金属矿选矿技术简介
- 格式:pptx
- 大小:12.08 MB
- 文档页数:46
中国多金属鸨矿选矿技术摘要:中国是铝矿资源丰富的国家,储量和工业产量居世界前列。
中国的铝矿资源特点主要是多金属矿床,而不是单一金属矿床。
中国的多金属铝矿具有和其他有用元素共生的特点,比如转I、锌、铜、硫和萤石。
这种矿通常品位较低,较难选别。
这些复杂多金属矿的选别和自然资源的综合利用是选矿技术的关键。
本文主要介绍了中国典型的多金属铝矿的选别工艺实践例子。
关键词:鸽矿,复杂多金属矿,综合利用,柿竹园法一、中国多金属鸨矿资源特点根据2007年美国地质调查局报告,世界鸨矿储量约为700万吨,按目前的消耗速度可用140年,全球铝矿资源的分布如图1,中国储量最大。
图1世界鸨矿资源中国鸨矿主要集中在湖南、江西、河南、福建和广东省,铝精矿产量最大的省是江西和湖南,中国的铝矿资源中,白铸矿大约占70%,而黑铝矿占30%o白鸨矿的采矿成本通常比黑铸矿的采矿成本高,白铸矿的矿物组成相对较复杂,品位较低。
2006-2007年中国各省钙精矿产量见表一。
表一2006-2007年中国铝产量省份2006年/t 2007年/t 同比增长%江西40142 37250 -7.2湖南27001 30952 +14.63广东7659 2741 -64.20内蒙古1022 1191 +16.52广西2167 3754 +73.25云南1085 1086 +0.01浙江117 188 +60.68福建53 179 +239.56河南737 2964 302.17湖北125 132 +5.85总计79863 80438 +0.72中国鸨矿资源分为白铸矿、黑鸨矿以及混合矿(白铸矿和黑铸矿)三种类型,黑鸨矿是最重要的鸽精矿。
矿石中黑鸨矿主要以粗粒级和中粒级为主,易碎、易泥化。
在我国,重选是处理黑鸨矿应用最广泛的技术。
然而,中国黑鸨矿已经持续开采了将近一个世纪,大多数矿床即将枯竭。
目前,储量在IO(X)O吨以上且品位(WO3)大于0.4%的鸨矿矿床总共仅有476000吨。
多金属矿选矿的核心技术及应用摘要:我国矿产资源丰富,多金属矿是核心能源,蕴含着丰富的金属元素。
如何测评这些矿产资源的金属元素含量,运行先进技术,将这些特有能源提炼出来,是选矿技术人员研究工作的重点和要点。
因为多金属矿产资源稀缺,为改变这一现状,增加矿产总量,以选矿技术为核心技术的采矿工程,其发展前景越来越广。
基于此,本文将结合多金属矿选矿工作,对其核心技术进行深入分析。
关键词:多金属矿选矿核心技术应用与分析多金属矿的资源结构复杂,利用率普遍较低。
要想提高选矿技术,首先要从机械设备入手,选取适当的选矿试剂,运用综合应用价值高的选矿技术。
以往,选矿技术是依附于多金属矿产资源选择、研发的,很多选矿技术只适合一种地形、结构的矿产。
目前,选矿技术正在逐渐蜕变,利用工艺优势、分选技术,其应用范围迅速扩大。
1 金属矿单一元素选矿技术1.1 拜耳法——铝、硅矿铝金属元素在矿产资源中的存在形式一般为“硬铝”,因此,研究者习惯采用拜耳法技术选矿,通过烧结、联合等技术方法,将矿产中的三水铝石找出,经过氧化反应处理,转变成氧化铝。
除铝之外,硅元素也同样适用,经过高温烧灼,矿产资源中的硅元素也会发生氧化反应,变成SiO2,SiO2溶于固相物质,混入赤泥中。
经过脱铝处理,矿石中的铝、硅元素会随机分离。
