Mpa

fcs—锚索与锚固剂的设计粘接强度,按10MPa计算

锚索间排距

L/S≥2

S≤L/2=6000/2=3000mm

设计间排距1.6m<3.0m

式中:L—锚索孔深度

S—锚索间距

锚索锚固力P

P1≥P≥P1/K或P2/K

P≥400/2=200KN

设计锚固力200KN

式中:P—设计锚索锚固力 KN

P1—锚固段锚固剂与孔壁的粘结力 KN

P2—锚固段锚固剂与钢绞线的粘结力 KN

K—安全系数,取2

根据设计和以往施工经验,结合本区顶板情况,为保证施工安全,选锚索长度7.3m。

(13)锚索加强支护

根据锚索支护机理,其参数设计参照锚杆悬吊理论进行计算

①根据工程类比法,依经验选取锚索支护参数,顶锚索长度暂定8m,掘进时每前进10米打顶板探眼,视揭露煤层顶板情况调整锚索长度,使锚索能够锚固到老顶中1.5m以上。顶锚索在巷道中间顺巷道方向布置两排,排距2m,间距1.4m,迈步交替布置,每根锚索使用2块260×200托盘(U箍材料制作)。加强对顶板离层监测,根据监测数据适当调整锚索间排距。

帮锚索距顶600mm,排距1.4m、间距5.0m,长度4m,每根锚索使用1块260×200托盘(U箍材料制作)。

②锚索材料及锚固剂

顶锚索采用直径Ф21.6mm低松弛钢绞线,其破断载荷为480KN。顶锚索设计初锚固力200KN,锚固剂选用CK2860树脂药卷1卷,Z2860树脂药卷2卷。

(14)其它支护材料

每根锚杆均配备一个260×200托盘(U箍材料制作),角锚杆配用角托盘;W钢带采用BHW-280-3.00型;顶板两帮铺设金属菱网,网与网搭接100mm,联网间距200mm。

抗浮锚杆计算书.

结构计算书 项目名称: 设计代号: 设计阶段: 审核: 校对: 计算: 第 1 册共1 册 中广电广播电影电视设计研究院 2015年04月07日

综合楼锚杆布置计算 一、 工程概况 (1)综合楼地下1层(含1夹层),地上2~4层,±0.00相对于绝对标高7.50m ,室内外高差-0.300m ,地下室夹层高 2.18m ,地下室高 5.30m ,地下室建筑地面标高-7.480m ,建筑地面垫层厚150mm ,结构地下室底板顶标高-7.630m 。基础形式筏板,抗浮水位标高 6.500m (绝对标高)。建筑地下室底板顶标高- 7.630m (绝对标高-0.130m ),底板厚400mm 。 (2)综合楼抗浮采用抗浮锚杆。 二、抗拔锚杆抗拔承载力计算 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 锚杆基本条件: 锚杆直径D=150mm 锚杆长度L=7.5m 锚杆入岩(强风化花岗岩)长度:>2.5m 锚杆拉力标准值Nk=250KN 锚杆拉力设计值Nt=1.3Nk=325KN 钢筋:3 ?25三级钢: A s =1470mm 2, f=360 N/mm 2 , f yk =400 N/mm 2 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 根据****院提供的《***勘察报告》,岩石(或土体)与锚固体的极限粘结强度标准值(f rbk ),见第2页所附表1。 1、 根据锚杆与土层粘结强度所计算的锚杆竖向抗拔承载力设计值Nt 依据《岩土规程》第7.5.1条公式(7.5.2-1)计算 K f DL N mg a t /ψπ= 勘探点1Q-K15岩层深,较为不利,计算该点抗拔承载力

锚杆挡土墙设计与计算

XXXX工程锚杆挡土墙计算分析报告 XXXX设计院 XXXX年XXX月

目录 第一章概述 (1) 第二章锚杆挡土墙计算理论 (1) 第三章锚杆挡土墙计算 (1)

第一章概述 锚杆挡土墙是由钢筋混凝土墙面和钢锚杆组成的支挡建筑物,它是靠锚杆锚固在稳定地层内,能承受水平拉力来维持墙的平衡,因此地基承载力一般不受控制,从而能克服不良地基的困难。在高边坡的情况下,且可采用自上而下逐级开挖和施工的办法,可以避免边坡坍塌,有利于施工安全。 锚杆使用灌浆锚杆,采用钻机钻孔,毛孔直径一般为100~150mm,锚杆材料为HRB335钢筋和由7根钢丝构成φ12.7mm 的预应力钢绞线。锚杆钢筋以一根或数根钢筋组成;锚杆锚索以一束或数束钢绞线组成。锚杆插入锚孔内后再灌注水泥砂浆。灌浆锚杆亦可用于土层,但由于土层与锚杆间的握固能力较差,尚需要加压灌浆或内部扩孔的方法以提高其抗拔能力。 锚杆挡土墙的墙面,一般用肋柱和挡土板组成,其结构布置应根据工点的地形和地质条件、墙高及施工条件等因素,考虑挡土墙是否分级和每级挡土墙的高度来决定。当布置为两级或两级以上时,级间可留1~2米的平台,如图1。 肋柱的间距应考虑工地的起吊能力及锚杆的抗拔能力等因素,一般可选用2.0~3.5米。每根肋柱根据其高度可布置多根锚杆。锚杆的位置应尽可能使肋柱所受弯矩均匀分布。 肋柱视为支承于锚杆(或支承于锚杆和地基)的简支梁或连续梁。肋柱的底端视地基的强度及埋置深度,一般设计时假定为自由或铰支端,如基础埋置较深且为坚硬的岩石时,也可以作为固定端。当底端

固定时,应考虑地基对肋柱基础的固着作用而产生的负弯矩。 图 1

地下室抗浮锚杆设计.

