系统辨识综述
- 格式:doc
- 大小:88.50 KB
- 文档页数:9
机械系统动力学系统辨识方法综述在机械工程领域,对机械系统动力学特性的准确了解是优化设计、故障诊断、性能预测和控制策略制定的关键。
机械系统动力学系统辨识作为获取系统动态特性的重要手段,一直以来都是研究的热点。
本文将对常见的机械系统动力学系统辨识方法进行综述。
机械系统动力学系统辨识的基本任务是根据系统的输入和输出数据,建立能够准确描述系统动态特性的数学模型。
常见的辨识方法可以大致分为基于时域的方法和基于频域的方法。
时域辨识方法中,脉冲响应函数法是一种常用的技术。
它通过对系统施加一个短脉冲输入,并测量系统的输出响应,从而得到系统的脉冲响应函数。
脉冲响应函数直接反映了系统的动态特性,通过对其进行分析和处理,可以得到系统的数学模型参数。
最小二乘法在时域辨识中也应用广泛。
它基于输入输出数据,通过最小化误差的平方和来估计模型参数。
这种方法计算相对简单,并且在一定条件下具有较好的估计精度。
然而,它对噪声比较敏感,当测量数据中存在噪声时,可能会导致辨识结果的偏差。
卡尔曼滤波法是一种基于状态空间模型的时域辨识方法。
它能够在存在测量噪声和系统不确定性的情况下,对系统状态进行最优估计,并同时估计模型参数。
这种方法在处理多变量系统和时变系统时具有优势。
在频域辨识方法中,频率响应函数法是基础且重要的手段。
通过对系统施加不同频率的正弦输入,并测量系统的稳态输出响应,可以得到系统的频率响应函数。
频率响应函数包含了系统在不同频率下的幅频和相频特性,通过对其进行拟合和分析,可以获得系统的模型参数。
谐波平衡法常用于非线性系统的频域辨识。
它假设系统的响应可以表示为多个谐波的叠加,通过求解非线性方程来确定谐波的系数,从而得到系统的模型。
相干函数分析则用于评估输入和输出之间的线性相关性,帮助判断辨识结果的可靠性。
除了上述传统的辨识方法,近年来还发展出了一些新的技术和方法。
例如,基于神经网络的辨识方法利用神经网络强大的非线性拟合能力,能够处理复杂的非线性机械系统。
非线性系统辨识方法综述系统辨识属于现代控制工程范畴,是以研究建立一个系统的数学模型的技术方法。
分析法和实验法是主要的数学模型建立方法。
系统辨是一种实验建立数学模型的方法,可实时建模,满足不同模型建立的需求。
L.A.Zadeh于1962年提出系统辨识的定义:在输入、输出的基础上,确定一个在一定条件下与所观测系统相等的系统。
系统辨识技术主要由系统的结构辨识和系统的参数估计两部分组成。
系统的数学表达式的形式称之为系统的结构。
对SISO系统而言,系统的阶次为系统的机构;对多变量线性系统而言,模型结构就是系统的能控性结构指数或能观性结构指数。
但实际应用中难以找到与现有系统等价的模型。
因此,系统辨识从实际的角度看是选择一个最好的能拟合实际系统输入输出特性的模型。
本文介绍一些新型的系统辨识方法,体现新型方法的优势,最后得出结论。
二、基于神经网络的非线性系统辨识方法近年来,人工神经网络得到了广泛的应用,尤其是在模式识别、机器学习、智能计算和数据挖掘方面。
人工神经网络具有较好的非线性计算能力、并行计算处理能力和自适应能力,这为非线性系统的辨识提供了新的解决方法。
结合神经网络的系统辨识法被用于各领域的研究,并不断提出改进型方法,取得了较好的进展。
如刘通等人使用了径向基函数神经网络对伺服电机进行了辨识,使用了梯度下降方法进行训练,确定系统参数;张济民等人对摆式列车倾摆控制系统进行了改进,使用BP神经对倾摆控制系统进行辨识;崔文峰等人将最小二乘法与传统人工神经网络结合,改善了移动机器人CyCab的运行系统。
与传统的系统识别方法相比较,人工神经网络具有较多优点:(一)使用神经元之间相连接的权值使得系统的输出可以逐渐进行调整;(二)可以辨识非线性系统,这种辨识方法是络自身来进行,无需编程;(三)无需对系统建行数模,因为神经网络的参数已都反映在内部;(四)神经网络的独立性强,它采用的学习算法是它收敛速度的唯一影响因素;(五)神经网络也适用于在线计算机控制。
系统辨识课程综述作者姓名:王瑶专业名称:控制工程班级:研硕15-8班系统辨识课程综述摘要系统辨识是研究建立系统数学模型的理论与方法。
虽然数学建模有很长的研究历史,但是形成系统辨识学科的历史才几十年在这短斩的几十年里,系统辨识得到了充足的发展,一些新的辨识方法相继问世,其理论与应用成果覆盖了自然科学和社会科学的各个领域。
而人工神经网络的系统辨识方法的应用也越来越多,遍及各个领域。
本文简单介绍了系统辨识的基本原理,系统辨识的一些经典方法以及现代的系统辨识方法,其中着重介绍了基于神经网络的系统辨识方法:首先对神经网络系统便是方法与经典辨识法进行对比,显示出其优越性,然后再通过对改进后的算法具体加以说明,最后展望了神经网络系统辨识法的发展方向。