但是,该技术的试验要求很高,选矿量很小,因此在大型矿产采集工作中很少使用。
1.2 电位调控浮选技术——硫化矿在矿产资源生产中,研究者们发现,电化学在硫化矿开采中,具有很好的技术应用性能。
磨浮体系可以将矿产资源中的硫元素分为若干各电位层级,这些层级分别存放不同含量、构成的含硫物质,经过加强镍硫元素浮选调控,分级硫物质会被迅速提取出来。
除此之外,镍元素能也与硫成功分离,并有效回收。
2 混合金属元素选矿技术2.1 细杂矿物资源综合回收技术矿床上蕴含多种金属元素,这些金属元素混合组成结构复杂、品种多、嵌布细、很难有效脱离。
为此,研究者需结合采矿、冶金、化学、化工、材料科学等知识,融合新理论,在理论上开拓创新。
采矿业的矿石选矿技术在采矿业中,矿石选矿技术是一个至关重要的环节。
矿石选矿技术的目标是根据矿石的物理和化学性质,从原料中分离和提取有用的金属或非金属矿物。
本文将探讨采矿业中常用的矿石选矿技术。
一、物理选矿技术物理选矿技术主要通过改变矿石的物理性质,实现矿石和废石的分离。
常见的物理选矿技术包括重选、浮选、磁选和电选。
重选是通过利用矿石中不同密度矿物的重力沉降差异,将不同密度的矿物分离。
重选通常采用重介质选矿、沉降选矿和离心选矿等方法。
浮选是利用矿石和有机物、水等介质的表面张力差异,将矿石中有价值的矿物与废石分离。
浮选过程通常分为搅拌、膏状矿浆的制备、气泡吸附、矿石沉降等步骤。
磁选是利用矿石中不同磁性的矿物对外加磁场的反应差异,将矿石中的磁性矿物与非磁性矿物分离。
磁选通常采用干式磁选和湿式磁选的方法。
电选是利用矿石中不同导电性的矿物对电场的反应差异,将矿石中的导电性矿物与非导电性矿物分离。
电选一般采用高压静电选矿和气流选矿的方法。
二、化学选矿技术化学选矿技术主要通过利用矿石与化学试剂之间的化学反应,实现矿石中有价值矿物的分离和提取。
常见的化学选矿技术包括浸出、吸附和溶解等。
浸出是利用溶剂将矿石中的有用成分溶解出来,从而实现有价值矿物的分离。
浸出过程通常需要控制溶液的温度、浓度和流速等参数。
吸附是利用化学试剂在溶液中与矿石中的目标矿物发生吸附反应,从而使目标矿物被吸附到吸附剂上。
吸附通常采用活性炭、树脂和氧化铁等吸附剂。
溶解是将矿石中的有用矿物溶解于酸、碱或盐溶液中,从而实现有价值矿物的分离和提取。
溶解过程通常需要控制溶液的酸碱度、温度和氧气含量等参数。
三、综合选矿技术综合选矿技术是将物理选矿技术和化学选矿技术相结合,以提高选矿效果。
综合选矿技术通常包括多级选矿、复杂矿石的分选和多工艺流程的组合等方法。
多级选矿是将原始矿石经过多次分选,逐步提高矿石的品位和回收率。
多级选矿常常与物理选矿和化学选矿技术相结合,以达到更好的分离效果。
黄金选矿技术黄金选矿技术是指从含金矿石中提取黄金的一系列工艺过程。
黄金是一种非常稀有且珍贵的贵金属,因此在选矿过程中需要采用高效、经济、环保的技术来提高黄金回收率和产品品质。
一、黄金选矿技术的分类1.物理选矿技术:包括重选、浮选、重介质分离等。
2.化学选矿技术:包括氰化法、硫化法、氧化法等。
3.生物选矿技术:包括微生物氧化法、植物浸出法等。
二、黄金选矿工艺流程1.原料准备:将含有黄金的矿石经过粉碎和筛分后得到合适的粒度,以便后续工艺处理。
2.浸出:将精细粉碎后的原料加入浸出槽中,通过酸性或碱性溶液进行浸出。
常用的浸出剂有氰化钠和硫酸等。