地下室抗浮锚杆设计 一般抗浮计算:(局部抗浮)1.05F浮力-0.9G自重<0 即可(整体抗浮)1.2F 浮力-0.9G自重<0 即可如果抗浮计算不满足的话,地下室底板外挑比较经济同意以上朋友的观点,一般增大底版自重及底板外挑比抗拔桩要经济很多「原创」抗浮锚杆设计总结抗浮锚杆设计总结。 1、适用的规范 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范GB50007-2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范GB 50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范GB 50330-2002》,对于岩土的分类较细,能查到一些必要的参数。 2、锚杆需要验算的内容 1)锚杆钢筋截面面积; 2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 3、锚杆的布置方式与优缺点 1)集中点状布置,一般布置在柱下;优点:可以充分利用上部结构传来的竖向力来平衡掉一部分水浮力;由于锚杆布置集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有很强的抵抗力。缺点:要求锚固于坚硬岩体中,不适用于软岩与土体,破坏往往是锚固岩体的破坏;由于局部锚杆较密,锚杆施工不方便;地下室底板梁板配筋较大。 2)集中线状布置,一般布置于地下室底板梁下;优点:由于锚杆布置相对集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有较强的抵抗力。缺点:不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全,对于跨高比小于6的

抗浮锚杆计算书(参考内容)

4.1 锚杆设计计算 4.1.1 锚杆轴向拉力 单位面积抗浮力为51kN/m2,本次设计锚杆间距按2.0×2.0m正方形网格布置,锚杆布置详见《抗浮锚杆平面布置图》。 单根锚杆轴向拉力标准值Nak: N ak=51kN/m2×2.0m×2.0m=204kN 单锚杆轴向拉力设计值N t: N t=r Q N ak 式中:r Q——荷载分项系数,可取1.30; 经计算:N t=1.30×204kN=265.2kN。取N t=266kN计算。 4.1.2 锚杆杆体截面面积 A s≥ yk t t f N K《岩土锚杆(索)技术规程》(CECS22:2005)中7.4.1式 式中A s----锚杆杆体截面面积 K t------锚杆杆体的抗拉安全系数,取1.6 N t----锚杆的轴向拉力设计值,取266kN f yk----钢筋的抗拉强度标准值400N/mm2(III级钢筋抗拉强度标准值) 根据计算公式,计算如下: A s≥ yk t t f N K

≥ 400 266 6.1××1000≥1064mm 2 取3根Φ22III 级螺纹钢筋,3A 22=1140mm 2>1064mm 2,满足要求。 4.1.3 锚杆长度 l a >ψ πmg t Df KN 《岩土锚杆(索)技术规程》 (CECS22:2005)中7.5.1-1式 式中 K ——锚杆锚固体的抗拔安全系数,取2.0 N t ——锚杆的轴向拉力设计值266kN D ——锚杆锚固段的钻孔直径146mm f m g ——锚固段注浆体与地层间的粘结强度标准值 (kPa ),基底地层主要为卵石层,参考地勘报告及相关规范结合乐山地区施工经验,取120kPa 。 ψ----锚固长度对粘结强度的影响系数, 根据规范取1.2 l a > ψ επms t f d n KN 《岩土锚杆(索)技术规程》(CECS22:2005)中 7.5.1-2式 式中 K ——锚杆锚固体的抗拔安全系数,取2.0 N t ——锚杆的轴向拉力设计值266kN n ——钢筋根数,取3根 d ——钢筋直径(mm ),取Φ22III 级螺纹钢筋 ε——多钢筋界面的粘结强度降低系数, 根据规范取0.8

锚杆计算公式

第三节支护设计 一、确定巷道支护形式 根据柱状资料分析,5#煤顶板直接顶砂质页岩、第三砂岩,属较稳定岩层,适合锚网支护。为了将锚杆加固的“组合梁”悬吊于坚硬岩石中,需用高强锚索做辅助支护。支护方式为:锚杆+网+锚索联合支护方式。 二、支护参数设计 (1)支护参数 顶锚杆选用Φ18×2400mm的普通圆钢钢锚杆,间距750mm,排距为1000mm;顶锚索选用Φ17.8×8300mm,1860级低松弛钢绞线,锚索在巷道布置两排,间距3000mm,排距为1500mm;帮锚杆选用Φ18×2400mm的普通圆钢钢锚杆,分四排呈“五花”布置,间距750mm,排距为850mm。 所有巷道顶锚杆锚固力不小于70kN,扭力矩不小于150N·m;帮锚杆锚固力不小于50kN,扭力矩不小于120N·m;顶锚索预紧力不小于160kN,承载力不小于320kN。 (2)采用计算法校核支护参数 1、顶锚杆通过悬吊作用,帮锚杆通过加固帮体作用,达到支护效果的条件,应满足:

L≥L1+L2+L3 式中L—锚杆总长,m; L1—锚杆外露长(钢带厚度+托板厚度+螺母厚度+0.01~0.05m,顶锚杆取0.07m,帮锚杆取0.15m),m; L2—有效长度(顶锚杆取免压拱高b,帮锚杆取煤帮破碎深度c)m; L 3—锚入岩层内深度(顶锚杆取0.8m,帮锚杆取0.6m)m; 普氏免压拱高: b=[B/2+Htan(45°-ω帮 /2)]/f 顶 式中B、H—巷道掘进跨度和高度,取B max=4.3m,H=3.0m; f —顶板岩石普氏系数,f顶取3; ω—两帮围岩的内摩擦角,ω取56.31° b max=[4300/2+3000×tan(45°-56.31/2)]/3=1020mm c=3000×tan(45°-56.31/2)=909mm 根据上述公式计算得出:顶锚杆长 L顶≥1890mm;帮锚杆长L帮max ≥1659mm。 所选锚杆长度均能满足计算要求。 2、按锚杆所能悬吊的重量校核锚杆的排距:

锚杆的锚固长度设计计算

锚杆(索) 1.锚杆(索)的作用机理 立柱在荷载的作用下,有绕着基地转动的趋势,此时可以利用灌浆锚杆(索)的抗拔作用力来进行抵抗。灌浆锚杆(索)指用水泥砂浆(或水泥浆、化学浆液等)将一组钢拉杆(粗钢筋或钢丝束、钢轨、小钢筋笼等)锚固在伸向地层内部的钻孔中,并承受拉力的柱状锚固体。它的中心受拉部分是拉杆。其受拉杆件有粗钢筋,高强钢丝束,和钢绞线等三种不同类型。而且施工工艺有简易灌浆、预压灌浆以及化学灌浆。锚固的形式应根据锚固段所处的岩土层类型、工程特征、锚杆(索)承载力大小、锚杆(索)材料和长度、施工工艺等条件,按表1-1进行具体选择。 同时,为了更好地对锚杆(索)进行设计,以下将对锚杆(索)的抗拔作用力机理进行介绍。 锚杆(索)的抗拔作用力又称锚杆(索)的锚固力,是指锚杆(索)的锚固体与岩土体紧密结合后抵抗外力的能力,或称抗拔力,它除了跟锚固体与孔壁的粘结力、摩擦角、挤压力等因素有关外,还与地层岩土的结构、强度、应力状态和含水情况以及锚固体的强度、外形、补偿能力和耐腐蚀能力有关。 许多资料表明,锚杆(索)孔壁周边的抗剪强度由于地层土质不同,埋深不同以及灌桨方法不同而有很大的变化和差异。对于锚杆(索)抗拔的作用机理可从其受力状态进行分析,由图1-1表示一个灌浆锚杆(索)中的砂浆锚固段,如将锚固段的砂浆作为自由体,其作用力受力机理为: 锚杆选型表1-1

当锚固段受力时,拉力T 。首先通过钢拉杆周边的握固力(u)传递到砂浆中,然后再通过锚固段钻孔周边的地层摩阻力(τ)传递到锚固的地层中。因此,钢拉杆如受到拉力作用,除了钢筋本身需要有足够的截面积(A)承受拉力外,锚杆(索)的抗拔作用还必须同时满足以下三个条件: ①锚固段的砂浆对于钢拉杆的握固力需能承受极限拉力; ②锚固段地层对于砂浆的摩擦力需能承受极限拉力; ③锚固土体在最不利的条件下仍能保持整体稳定性。 以上第①、②个条件是影响灌浆锚杆(索)抗拔力的主要因素。 i 孔壁摩阻力τ i 图1-1 灌浆锚杆(索)锚固段的受力状态 2.锚杆(索)的设计计算 锚杆(索)的设计原则: (1)锚杆(索)设计前应进行充分调查,综合分析其安全性、经济性与可操作性,避免其对路堤周围构筑物和埋设物产生不利影响。 (2)设计锚杆(索)时应考虑竣工后荷载作用对路堤的影响,要保证它们在载荷作用下不产生有害变形。 (3)设计锚杆(索)时,应对各种设计条件和参数进行充分的计算和试验来确定,只有少数有成熟的试验资料及工程经验的可以借用。 锚杆(索)的设计要素: 锚杆(索)的设计要素包括:锚杆(索)长度、锚固长度、相邻结构物的影

抗浮锚杆设计及施工方案(完整的)

目录 1.工程概述 (2) 1.1工程概况 (2) 1.2工程地质条件 (2) 1.3设计依据 (3) 2.抗浮锚杆方案设计 (3) 2.1抗浮锚杆技术要求 (3) 2.2抗浮锚杆布置原则和方案选择 (3) 2.3抗浮锚杆设计计算 (3) 2.3.1抗浮锚杆设计轴向拉力值的确定 (3) 2.3.2抗浮锚杆钢筋截面面积的计算 (3) 2.3.3锚杆长度及锚固体直径 (4) 2.3.4锚杆钢筋和锚固砂浆间锚固长度的验算 (4) 2.3.5钢筋锚入抗水板长度 (5) 2.3.6锚固体材料 (5) 3.锚杆检测 (5) 4.施工方案设计 (6) 4.1施工方法与特点 (6) 4.2施工工艺流程 (6) 4.3操作过程及技术要求 (6) 4.4锚杆的制作 (6) 4.5防腐、防锈措施 (6) 5.施工部署 (6) 5.1施工用水、用电 (6) 5.2组织机构及人员配备 (7) 6.施工准备 (7) 6.1施工准备工作计划 (7) 6.2技术准备 (7) 6.3施工现场准备 (8) 6.4物资材料准备 (8) 7.施工组织 (8) 7.1施工设备组织 (8) 7.2劳动力计划 (9) 7.3施工进度计划 (9) 8.质量保证措施 (9) 9.安全生产措施 (9) 10.文明施工保证措施 (10) 11.工期保证措施 (10)

1.工程概述 1.1工程概况 拟建的“成都颐和京都项目”位于成都市青羊区光华大道与武青路交叉口,紧邻成都三十七中。 该工程三期(2#、9#楼)设两层地下室,主楼25-30层,框剪结构,筏板基础,该工程基础底标高为503.40,±0.000为513.800。地下室底板顶标高均为-9.250,即相当于绝对高程504.550。 该工程设计单位为深圳星蓝德工程顾问有限公司,勘察单位为中国建筑西南勘察设计研究院有限公司,施工单位为四川光海建设工程有限公司。我公司承担该工程三期抗浮锚杆施工组织设计的编制。 根据深圳星蓝德工程顾问有限公司提供的《扩大地下室部分基础平面图》,进行该工程纯地下室区域设计抗浮锚杆。 根据设计要求,设计抗拔力为≥20KN/m2。 1.2工程地质条件 (1)场地地形地貌 拟建场勘探深度范围内的地层主要由第四系全新统人工填土层、第四系全新统冲、洪积层组成。 (2)地层结构 ml)、第四系全新统冲、洪本次勘察揭露的地层由第四系全新统人工填土层(Q 4 al+pl)、组成。各岩土层工程特性指标为: 积层(Q 3 岩土层的主要物理力学性质指标建议值表1.2.2 拟建场地地下水类型主要为赋予存于砂、卵石中的孔隙潜水,大气降水、河水为主要补给源。勘察期间,测得地下水静止时水位埋深8.00-8.60m,静止水位的绝对标高504.02-504.80m,平均标高约504.50m,渗透系数K取20m/d。