关键字:系统辨识;神经网络;辨识方法0引言辨识、状态估计和控制理论是现代控制理论三个相互渗透的领域。
辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。
随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。
然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。
所以说系统辨识是自动化控制的一门基础学科。
图1.1 系统辨识、控制理论与状态估计三者之间的关系随着社会的进步 ,越来越多的实际系统变成了具有不确定性的复杂系统 ,经典的系统辨识方法在这些系统中应用 ,体现出以下的不足 :(1) 在某些动态系统中 ,系统的输入常常无法保证 ,但是最小二乘法的系统辨识法一般要求输入信号已知,且变化较丰富。
(2) 在线性系统中,传统的系统辨识方法比在非线性系统辨识效果要好。
(3) 不能同时确定系统的结构与参数和往往得不到全局最优解,是传统辨识方法普遍存在的两个缺点。
1系统辨识理论综述1.1系统辨识的基本原理根据L.A.Zadel的系统辨识的定义:系统辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。
北京工商大学《系统辨识》课程调研报告题目类别:系统建模的分类现代辨识方法报告题目:基于神经网络与模糊控制的辨识方法调研目录第一章系统辨识理论综述 21.1系统辨识的基本原理 21.2系统辨识的经典方法 21.3神经网络系统辨识综述 21.3.2神经网络在非线性系统辨识中的应用 2 1.4模糊系统辨识综述 31.4.1模糊系统的结构辨识 31.4.2参数优化的方法 31.4.3模糊规则库的化简 31.5小结 4第二章模糊模型辨识方法的研究 42.1模糊模型辨识流程 42.2模糊模型结构辨识方法 52.3模糊模型参数辨识方法 52.4模糊系统辨识中的其它问题 62.4.1衡量非线性建模方法好坏的几个方面 62.4.2模糊辨识算法在实际系统应用中的几个问题 62.4.3模糊模型的品质指标 62.5小结 7第三章基于两种模型的自行车机器人系统辨识 73.1基于ARX模型的自行车机器人系统辨识 73.2基于ANFls模糊神经网络的自行车机器人系统辨识 73.3 展望 7第一章系统辨识理论综述1.1系统辨识的基本原理根据LA.zadel的系统辨识的定义(1962):系统辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型"系统辨识有三大要素:(1) 数据。
能观测到的被辨识系统的输入或输出数据,他们是辨识的基础。
(2) 模型类。
寻找的模型范围,即所考虑的模型的结构。
(3) 等价准则。
等价准则一辨识的优化目标,用来衡量模型接近实际系统的标准。
1.2系统辨识的经典方法1、阶跃响应法系统辨识;2、频率响应法系统辨识;3、相关分析法系统辨识;4、系统辨识的其他常用方法;1.3神经网络系统辨识综述1.3.1神经网络在线性系统辨识中的应用自适应线性(Adallne一MadaLine)神经网络作为神经网络的初期模型与感知机模型相对应,是以连续线性模拟量为输入模式,在拓扑结构上与感知机网络十分相似的一种连续时间型线性神经网络。
《系统辨识》新方法摘要:系统辨识是指通过对系统进行实验观测和数据分析,建立系统的数学模型,并利用该模型进行系统的性能预测、控制和优化的一种方法。
在过去的几十年里,系统辨识方法得到了广泛的应用,但是随着科技的不断进步,传统的系统辨识方法在某些情况下已经显露出其局限性。
本文将介绍一种新的系统辨识方法,该方法结合了深度学习和数据驱动的优势,能够更准确地辨识系统,并在实际应用中取得了较好的效果。
关键词:系统辨识;深度学习;数据驱动随着深度学习技术的发展,一种新的系统辨识方法逐渐受到了研究者们的重视。
这种新方法结合了深度学习的优势,能够更好地挖掘数据之间的内在关系,并在模型辨识的过程中更准确地捕捉系统的动态特性和非线性特征。
与传统的系统辨识方法相比,基于深度学习的系统辨识方法在处理非线性系统、大规模系统和高维数据方面具有更好的性能。
二、基于深度学习的系统辨识方法基于深度学习的系统辨识方法主要应用于数据驱动建模的场景。
这种方法首先通过对系统进行实验观测和数据采集,获取系统的输入输出数据。
然后利用深度学习模型对这些数据进行学习和分析,从而建立系统的数学模型。
利用所建立的模型对系统进行性能预测、控制和优化。