3.固液分离:将浸出液中的固体颗粒通过压滤或离心机进行分离。
固体颗粒中含有黄金。
4.富集:将固体颗粒中的黄金通过重选、浮选等物理选矿技术进行富集。
5.电积或吸附:将黄金离子通过电积或吸附技术转化为固态黄金。
6.熔炼:将得到的固态黄金进行高温熔炼,去除杂质,得到高纯度的黄金产品。
三、常用的黄金选矿技术1.氰化法:氰化法是目前最常用的黄金选矿技术之一。
该工艺流程包括浸出、固液分离、富集、电积或吸附和熔炼等步骤。
氰化法具有高效、简便、适用范围广等优点,但也存在一定的环境风险和安全隐患。
2.重介质分离:重介质分离是一种物理选矿技术,适用于含有大量细小颗粒和多种组分的原料。
该工艺流程包括原料准备、重介质分离和富集等步骤。
重介质分离具有节能、环保等优点,但也存在设备复杂、维护困难等缺点。
3.微生物氧化法:微生物氧化法是一种生物选矿技术,适用于含有难以浸出的金属矿石。
该工艺流程包括原料准备、微生物培养、浸出、固液分离和富集等步骤。
微生物氧化法具有环保、低成本等优点,但也存在反应速度慢、操作技术要求高等缺点。
四、黄金选矿技术的发展趋势1.高效节能:未来的黄金选矿技术将更加注重高效节能,采用新型材料和新型设备来提高工艺效率。
2.环保安全:未来的黄金选矿技术将更加注重环保安全,采用低毒无害的浸出剂和固液分离剂,并且加强对工艺过程中产生有害废弃物的处理和回收。
有色金属矿采选有色金属矿采选是矿业行业的重要领域之一,涉及到金属矿石开采、选矿、冶炼和加工等环节。
为了确保矿山经营的安全、高效和可持续发展,有色金属矿采选行业制定了一系列规范、规程和标准。
本文将从矿山安全管理、矿石开采和选矿技术、冶炼和加工工艺以及环境保护等方面进行论述。
1. 矿山安全管理矿山是一个高风险的作业环境,矿山安全管理至关重要。
在有色金属矿采选行业中,矿山安全管理规范包括以下内容:1.1 工作面安全管理:确保矿工在作业面上的安全,包括安全疏散通道、逃生设备、通风系统等的设置和维护。
1.2 气体监测与防治:建立有效的气体监测系统,对矿井气体进行实时监测,及时采取措施防止气体超标造成的事故。
1.3 火灾与爆炸防护:建立火灾与爆炸防护系统,包括防火设施、爆炸物品存储和使用管理等。
1.4 安全培训与管理:加强对矿工的安全教育培训,制定完善的安全管理制度和操作规程,确保矿工具备必要的安全技能。
1.5 应急救援预案:制定灾害事故应急救援预案,明确责任和职责分工,提前做好应急救援准备工作。
2. 矿石开采与选矿技术矿石开采与选矿技术是有色金属矿采选的核心环节,其规范与标准主要涉及以下方面:2.1 矿山开发规划:编制矿山开发规划,确定矿山的最佳开采方案、矿石储量和品位评估等。
2.2 技术路线选择:选取适应本地矿石性质的开采和选矿技术路线,确保矿石资源的高效利用和最大回收率。
2.3 矿山通风与排水:建立合理的通风和排水系统,保证矿山作业区域的空气质量和排水畅通。
2.4 固体废弃物处理:制定合理的固体废弃物处理方法,包括选矿尾砂的处理和回收利用等措施。
2.5 工业气体排放控制:严格控制工业废气的排放,采用先进的气体治理设备进行处理,降低对环境的影响。
3. 冶炼和加工工艺冶炼和加工是将采选得到的矿石转化为有价值金属产品的过程,其规范和标准包括:3.1 冶炼工艺参数控制:控制冶炼工艺中的温度、压力、pH值等参数,确保冶炼过程的稳定性和产品质量的稳定性。