锚杆计算书

从几种规范来探讨全长粘结岩石锚杆承载力的计算 关键词:全长粘结岩石锚杆;承载力;计算 摘要:全长粘结岩石锚杆是岩土工程中常采用的工程措施。各行业的设计规范对全长粘结岩石锚杆的设计计算均有相关规定。由于出发点的差异,各种规范对全长粘结岩石锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的一般要求,总结和探讨全长粘结岩石锚杆承载力验算的一般方法。 1、引言 锚杆是岩土工程中常见的工程处理措施,在建筑、水利、公路、铁道、港口等岩土工程中经常使用,其中全长粘结岩石锚杆是常见的一种锚杆形式。为规范锚杆工程的设计,建筑、公路、铁道、水利等行业的设计规范对锚杆的设计计算作了相关的规定。但由于各规范的出发点不同,对锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的要求,总结全长粘结岩石锚杆承载力验算的一般规定,并进一步探讨全长粘结岩石锚杆承载力验算的一般方法。 2、各种规范对全长粘结岩石锚杆承载力计算的规定: 对全长粘结岩石锚杆承载力计算在很多规范中均有规定,笔者摘录如下: (1)、《建筑地基基础设计规范》(GB50007—2002)8.6.3条: 对设计等级为甲级的建筑物,单根锚筋承载力特征值t R 应通过现场实验确定;对于其它建筑物可按下式计算: lf d R t 18.0π≤……………(8.6.3) 式中: f —砂浆与岩石间的粘结强度特征值; 1d —锚杆孔直径; l —锚杆的有效锚固长度; (2)、《建筑边坡工程技术规范》(GB50330—2002)7.2.2条~7.2.3条: 锚杆钢筋截面面积应满足下式的要求: y a s f N A 20ξγ≥ ……………(7.2.2)

锚杆锚索参数计算

(一)按加固拱原理确定锚杆参数 综合分析国内外关于锚杆参数的经验数据和规定,对于跨度小于10米的巷道、硐室,可按下面经验公式确定锚杆参数 1.锚杆长度L=N(1.1+W/10) =1.1×(1.1+3.6/10) =1.606m (2200mm) 2.锚杆间(排)距D≤0.5L=0.5×1.606 =0.803m (800×900mm) 3.锚杆直径d=1/110×L=1/110×1.606 =0.0146米=14.6mm (18mm)式中W-巷道或硐室跨度,米;取3.6; N-围岩稳定量影响系数,取1.1,规定如下: Ⅱ类(稳定性较好)围岩,N=0.9; Ⅲ类(中等稳定)围岩,N=1.0; Ⅳ类(稳定性较差)围岩,N=1.1; Ⅴ类(不稳定)围岩,N=1.2; 通过计算,φ18×L2200(mm)锚杆满足设计要求,间排距800×900(mm)满足设计要求。 (二)悬吊理论校核锚索间(排)距 为防止巷道顶板岩层发生大面积整体跨落,用φ17.8mm,L=6300mm的钢绞线,将锚杆加固的“组合梁”整体悬吊于坚硬岩层中,校核锚索间(排)距,冒落方式按最严重的冒落高度大于锚杆长度的整体冒落考虑,此时,靠巷

道两帮锚杆和锚索一起发挥悬吊作用,在忽略岩体粘结力和内摩擦力的条件下,取垂直方向力的平衡,可用下式计算锚索间(排)距。 L=nF2/[BHγ-(2F1sinθ) /L1] 式中L-锚索间(排)距,m; B-巷道最大冒落宽度,取3.6+1.2=4.8m; H-巷道冒落高度,按最严重冒落高度取2.0m; γ-岩体容重,25kN/m3; L1-锚杆排距,0.9m; F1-锚杆锚固力(以最小锚固力计算),85kN; F2-锚索极限承载力(以最小锚固力计算),取200kN; θ-角锚杆与巷道顶板夹角,90°; n -锚索每排根数,取2; 通过上式计算, L=2×200÷[4.8×2.0×25-(2×85×sin90°÷0.9)] =400÷﹙240-188.9﹚=7.8m 得出锚索间排距小于7.8m,所选间排距2150×900(mm)满足设计要求。