基于深度学习的系统辨识方法与传统的系统辨识方法相比,具有以下几个优势:1. 能够更好地捕捉系统的非线性特征。
深度学习模型具有强大的非线性建模能力,能够更准确地捕捉系统的非线性动态特性。
2. 能够更好地处理大规模系统和高维数据。
深度学习模型能够有效地处理大规模系统和高维数据,能够在更广泛的应用场景下进行系统辨识。
3. 能够更好地挖掘数据之间的内在关系。
深度学习模型能够从大量数据中挖掘出数据之间的内在关系,能够更准确地建立系统的数学模型。
三、基于深度学习的系统辨识在实际应用中的效果基于深度学习的系统辨识在实际应用中取得了较好的效果,主要体现在以下几个方面:1. 在工业控制领域,基于深度学习的系统辨识方法能够更准确地建立复杂系统的数学模型,实现对系统的精确控制。
系统辨识课程综述通过《系统辨识》课程的学习,了解了系统辨识问题的概述及研究进展;掌握了经典的辨识理论和辨识技术及其优缺点,如:脉冲响应法、最小二乘法(LS)和极大似然法等;同时对于那些为了弥补经典系统辨识方法的不足而产生的现代系统辨识方法的原理及其优缺点有了一定的认识,如:神经网络系统辨识、基于遗传算法的系统辨识、模糊逻辑系统辨识、小波网络系统辨识等;最后总结了系统辨识研究的发展方向。
一、系统辨识概论自40年代Wiener创建控制论和50年代诞生工程控制论以来,控制理论和工程就一直围绕着建立模型和控制器设计这两个主题来发展。
它们相互依赖、相互渗透并相互发展;随着控制过程的复杂性的提高以及控制目标的越来越高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。
但是大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,此时建立模型需要细致、完整地分析系统的机理和所有对该系统的行为产生影响的各种因素,从而变得十分困难。
系统辨识建模正是适应这一需要而产生的,它是现代控制理论中一个很活跃的分支。
系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。
从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。
所谓系统辨识,通俗地说,就是研究怎样利用对未知系统的试验数据或在线运行数据(输入/输出数据),运用数学归纳、统计回归的方法建立描述系统的数学模型的科学。
Zadeh与Ljung明确提出了系统辨识的三个要素:输入输出数据,模型类和等价准则。
总之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合我们所关心的实际过程的静态或动态特性。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号;对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
系统辨识知识点总结归纳一、系统辨识的基本概念系统辨识是指通过对系统的输入和输出进行观察和测量,利用数学模型和算法对系统的结构和行为进行识别和推断的过程。
它在工程技术领域中起着重要的作用,可以用来分析和预测系统的性能,对系统进行控制和优化。
系统辨识涉及信号处理、数学建模、统计推断等多个领域的知识,是一门非常复杂的学科。
二、系统辨识的基本原理系统辨识的基本原理是基于系统的输入和输出数据,利用数学模型和算法对系统的结构和参数进行识别和推断。
其基本步骤包括数据采集、模型建立、参数估计、模型验证等。
系统辨识的关键是如何选择合适的模型和算法,以及如何对系统的输入数据进行预处理和分析。
同时,还需要考虑数据的质量和可靠性,以及模型的简单性和准确性等因素。
三、系统辨识的方法和技术系统辨识的方法和技术包括参数辨识、结构辨识、状态辨识等,具体有线性系统辨识、非线性系统辨识、时变系统辨识、多变量系统辨识等。
这些方法和技术涉及到信号处理、最优控制、统计推断、神经网络、模糊逻辑等多个领域的知识,可以根据不同的系统和问题,选择合适的方法和技术进行应用。
四、系统辨识的应用领域系统辨识的应用领域非常广泛,包括控制系统、信号处理、通信系统、生物医学工程、工业生产等。
在控制系统中,系统辨识可以用来设计控制器,提高系统的稳定性和性能。
在信号处理中,系统辨识可以用来提取信号的特征,分析信号的性质。
在通信系统中,系统辨识可以用来设计调制解调器,提高系统的传输效率和可靠性。
在生物医学工程中,系统辨识可以用来分析生物信号,诊断疾病和设计医疗设备。
在工业生产中,系统辨识可以用来优化生产过程,提高产品质量和效率。
五、系统辨识的发展趋势随着科学技术的不断发展,系统辨识也在不断地发展和完善。
