系统辨识
- 格式:pptx
- 大小:191.17 KB
- 文档页数:20
1. 模型与系统1)模型:把关于实际系统的本质的部分信息简缩成有用的描述形式。
它用来描述系统的运动规律,是系统的一种客观写照或缩影,是分析、预报、控制系统行为的有力工具。
模型是实体的一种简化描述。
模型保持实体的一部分特征,而将其它特征忽略或者变化。
不同的简化方法得到不同的模型。
2)系统:有些书里也称为过程,按某种相互依赖关系联系在一起的客体的集合。
本身的含义是比较广泛的,可以指某个工程系统、某个生物学系统,也可以指某个经济的或社会的系统。
这里所研究的“对象”是抽象的,重要的是其输入、输出关系。
2. 残差和新息1)新息(输出预报误差):是过程输出预报值与实测值之间的误差。
(P13)过程输出预报值: 输出预报误差: 过程输出量: 2)残差:是滤波估计值和实测值之差。
3. 系统可辨识的条件最小二乘方法满足开环可辨识条件;激励信号是持续激励,阶次至少要(na+nb+1)阶。
可辨识条件:为了辨识动态系统,激励信号u 必须在观测的周期内对系统的动态持续地激励。
满足辨识对激励信号最起码的要求的持续激励信号应具备的条件,称“持续激励条件”。
4. 建立数学模型1)建立方法:①理论分析法:机理法或理论建模,“白箱”问题②测试法:系统辨识,“黑箱”问题③两者结合:“灰箱”理论问题2)基本原则:①目的性-明确建模的目的,如控制、预测等。
因为不同的建模目的牵涉到的建模方法可能不同,它也将决定对模型的类型、精度的要求。
②实在性-模型的物理概念要明确。
③可辨识性-模型的结构要合理,输入信号必须是持续激励的;另外数据要充足。
④节省性-待辨识的模型参数个数要尽可能地少。
以最简单的模型表达所描述的对象特征。
5. 辨识:就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。
1)试验设计:包括输入信号(幅度、频带等)、采样时间、辨识时间(数据长度)、开环或闭环辨识、离线或在线辨识(P19)目的:使采集到的数据序列尽可能多地包含过程特性的内在信息。
系统辨识系统辨识是指对于一个系统的理解和认识,包括对该系统的组成部分、功能特点、作用范围、运行规律等方面的全面把握和分析。
系统辨识是一项专业性很强的技能,需要掌握相关的知识和方法,才能够准确地识别和理解一个系统,为下一步的研究和分析提供基础。
下面将结合案例,详细介绍系统辨识的实施过程、方法和重要性。
一、系统辨识的实施过程1、确定研究对象系统辨识的第一步是确定研究的对象。
这要求我们明确需要研究的系统是什么,它所包括的组成部分、作用范围和影响因素是什么。
例如,如果我们要研究一个电子商务平台的运营情况,就需要明确该平台的组成部分(如前端界面、后端数据处理、用户管理等)、作用范围(如哪些地区、哪些用户群体)、影响因素(如网络带宽、访问量、用户体验等)。
2、了解基本信息了解基本信息是进行系统辨识的重要步骤。
这一步要求对研究对象的整体概貌有一定的了解,了解它的背景、发展历程、目标定位等基本信息。
比如,如果要研究一个企业的运营情况,就需要了解该企业的业务范围、组织架构、发展历程等基本信息,从而对该企业的整体方针、战略、目标等有所了解。
3、分析组成部分组成部分是实施系统辨识的重要内容,它要求我们对研究对象的每个组成部分进行详细分析,进而深入理解整个系统的运行机理。
分析组成部分时,需要考虑以下几点:(1)确定组成部分组成部分包括哪些子系统、模块、模型等。
例如,对于一个银行的信用卡系统,可能包括信用卡开户、交易查询、账单查询、信用额度管理、还款管理等多个子系统。
(2)了解功能特点了解每个组成部分的功能特点是进行系统辨识的核心内容。
这需要我们理解每个组成部分的作用、目标、功能、定位等,并对其运行机理进行深入分析。
例如,信用卡开户系统的功能可能包括用户信息采集、信用评估、授权审核等,每个功能都需要进行详细的分析和研究。
(3)掌握关键指标对于每个组成部分,需要掌握一些关键的指标,如响应时间、系统稳定性、正确率等。
这些指标可以帮助我们评估一个组成部分的表现,并判断其在系统中的重要性和优先级。
第02讲系统辨识三要素系统辨识是指通过对系统输入和输出数据的观测和分析,求解出系统的数学模型的过程。
系统辨识主要有两种方法:非参数辨识和参数辨识。
在进行参数辨识时,需要确定三个基本要素,分别是模型结构、参数估计方法和误差分析方法。
本文将详细介绍这三个要素。
首先,模型结构是系统辨识的核心要素之一、模型结构决定了辨识出的数学模型与实际系统之间的对应关系。
模型结构的选择需要根据实际问题和已有的知识和经验来确定。
常用的模型结构包括线性模型、非线性模型、时变模型等。