抗浮锚杆设计计算书

二、计算书 1、设计要求 本工程水池底板抗浮力的要求为: 表1 2、抗浮锚杆抗拔力设计值 根据技术要求,本工程单根锚杆的抗拔力标准值为87.5kN ,设计锚杆间距2.7x2.7m. 3、杆体截面及锚固体截面积计算 锚杆钢筋的截面面积按下式确定: yk t t s f N K A ?= (7.4.1) 上面式中:K t — 锚杆的杆体抗拉安全系数,取2; N t —— 锚杆的轴向拉力设计值,取113.8KN. f yk —— 钢筋抗拉强度标准值,采用HRB400钢筋,抗拉强度标准值为0.4kN/mm 2 。 根据计算得:As=569mm 2 所以孔内应设置二根Φ20的HRB400钢筋. 4、锚固段长度计算. 根据《岩土锚杆(索)技术规程》(CECS22-2005),锚杆锚固段长度由下两式中较大值确定: ψ πmg t a Df N K L ?> (7.5.1-1) ψ ξπms t a f d n N K L ?> (7.5.1-2) 上面式中:L a —— 锚杆锚固段的长度(m ); K —— 锚杆锚固体的抗拔安全系数,取2.2; N t —— 锚杆的轴向拉力设计值(kN); D —— 锚固体的钻孔直径,按0.12m d —— 钢筋的直径(m ); f m g ——锚固体与地层间的粘结强度标准值,2#地块按勘察报告中第59号钻孔取 锚杆周围地层加权平均值130kPa 。3#地块按勘察报告中第51号钻孔取锚杆周围地层加权平均值100kPa ,4#地块按勘察报告中第172号钻孔取锚杆周围地层加权平均值104kPa 。 f ms ——锚固体与钢筋间的粘结强度标准值,取2000kPa ; ξ ——界面粘结强度降低系数,取0.6; ψ —— 锚固长度对粘结强度的影响系数,2#地块取1.4;3#、4#地块取1.15 n —— 钢筋根数 由计算公式算得2#地块:L a 〉3.72m ,设计按照锚固段长度为5.10m 。 由计算公式算得3#地块:L a 〉7.18m ,设计按照锚固段长度为8.00m 。 由计算公式算得4#地块:L a 〉6.92m ,施工设计按照锚固段长度为8.00m 设计。 5、锚杆锚入基础的长度 根据规范要求,钢筋须插入基础内不少于35d ,本工程2#地块,采用Φ22螺纹钢筋,长度为35*22=770mm ,设计时取800mm 。本工程3#、4#地块采用Φ25螺纹钢筋,长度为35*25=875mm ,设计时取900mm 。 6、锚杆间距 本工程基础为筏板基础,考虑结构受力特点,本着减小底板弯曲应力的原则,本工程采用小吨位的锚杆。杭浮锚杆在整个底板上小间距均匀布置,局部地方(独立柱基位置)适当调整。该布置可降低底板的加筋费用,又可以减小因个别锚杆失效而造成的局部破坏。锚杆 大体成正方形布置,根据地下室抗浮区域、抗浮力要求的不同,锚杆间距为: 锚杆间距一览表 表6 7、设计实物工程量 根据计算,本工程抗浮锚杆设计实物工程量为:2号地块设置锚杆1107根,单根锚杆长度5.1m ,3#地块设置锚杆1927根,单根锚杆长度8m ,4#地块设置锚杆2707根,单根锚杆长度8m ,总计锚杆进尺43181.1m(含防水0.1m/根)。 8、锚固体强度及水泥浆配比 为增大锚固体的强度,锚固体采用豆石与砂浆结合体,填筑的豆石强度应无风化现象,

抗浮锚杆常见问题及处理方式

1.测量放线阶段 1.1无基础图 产生原因:由于抗浮锚杆设计阶段图纸很可能不是最终版本,施工时,基础图标高、抗浮力及地下室位置均可能与抗浮锚杆设计图纸不符。 产生后果:抗浮锚杆不能满足主体设计要求,抗浮锚杆报废 防治措施:抗浮锚杆放线前与基础图(蓝图,盖审图章)复核,复核轴线、标高、抗浮力等; 1.2未对锚杆编号、分区或编号混乱 产生原因:锚杆编号时,未考虑验收分区,对整个施工区域统一编号,编号随意 产生后果:不便于施工记录,可能造成锚杆施工漏记 防治措施:对锚杆先进行分区,在每一个区按横排编号,从左至右从上至下。 1.3未锚杆标高未明确 产生原因:施工时为查看基础图,未对基底标高计算,对独立柱基底标高未计算 产生后果:施工时抗浮锚杆标高不准确 防治措施:施工前根据基础图分区域标注锚杆标高

2.成孔阶段 2.1孔位误差大 产生原因:测量放线误差大;放线后成果保护不到位;钻孔施工未对准测放点 产生后果:锚杆间距超过规要求,不能通过验收。 防治措施:放线后,对测量成果进行复核;成孔前,对测放点通过与周边点距离进行复核 2.2施工工作面标高低于设计标高 产生原因:土方开挖时,未严格控制标高,至使超挖 产生后果:锚杆锚固段地层被扰动,不能提供设计要求的锚固力防治措施:土方开挖时严格控制标高 2.3锚孔深度与设计有出入 产生原因:锚杆施工场地高低不平,未对锚杆位置进行标高测量;成孔施工随意,终孔时未进行测量 产生后果:锚杆锚固段长度不足或锚杆锚入筏板长度不足 防治措施:锚杆放孔时,同时测量孔位标高;计算成孔深度,终孔时,测量钻孔深度

2.4地层与地勘报告不符时调整锚孔深度 产生原因:钻孔时,未对实际地层进行编录,未发现与地勘报告不符合的软弱层,或出现后, 未对锚杆长度进行调整 产生后果:锚杆锚固力不满足设计要求,锚杆验收试验不合格防治措施:成孔时进行编录,发现与地勘报告不符的软弱层,及时通知设计单位对锚杆长度进行调整 2.5独立柱及条形基础位置锚孔深度未考虑独立柱深度 产生原因:未考虑独立柱及条形基础深度 产生后果:锚杆锚固段长度不足 防治措施:施工前,统计独立柱及条形基础厚度,锚孔深度相应加深,对应至每根锚杆 2.6卵石地层锚杆深度围有地下水 产生原因:降水时未考虑抗浮锚杆施工地下水要求,地下水未降至锚杆底部以下 产生后果:锚杆施工时,砂层及砾石沉淀至孔底,注浆时不能保证孔底注浆,锚杆锚固段减少 防治措施:降水设计时,考虑抗浮锚杆施工,保证水位降至锚杆底部