未来,系统辨识的发展趋势主要包括以下几个方面:一是理论方法的创新,将更多的数学、统计和信息理论方法引入系统辨识中,提高系统辨识的理论基础和分析能力;二是算法技术的提高,利用机器学习、深度学习等先进的算法技术,对系统进行更加准确和高效的辨识;三是应用领域的拓展,将系统辨识应用到更多的领域和行业中,为社会经济发展和科技进步作出更大的贡献。
自动控制原理系统辨识知识点总结自动控制原理是研究控制系统基本原理和设计方法的学科,系统辨识则是其中重要的一部分内容。
系统辨识是通过观察和实验数据,对被控对象的动态特性进行建模与参数估计,以便更好地设计控制器并改进系统性能。
本文将对自动控制原理中的系统辨识知识点进行总结。
一、系统辨识的基本概念系统辨识是指通过一系列观测数据,从中提取出系统的模型和参数。
它包括输入信号设计、实验数据采集、模型结构的选择以及参数估计等步骤。
通过系统辨识,我们可以了解系统的动态特性,为控制器的设计提供基础。
二、系统辨识的方法1. 时域方法:时域方法是最常用的系统辨识方法之一,通过观察系统的时域响应,建立系统的数学模型。
常用的时域方法包括脉冲响应法、阶跃响应法和冲激响应法等。
2. 频域方法:频域方法是基于系统的频域响应进行辨识的方法,常用的频域方法有频率响应函数法、自相关函数法和协方差方法等。
频域方法适用于稳态条件下的系统辨识。
3. 参数估计法:参数估计法通过处理观测数据,估计系统的参数。
常用的参数估计方法有最小二乘法、极大似然法和最大熵法等。
参数估计法的优势在于可以考虑系统的随机性。
三、系统辨识的常用模型1. 一阶惯性环节模型:一阶惯性环节模型是最简单的系统模型,用于描述系统的惯性和滞后特性。
其传递函数形式为:G(s) = K / (Ts + 1)其中K表示传递函数的增益,T表示系统的时间常数。
2. 二阶惯性环节模型:二阶惯性环节模型适用于具有较强固有振荡特性的系统。
其传递函数形式为:G(s) = K / (T^2s^2 + 2ξTs + 1)其中ξ表示系统的阻尼比。
3. 传递函数模型:传递函数模型是一种常用的系统模型表示方法,通过系统的输入和输出之间的传递函数来描述系统的动态特性。
四、系统辨识的实验设计为了进行系统辨识,我们需要设计实验来获取系统的输入和输出数据。
在实验设计中,需要考虑以下几个方面:1. 输入信号的选择:输入信号应具有一定的激励性能,可以包含多种频率成分。
系统辨识方法综述摘要在自然和社会科学的许多领域中,系统的设计、系统的定量分析、系统综合及系统控制,以及对未来行为的预测,都需要知道系统的动态特性。
在研究一个控制系统过程中,建立系统的模型十分必要.因此,系统辨识在控制系统的研究中起到了至关重要的作用.本文论述了用于系统辨识的多种方法,重点论证了经典系统辨识方法中运用最广泛的的最小二乘法及其优缺点,引出了将遗传算法、模糊逻辑、多层递阶等知识应用于系统辨识得到的一些现代系统辨识方法,最后总结了系统辨识今后的发展方向。
关键字:系统辨识;最小二乘法;遗传算法;模糊逻辑;多层递阶AbstractIn many fields of natural and social science, the design of the system, the quantitative analysis of the system,the synthesis of the system and the control of the system, as well as the prediction of the future behavior,all need to know the dynamic characteristics of the system. It is very necessary to establish a system model in the process of studying a control system。
Therefore,system identification plays an important role in the research of control system. This paper discusses several methods for system identification,the key argument is that the classical system identification methods using the least squares method and its advantages and disadvantages, and leads to the genetic algorithm, fuzzy logic, multi hierarchical knowledge application in system identification of some modern system identification method. Finally,the paper summarizes the system identification in the future direction of development。