例如,对于一个物理系统来说,可以尝试使用一阶惯性环节、二阶惯性环节等常见的线性模型结构进行辨识;对于一个生物系统来说,可以采用Lotka-Volterra模型等非线性模型结构进行辨识。
选择合适的模型结构可以提高系统辨识的精度和可靠性。
其次,参数估计方法是指在给定模型结构的情况下,通过对系统输入和输出数据进行处理和分析,求解出模型参数的过程。
参数估计方法分为两类:最小二乘法和最大似然法。
最小二乘法通过最小化观测数据与模型预测数据之间的残差平方和来估计模型参数;最大似然法通过最大化观测数据的似然函数来估计模型参数。
当观测数据服从高斯分布时,最小二乘法和最大似然法等效。
参数估计方法的选择需要根据数据性质和实际问题来确定。
对于小样本数据,最大似然法常常具有更好的效果;对于大样本数据,最小二乘法通常是更好的选择。
最后,误差分析方法是指用来评估辨识结果的准确性和可信度的方法。
误差分析方法主要包括残差分析、模型检验和辨识结果评价等。
残差分析是通过分析辨识结果与观测数据之间的差异来评估模型拟合程度的方法。
模型检验是通过将辨识结果应用到实际应用中,观察其预测能力和鲁棒性来评价模型的有效性。
辨识结果评价是通过计算模型的性能指标,如均方误差、决定系数等来评估辨识结果的准确性和可靠性。
误差分析方法的选择需要根据实际问题和辨识结果的要求来确定。
对于较为简单的问题,可以选择较为简单的误差分析方法;对于复杂的问题,需要选择更为精确和全面的误差分析方法。
经典辨识方法报告1. 面积法辨识原理分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn Λ……………………………………………()由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n nK ……………………………() 面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………() 定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………()则由式()给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………()将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………()利用初始条件()当t →∞时)(a 22∞=F …………………………………………………………………… ()同理有a 3=F 3(∞)以此类推,若n ≥2,有a n =F n (∞)分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=----ΛΛ…………………………………定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ΛΛ………………………………由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c sC sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………令 )1(1)]([1*1s c s t h L +=……………………………………………………………定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L ……………………………………定义i 阶面积为i i c A =。
相关分析法通常采用类似白噪声的伪随机信号作为输入测试信号,这种信号对系统的正常工作干扰不大。
通常不加专门的输入测试信号,仅利用正常工作状态下测量的输入及输出信号,就可得到良好的辨识效果。
相关分析法辨识抗干扰能力强、数据处理简单、辨识精度高,因此应用比较广泛,尤其是在需要在线辨识的场合。
相关分析法辨识具有最小二乘法辨识的统计特性,即使在有色噪声干扰下,也可以得到无偏估计,这是它和一般最小二乘法相比最大的优点。
在采用相关分析法进行系统辨识时,系统的脉冲响应函数可由系统的输入及输出数据的相关函数来描述,因此,输入信号的选择及相关函数的估计是相关分析法的关键所在。
持续激励输入信号的要求。
更进一步的要求是输入信号必须具有较好的“优良性”,即输入信号的选择应能使给定问题的辨识模型精度最高。
在具体工程应用中,选择输入信号时还应考虑以下因素:输入信号的功率或幅度不宜过大,以免使系统工作在非线性区,但也不应过小,以致信噪比太小,直接影响辨识精度。
工程上要便于实现,成本低。
相关分析法是属于统计分析的方法,它的理论基础就是著名的维纳-霍甫积分方程。
这个方程为积分方程,不易求解,但如果采用白噪声作为系统输入,则可方便的求出系统的脉冲响应。