抗浮锚杆设计计算书

地下室 抗浮锚杆设计计算书 一.设计依据: 《岩土锚杆(索)技术规程》CECS 22:2005 《建筑地基基础设计规范》GB50007-2011 广东省《建筑地基基础设计规范》DBJ 15-31-2003 《建筑边坡工程技术规范》GB 50330-2013 二.设计条件: 室内地面标高为H=0.000(绝对标高为27.40m),室外地面标高为H=26.100~28.00,抗浮水位1a轴至5轴抗浮设计水位取为26.00,5轴至12轴抗浮设计水位取为27.00(即相对标高为-0.400m)。底板面标高-5.500(绝对标高为21.90m),消防水池处底板面标高-6.000(绝对标高为21.40m),主楼处筏板厚度1100mm,筏板以外区域底板厚度400mm。 底板板底水浮力: 筏板处:Fw1=(H-Hw1)×10=(27.00-21.90+1.100)× 10=62.00 kN/m 或Fw1=(H-Hw1)×10=(26.00-21.90+1.100)×10=52.00 kN/m 其余部位:Fw2=(H-Hw2)×10=(27.00-21.90+0.400)× 10=55.00 kN/m 或Fw3=(H-Hw2)×10=(26.00-21.90+0.400)× 10=45.00 kN/m 三.抗浮板受力计算: 1、计算水反力(模型按负值输入不重复计算板自重),用于抗浮锚杆设计。 筏板处:62×1.05-2(建筑面层做法) =63.1 kN/m 或52×1.05-2(建筑面层做法) =53.1 kN/m 其余部位:55×1.05-2(建筑面层做法) =55.75 kN/m 或45×1.05-2(建筑面层做法) =45.75 kN/m 不考虑活载及砖墙荷载 2、计算水浮力作用下底板配筋时,模型采用倒楼盖法按正向力输入,且扣除板自重,勾选不自动计算现浇板自重。四.抗浮锚杆受力计算: 本工程锚杆材质选用HRB400,抗拉强度标准值fyk=400N/mm2,抗拉强度设计值fy=360N/mm2。锚固段取为强风化岩,单根抗浮锚杆抗拔承载力取360KN。 以下按《岩石锚杆(索)技术规程》CECS 22:2005计算: a) 单根抗浮锚杆所需的截面面积: 根据《岩石锚杆(索)技术规程》CECS 22:2005第7.4.1式 As≥(Kt*Na)/fyk ≥1.6*360000/400 ≥1440mm2取3根32 As=2412 mm2 其中Kt 锚杆杆体的抗拉安全系数,本工程按表7.3.2取1.6; Na 锚杆轴向拉力设计值; fyk 钢筋抗拉强度标准值。 b) 锚固段长度: 取La >K*Nt/(π*D*fmg*ψ)和La >K*Nt/(n*π*d*ξ*fms*ψ)中较大值。 根据《岩石锚杆(索)技术规程》CECS 22:2005第7.5.1-1式 La >K*Nt/(π*D*fmg*ψ) >2.0*360/(3.14*0.18*0.8*0.2) >7962mm 取8m 其中,K 锚杆锚固体的抗拔安全系数,按表7.3.1,取2.0 Nt 锚杆轴向拉力设计值 fmg——锚固段注浆体与地层间的粘结强度标准值(kPa),可按表7.5.1-1取值,结合勘察报告,本工程岩石与水泥砂浆的粘结强度标准值取0.2Mpa; D 锚固体直径,本工程取180mm ψ锚固长度对粘结强度的影响系数,按表7.5.2取0.8 根据《岩石锚杆(索)技术规程》CECS 22:2005第7.5.1-2式 La >K*Nt/(n*π*d*ξ*fms*ψ) >2.0*360/(3*3.14*0.032*0.6*2*0.8)

抗浮锚杆计算书(20210220215222)

结构计算书 项目名称: 设计代号: 设计阶段: 审核: 校对: 计算: 第1册共1册 中广电广播电影电视设计研究院

2015年04月07日

综合楼锚杆布置计算 一、工程概况 (1)综合楼地下1层(含2夹层),地上2~4层,±0.00相对于绝对标高 7.50m,室内外高差-0.300m,地下室夹层高2.18m,地下室高 5.30m,地下室建筑地面标 i?-7.480m,建筑地而垫层厚150mm,结构地下室底板顶标高-7.63OmO基础形式筏板,抗浮水位标高6.5OOm (绝对标高)。建筑地下室底板顶标高-7.63Om (绝对标高- 0.130m),底板厚40OmmO (2)综合楼抗浮采用抗浮锚杆。 二、抗拔锚杆抗拔承载力计算 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 锚杆基本条件: 锚杆直径D=150mm 锚杆长度L=7.5m 锚杆入岩(强风化花岗岩)长度:>2.5m 锚杆拉力标准值Nk=250KN 锚杆拉力设计值Nt二2.3Nk二325KN 钢筋:3 025 三级钢:As=2470mm2,仁360 N∕mm2, f y k=400 N∕mm2 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 根据****院提供的《***勘察报告》,岩石(或土体)与锚固体的极限粘结强度标准值(frbk),见第2页所附表2。 1、根据锚杆与土层粘结强度所计算的锚杆竖向抗拔承载力设计值Nt 依据《岩土规程》第7.5.1条公式(7.5.2-1)计算 兀DL a IK 勘探点IQ-KI5岩层深,较为不利,计算该点抗拔承载力

Msm 土层厚度 m 土层弓锚杆极限 粘结强度标准值 屮Si 抗拔侧阻力 (KN) 9中粗砂 0.15 2.95 150 1 208.4 12中粗砂 0.15 2.05 170 1 164.1 16强风化花岗岩 0.15 2.5 300 1 353.4 锚杆总长L 7.5m 抗拔承载力极限值Rk= 725.8KN 抗拔承载力特征值Rt= 362.9 KN Rt=360.9KN > Nt=351KN 2. 锚杆注浆体于钢筋间的锚固段长度La 计算 依据《岩土规程》第7.5.1条公式(7.5.1-2) r 、 KN l 2*351000 杯“ L ≥ ------ ——= ----------------------- =2070 mm < 7500 mm a nπdξf ms ψ 3 * τr * 25 * 0.6 * 2.4 * 1.0 锚杆注浆体于钢筋间的锚固段长度La 满足要求。 钢筋面积A 计算 依据《岩土规程》第742条公式(741) 实配 3 025 三级钢,A s =1472mm 2>1404 mm 2 锚杆杆体钢筋面积满足要求。 Λ≥ 400 1404m∕772 1.6*351000