一. 传递函数辨识的时域法:1.()1sKe G s Ts τ-=+ , 在S 型曲线的速率变化最快处做一切线, 分别与时间轴t 及阶跃响应渐近线()y ∞相交于(0,)τ和0(,())t y ∞ (1) ()()11y y y K u u e ∞∞-===- (2) 0T t τ=- 或: 2121121212ln(1)ln(1)ln(1)ln(1)ln(1)ln(1)t t t y t y T y y y y τ----==------2. 1212(),()(1)(1)sKe G s T T T s T s τ-=>++()(0)y y K u∞-=τ可以根据阶跃响应曲线脱离起始的毫无反应的阶段到开始变化的时刻来确定.12121221*()1ttT T T T y t e e T T T T --=---- 取两个点的数据[][]0.4,*(0.4),0.8,*(0.8)y y12212121212()/2.16/() 1.74/0.55T T t t TT T T t t +≈+⎧⎨+≈-⎩ 二. 线性系统的开环传递函数辨识设开环输入信号为:()sin()d m y t A t ω= 输出:[]cos ()sin()sin cos sin f f f A y t A t t t A ϕωϕωωϕ⎡⎤=+=⎢⎥⎢⎥⎣⎦在时间域上取: 0,,2,,t h h nh = [](0),(),,()T Y yy h y n h= sin(0)sin()sin()cos(0)cos()cos()T h nh h nh ωωωψωωω⎡⎤=⎢⎥⎣⎦ 12cos sin t t c A c A ϕϕ==根据最小二乘原理: 11221ˆˆarctan ˆˆT Tf c c Y A c c ψψψϕ-⎛⎫⎡⎤⎡⎤===⎪⎢⎥⎣⎦⎣⎦⎝⎭开环系统相频和幅频为: 21ˆarctan 20lg ˆe m c M cϕ⎛⎫== ⎪⎝⎭⎝⎭三. 1.根据脉冲响应()g t 求脉冲传递函数1()G z -1112111()(1)(2)()1nk n nn b z b z G z g z g z g k z a z a z--------++==++++++(1)(2)()(2)(3)(1)()(1)(21)g g g n g g g n H g n g n g n ⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+-⎣⎦ 12(1)(1)(2)(2)(2)()g n g g n g G G g n g n +⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦1111n n a a H G a --⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎣⎦112212110001001n n n b a b G a a ab --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 四. 相关分析法:一个具有脉冲响应函数为()g t 的系统,如果其输入量是信号()u t 的自相关函数()uu R τ,则其响应就等于输入信号()u t 与相应的输出信号()y t 之间的互相关函数()uy R τ当被辨识系统输入为白噪声(一种均值为0, 谱密度为非零常数的平稳随机过程)时, 只要确定输入与输出信号间的互相关函数, 即可求出被辨识系统的脉冲响应函数()g τ, 因为白噪声的自相关函数是一个δ函数, 即2()()uu R τσδτ= 又: 2()()uy R g τστ= 则:21()()uy g R ττσ=其中0()()()uy uu R g R d τλτλλ∞=-⎰要求: (1)持续激励 (2)最优输入信号M 序列的性质:(1) 一个n 级移位寄存器产生的M 序列周期为长度是: 21nN =-(2) 2211()/(1)xx N a N R a NN ττττ⎧⎛⎫++-≤≤⎪ ⎪=⎨⎝⎭⎪-<≤-⎩周期的偶函数M 序列的周期要大于被辨识系统的过渡时间. M 序列辨识过程:()220101()ˆ()()/ˆ(0)2()/()()()Txy xy N xy i N a S a C g d N N g i R i C S g R i C S a R sign x i y i N∆σσ∆∆∆τ∆∆τ-=+==⎡⎤=+⎣⎦⎡⎤=+⎣⎦≅+⎡⎤⎣⎦⎰∑五. 极大释然估计流程:1111ˆˆˆˆN N N N N N r K θθθε++++=+=+1(1)1(1)(1)N f N T f N fP h N K h N P h N ++=+++1(1)(1)1(1)(1)T N f f N N NT f N f P h N h N P P P h N P h N +++=-+++1ˆˆ(1)(1)T N N y N h N εθ+=+-+六. 最小二乘:11()()()()n ni i i i z k a y k i b u k i v k ===--+-+∑∑定义: []()(1),(2),,(),(1),(2),,()h k y k y k y k n u k u k u k n =---------[]1212,,,,,,,Tn n a a a b b b θ= 则: ()()()z k h k v k θ=+ 1. 一般最小二乘:令: (1)(1)(0)(1)(0)(1)(2)(2)(1)(2)(1)(2)()()(1)()(1)()m m z h y y n u u n z h y y n u u n Z H z m h m y m y m n u m u m n ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎣⎦()1ˆT T m m m m H H H Z θ-= ˆθθθ=- ()0E θ= (无偏估计)均方误差: ()()()11T T T T m mm m m m E H H H RH H H θθ--=例:1210104z r Z H R z r ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()()1121ˆ2T T H H H Z z z θ-==+ ()()()1154T T T T r E H H H RH H Hθθ--==2. 加权最小二乘:[](1),(2),,()m W w w w m = ()1ˆT T m m mm m m H W H H W Z θ-= ˆθθθ=- ()0E θ= (无偏估计)均方误差: ()()()11T T T Tm m mm m m m m m m E H W H H W RW H H W H θθ--=如果 1m W R -= 则: ()111ˆT T m m m m H R H H R Z θ---=例: 用两台仪器对位置标量各测量一次, 量测量分别为12,z z , 仪器的测量误差均值为0, 方差分别为,4r r 的随机量, 求其最小二乘估计, 并计算估计的均方误差.解: 采用加权最小二乘估计, 权阵1m W R -=, 并计算估计的均方误差. 由题意得量测方程: Z H V θ=+()11241ˆ55T T H W H H W Z z z θ-==+ ()()()1145T T T T E H W H H W RW H H W H r θθ--==3. 一般最小二乘参数辨识流程图:七. 模糊系统辨识1. 模糊系统的设计设二维模糊系统()g x 为集合21122[,][,]U R αβαβ=⨯⊂上的一个函数, 其解析形式未知. 假设对任意一个x U ∈, 都能得到()g x , 则可设计一个逼近的模糊系统.步骤: (1)在[,]i i αβ上定义(1,2)i N i =个标准的, 一致的, 完备的模糊集12,,,i Ni i i A A A (2)组建12M N N =⨯条模糊集if then -规则:12i iu R ,如果1x 为11i A 且2x 为22i A , 则y 为12i iB , 其中11221,2,,,1,2,,i N i N ==将模糊集12i iB 的中心12()i iy 选择为: ()121212,i ii iy g e e =(3) ()()12121212121212121212111211()()()()()N N i i i i A A i i N N i i A A i i yx x f x x x μμμμ=====∑∑∑∑2. 万能逼近定理:令()f x 为二维模糊系统, ()g x 为未知函数, 如果()g x 在1122[,][,]U αβαβ=⨯上是连续可微的, 则模糊系统的逼近精度为:1121112max (1,2)i j ji i i j N g g g fh h h e e i x x +∞≤≤-∞∞∂∂-≤+=-=∂∂无穷维范数∞∙定义为()sup ()x Ud x d x ∞∈= j i e 为第j 个模糊集中心点的坐标.3. 