锚杆支护理论计算方法

锚杆支护参数的确定 一、锚杆长度 L≥L1+L2+L3------------------------- ① =0.1+1.5+0.3=1.9m 式中: L——锚杆总长度,m; L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2 ——锚杆有效长度或软弱岩层厚度,m; L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。 (一)锚杆外露长度L1 L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)] (二)锚入岩(煤)层内深度(锚固长度)L3 1.经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定: 第3.3.3条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表3.3.3选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟;

四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度 宜为300~400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm ~400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定: 第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式: 公式(3.3.11-1)、(3.3.11-2)见图形所示。 cs st f f d k l 412≥ (3.3.11-1) cr st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm ); d1——锚杆钢筋直径走私或锚索体直径(cm ); d2——锚杆孔直径(cm );

最新基坑支护设计计算书

基坑支护设计计算书

桩 锚 设 计 计 算 书 一、计算原理 1.1 土压力计算 土压力采用库仑理论计算 1.1.1 主动土压力系数 ()2 sin sin cos cos ??? ?????++=φδφδφa K 1.1.2 被动土压力系数 ()2 sin sin cos cos ??? ?????+-=φδφδφp K 1.1.3 主动土压力强度 a a ajk K C hK e 2-=γ 1.1.4 被动土压力强度 p p pjk K C hK e 2+=γ 1.2 桩锚设计计算 1.2.1单排锚杆嵌固深度按照下式设计计算: 02.1)(011≥-++∑∑ai a d T c pj p E h h h T E h γ 式中,h p 为合力∑E pj 作用点至桩底的距离,∑E pj 为桩底以上基坑内侧各土层水平抗力标准值的合力之和,T c1为锚杆拉力,h T1为锚杆至基坑底面距离,h d 为桩身嵌固深度, γ0为基坑侧壁重要性系数,h a 为合力∑E ai 作用点至桩底的距离,∑E ai 为桩底以上基坑外侧各土层水平荷载标准值的合力之和。 1.2.2 多排锚杆采用分段等值梁法设计计算,对每一段开挖,将该段状上的上部支点和插入段弯矩零点之间的桩作为简支梁进行计算,上一段梁中计算

出的支点反力假定不变,作为外力来计算下一段梁中的支点反力,该设计方法考虑了实际施工情况。 1.3 配筋计算公式为:钢筋笼配筋采用圆形截面常规配筋,并根据桩体实际受力情况,适当减少受压面的配筋数。 s y cm cm s y A f A f A f A f 32/2sin 25.1++= π παα () t s y cm s r f Ar f KSM A παπαπ ππα sin sin sin 323+-= αα225.1-=t 式中,K 为配筋安全系数,S 为桩距,M 为最大弯矩,r 为桩半径,f cm 和fy 分别为混凝土和钢筋的抗弯强度,As 为配筋面积,A 为桩截面面积,α对应于受压区混凝土截面面积的圆心角与2π的比值,用叠代法计算As 。 1.4 锚杆计算 1.4.1 锚杆截面积为: α δcos P D b b SR K A = 式中:K b 为锚杆面积安全系数,R D 为所需锚杆拉力,δP 为锚杆抗拉强度,α为锚杆与水平线之间的夹角,S 为桩距。 1.4.2 锚杆自由段长度为: () ? ?? ? ? --? ?? ?? +-+=2135sin 245cos φαφ G A H L f 式中: H 为开挖深度,A 为土压力零点距坑底距离,D 为桩如土深度,G 为锚杆深度。

关于抗浮锚杆的设计

精心整理 关于抗浮锚杆的设计 一、抗浮锚杆的构造要求: (1)、《全国民用建筑工程设计技术措施》2009(简称《技术措施》)。第80页,7.3.1-5中,锚杆的长度不应小于4m,且不宜大于10m.。 (2)锚杆的间距除必须满足锚杆的受力要求外,尚需大于1.5m。 (3)《岩土锚杆(索)技术规程》第5.3.1条对注浆材料有要求。 A B GB175 C 标准》 D E 1 Ru------- Rt-------- Nt-------- Kt-------- K--------- 2 (1) 根据抗浮水位及锚杆的间距,计算单根锚杆的所承担的轴向拉力设计值Nt A、地下室底板的水头为h,则水的浮力为f=10*h。 B、底板的自重为G C、抗浮锚杆承受的荷载q f D、根据《建筑荷载规范》,地下水浮力属可变荷载,底板自重(含地面做法)属永久荷载,则荷 载效应组合的设计值应根据其最不利荷载组合确定。

即抗浮锚杆承受的荷载q f由下式计算: q f=γQ*f-γG*G---------q f为设计值, 其中γQ----1.4γG----0.9 单根锚杆的轴向拉力设计值Nt计算 Nt=q f*a*b--------a、b为锚杆的间距 附加说明: , (2) Ru=ξ1* 其中ξ1 λ1------- q sin- (3) 结论 单根锚杆的所承担的轴向拉力设计值1.05*Nt≤Rt-------Rt为特征值 (4)、锚杆内钢筋计算 A、根据《岩土锚杆(索)技术规程》第22页,第7.4.1条锚杆的钢筋的安全系数K=1.6 详见表第7.3.2。---------锚杆体抗拉安全系数 A S≥K t*N t/f yk-------(1) 其中K t--------锚杆杆体的抗拉安全系数