仿真实例:(1) 针对一维函数()g x , 设计一个模糊系统()f x , 使之一致的逼近定义在[3,3]U =-上的连续函数()sin g x x =所需精度为0.2ε=, 即sup ()()x Ug x f x ε∈-<由于cos()1g x x∞∞∂==∂,g g fh h x∞∞∂-≤=∂,故取0.2h ≤满足精度要求, 取0.2h =则模糊集的个数为: 131LN n=+= 在[3,3]U =-上定义31个具有三角形隶属函数的模糊集j A .所设计的模糊系统为: 311311sin()()()()jj Aj j Aj e x f x x μμ===∑∑(2) 针对二维函数()g x , 设计一个模糊系统()f x , 使之一致的逼近定义在[1,1][1,1]U =-⨯-上的连续函数1212()0.520.10.280.06g x x x x x =++- 所需精度为 0.1ε=由于21sup 0.10.060.16x Ug x x ∈∞∂=-=∂,12sup 0.280.060.34x Ug x x ∈∞∂=-=∂取 120.2h h ==有: 0.160.20.340.20.1g f∞-≤⨯+⨯=满足精度要求由于2L =, 此时模糊集的个数为: 111LN n=+=, 即12,x x 分别在[1,1]U =-上定义11个具有三角形隶属函数的模糊集jA所设计的模糊系统为: ()12121212121111121111111211()()()()()i i i i A A i i i i AA i i g e e x x f x x x μμμμ=====∑∑∑∑八.遗传算法步骤: (1) 确定决策变量, 及各种约束条件,即确定个体的表现型x和问题的解空间(2) 建立优化模型, 即确定出目标函数的类型及数学描述形式或量化方法(3) 确定表示可行解的染色体编码方法, 即确定出个体的基因型x及遗传算法的搜索空间.(4) 确定解码方法, 即确定出由个体基因型x到个体表现型X的对应关系或转换方法.(5) 确定个体适应度的量化评价方法, 即确定出由目标函数值到个体适应度的转换规则(6) 设计遗传算子, 即确定选择运算, 交叉运算, 变异运算等遗传算子的具体操作方法.M G P P(7) 确定遗传算法的有关运行参数, ,,,c m流程图:九. 神经网络:1. BP 神经网络(1) 前向传播:输入: j ij ii x w x =∑ 输出: 2kj j jx wx =∑取()n k y k x =, 则网络输出与理想输出的误差为: ()()()n e k y k y k =- 误差性能指标函数为: 21()2E e k =(2) 反向传播:输出层及隐层的连接权值学习算法为:222()()k j j j j x Ew e k e k x w w ∆ηηη∂∂'=-==∂∂ 1k +时刻的网络权值为: 222(1)()j j j w t w t w ∆+=+ 隐层及输入层连接权值学习算法为: ()n ij ij ijy Ew e k w w ∆ηη∂∂=-=∂∂ 1k +时刻的网络权值为: (1)()ij ij ij w k w k w ∆+=+如果考虑上次权值, 对本次权值变化的影响, 需要加入动量因子α, 此时的权值为:(1)()()(1)ij ij ij ij ij w k w k w w k w k ∆α⎡⎤+=++--⎣⎦, 其中η为学习速率,α为动量因子, ,[0,1]ηα∈2. RBF 神经网络输入向量: 12[,,,]Tn X x x x = 径向基向量: 12[,,,,,]Tj m H h h h h =其中22exp ,1,2,,2jj j X Ch j m b ⎛⎫- ⎪=-= ⎪⎝⎭网络的第j 个节点的中心矢量为: 12[,,,,,]Tj j j ij nj C c c c c = 网络的基宽向量为: 12[,,,]Tm B b b b = 网络的权向量为: 12[,,,,,]j m W w w w w =k 时刻网络的输出为: 1()mm i i i y k wh w h ===∑设理想输出为()y k , 则性能指标函数为: []21()()()2m E k y k y k =- 根据梯度下降法, 输出权,节点中心及节点基宽参数的迭代算法如下:[]()()j m j w y k y k h ∆η=-()(1)(1)(2)j j j j j w k w k w w k w k ∆α⎡⎤=-++---⎣⎦ 其中η为学习速率,α为动量因子.。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。