锚杆锚索锚固力计算

锚杆锚索锚固力计算文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

锚杆、锚索锚固力计算1、帮锚杆 锚固力不小于50KN(或5吨或12.5MPa) 公式计算: 拉力器上仪表读数(MPa)×4=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 13MPa(拉力器上仪表读数)×4= 52KN(锚固力)52KN(锚固力)÷10=5.2吨(承载力) 2、顶锚杆 锚固力不小于70KN(或7吨或17.5MPa) 公式计算: 拉力器上仪表读数(MPa)×4=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 18MPa(拉力器上仪表读数)×4= 72KN(锚固力)72KN(锚固力)÷10=7.2吨(承载力) 3、Ф15.24锚索 锚固力不小于120KN(或12吨或40MPa) 公式计算: 拉力器上仪表读数(MPa)×3.044=锚固力(KN) 锚固力(KN)÷10=承载力(吨)

例: 40MPa(拉力器上仪表读数)×3.044= 121.76KN(锚固力)121.76KN(锚固力)÷10=12.176吨(承载力) 4、Ф17.8锚索 锚固力不小于169.6KN(或16.96吨或45MPa) 公式计算: 拉力器上仪表读数(MPa)×3.768=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 45MPa(拉力器上仪表读数)×3.768= 169.56KN(锚固力)169.56KN(锚固力)÷10=16.956吨(承载力) 5、Ф21.6锚索 锚固力不小于250KN(或25吨或55MPa) 公式计算: 拉力器上仪表读数(MPa)×4.55=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 55MPa(拉力器上仪表读数)×4.55= 250KN(锚固力) 250KN(锚固力)÷10=25吨(承载力) 型号为:YCD22-290型预应力张拉千斤顶 备注:

地下室底板抗浮锚杆结构设计

地下室底板抗浮锚杆结构设计 发表时间:2019-06-19T09:40:43.793Z 来源:《建筑细部》2018年第23期作者:宋亮 [导读] 包括计算方法,设计要点,防水节点做法等,望本文能对同行提供经验和借鉴。 上海鼎胜建筑工程管理设计有限公司上海 200333 摘要:以泰安爱琴海购物公园项目为设计实例,通过查阅规范和相关资料并结合现场的实际情况,介绍抗浮锚杆大致的一些设计方法,包括计算方法,设计要点,防水节点做法等,望本文能对同行提供经验和借鉴。 关键词:抗浮锚杆;计算方法;防水节点 1.引言 本项目位于山东泰安天平湖路北侧,泮河以南,据区域水文地质资料,根据地下水位、现状地形地貌,并结合水位观测日期及当年降水量情况,工程抗浮设计水位高程为136.60米,±0.000绝对标高138.65m,而本项目为地下二层,地下室底板相对标高为-11.000米,抗浮水位很高,根据地勘报告以及当地的工程经验,建议采用抗浮锚杆。 2.工程概况 泰安爱琴海购物公园位于山东泰安泮河以南、天平湖路以北,建筑面积为157703.3㎡。其中,地上建筑面积为约100000㎡,地下建筑面积为57703.3㎡。建筑层数:地上5层,地下2层。建筑高度:地上28.800m,地下室埋深11m。 3.土层物理力学参数 4.锚杆设计 本项目采用《建筑地基基础设计规范》(GB50007-2011)、《建筑边坡工程技术规范》(GB50330-2013)及《岩土锚杆(索)技术规程》(CECS22:2005)为设计依据(下文直接简称为《地规》、《建筑边坡》、《岩土锚杆》) 4.1 计算方法 a.结构自重标准值G k=83 kN/m2(根据PKPM计算模型计算所得), b.浮力标准值 NW,K=10*[11+0.6-(138.65-136.6)]=95.5 kN/m2,0.6为底板厚度 c.抗浮安全系数 KW=1.05 d.需要锚杆提供的拉力标准值 Nf= KWNW,K-Gk=17.28 kN/m2 按照规范最低要求取锚杆锚固段长度la=3m,采用《建筑边坡》中的公式8.2.3可得如下结果: Nak≤la*π*D*frbk/K=3*π*0.15*1200/2.4=706KN 采用《岩土锚杆技术规程》中的公式7.5.1-1可得如下结果: Ntk≤la*π*D*fmgΨ/(1.35K)=3*π*0.15*1200*1.3/(1.35*2.2)=742KN 两者计算结果相近 因受力太大,实际无法达到,按照附近已建工程的经验,同类型的锚杆实际取300KN≤0.8π*d1*l*f=0.8π*0.15*3*1200=1356KN(满足《地规》8.6.2条) As≥Kb*Nak/fy=2*300*1000/360=1667mm2(《建筑边坡》式8.2.2-1) As≥Kt*Nt/fyk=1.6*1.35*300*1000/400=1620mm2(《岩土锚杆》式7.4.1) 选用3 28(As=1846mm2)配筋率ρ=10.45%<20%(满足《建筑边坡》8.4.2-1条) 裂缝验算(参考《混凝土结构设计规范》7.1条): σsq = ψq*Nak/As=0.8*300/1846=130N/mm2 ρte =1846/(π*1502/4)=0.1 ψ=1.1-0.65ftk/(ρte*σs)=1.1-0.65*2.01/(0.1*130)=1 ωmax=αcr*ψ*σsq *(1.9cs+0.08deq/ρte)/Es =2.7*1*130*(1.9*25+0.08*28/0.1)/(2*105)=0.123mm<0.2mm满足裂缝要求(《混凝土结构设计规范》3.4.5条)。 4.2 设计要点 a.锚杆平面布置: 300/17.28=17.36m2 锚杆间距按照at= =4.17m,实际取2.8m at≥6d1=6*0.15=0.9m(满足《地规》8.6.1及6.8.5-3) at≥1.5m(满足《岩土锚杆》7.2.2) b.锚杆孔直径: d1=150mm,3 28等效直径48mm,3*48=145mm,且d1>48+50=98mm(满足《地规》8.6.1-1及6.8.5-2) c.锚杆有效锚固长度: la取3m,40d+50=40*48+50=1970mm=1.97m<3m(满足《地规》8.6.1) 3≤la

相关主题
文本预览
相关文档 最新文档