但是运用白噪声求系统响应,理论上需要无限长时间上的观测数据,这是不希望和不允许的,因此具有人工可以复制的、有规律的、周期性的伪随机信号是更适合应用的。
这种信号具有类似白噪声的性质,目前最常用的是伪随机二位式序列,它们主要有M序列和逆重复M序列,它们可由计算机或线性反馈寄存器产生。
用M序列和逆重复M序列对系统的脉冲响应进行辨识时,都是在离散的时间上进行的。
由它们获得的响应函数是原函数的一致性估计。
为了提高辨识精度,可采用多个周期输入伪随机序列的方法。
当对系统进行在线辨识时,可以采用脉冲响应的递推计算公式。
多变量系统的脉冲响应的辨识问题,最后要归结为用单变量系统辨识方法进行,所不同的只是较复杂。
系统辨识三要素举例系统辨识三要素举例在现代化的社会中,为了保障个人信息的安全,各种系统都采用了不同的辨识方式。
而这些辨识方式都有一个共同点,就是需要通过三个要素来进行辨识。
这三个要素分别是“知道”、“有”和“是”,也被称为“知、物、人”。
下面将详细介绍这三个要素以及它们在不同系统中的应用。
第一部分:知道所谓“知道”,就是指用户需要提供一些只有自己才知道的信息来进行辨识。
这些信息可以是密码、PIN码、答案等等。
常见的应用包括银行卡密码、手机解锁密码、电子邮箱密码等等。
1. 银行卡密码银行卡密码是我们日常生活中最常使用到的一种“知道”要素。
当我们使用银行卡进行取款或转账时,就需要输入正确的密码才能完成操作。
这样可以保证只有持卡人才能进行相关操作,从而保障了资金安全。
2. 手机解锁密码手机解锁密码也属于“知道”要素。
当我们设置了手机解锁密码后,只有输入正确的密码才能进入手机界面进行操作。
这样可以防止他人未经授权使用我们的手机,保护我们的个人信息。
第二部分:有所谓“有”,就是指用户需要携带一些特定的物品来进行辨识。
这些物品可以是身份证、护照、驾驶证等等。
常见的应用包括机场安检、酒店入住等等。
1. 机场安检在进行机场安检时,工作人员会要求旅客出示有效的身份证或护照以进行辨识。
只有持有有效证件的旅客才能通过安检,确保了航空安全。
2. 酒店入住在酒店入住时,前台工作人员会要求客人出示有效的身份证或护照以进行辨识。
只有持有有效证件的客人才能入住,从而保障了酒店经营和顾客安全。
第三部分:是所谓“是”,就是指用户需要通过一些生物特征来进行辨识。
这些生物特征可以是指纹、虹膜、面部特征等等。
常见的应用包括门禁系统、考勤系统等等。
1. 门禁系统门禁系统通常采用刷卡或指纹识别来进行辨识。
只有通过了辨识才能进入特定区域,保障了区域的安全。
2. 考勤系统考勤系统通常采用刷卡或面部识别来进行辨识。
只有通过了辨识才能进行签到或签退操作,确保了员工的出勤情况和工资发放。
系统辨识的常用方法系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型,是现代控制理论中的一个分支。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
传统的系统辨识方法(1)脉冲响应脉冲响应一般是指系统在输入为单位冲激函数时的输出(响应)。
对于连续时间系统来说,冲激响应一般用函数h(t)来表示。
对于无随机噪声的确定性线性系统,当输入信号为一脉冲函数δ(t)时,系统的输出响应 h(t)称为脉冲响应函数。
辨识脉冲响应函数的方法分为直接法、相关法和间接法。
①直接法:将波形较理想的脉冲信号输入系统,按时域的响应方式记录下系统的输出响应,可以是响应曲线或离散值。
②相关法:由著名的维纳-霍夫方程得知:如果输入信号u(t)的自相关函数R(t)是一个脉冲函数kδ(t), 则脉冲响应函数在忽略一个常数因子意义下等于输入输出的互相关函数,即h(t)=(1/k)Ruy(t)。
实际使用相关法辨识系统的脉冲响应时,常用伪随机信号作为输入信号,由相关仪或数字计算机可获得输入输出的互相关函数Ruy(t),因为伪随机信号的自相关函数 R(t)近似为一个脉冲函数,于是h(t)=(1/k)Ruy(t)。
这是比较通用的方法。
也可以输入一个带宽足够宽的近似白噪声信号,得到h(t)的近似表示。
③间接法:可以利用功率谱分析方法,先估计出频率响应函数H(ω), 然后利用傅里叶逆变换将它变换到时域上,于是便得到脉冲响应h(t)。
(2)最小二乘法最小二乘法(LS)是一种经典的数据处理方法, 但由于最小二乘估计是非一致的、有偏差的, 因而为了克服它的不足, 形成了一些以最小二乘法为基础的辨识方法:广义最小二乘法(GLS)、辅助变量法(IVA)和增广矩阵法(EM), 以及将一般的最小二乘法与其它方法相结合的方法,有相关分析———最小二乘两步法(COR -LS)和随机逼近算法。
(3)极大似然法极大似然法(ML)对特殊的噪声模型有很好的性能, 具有很好的理论保证;但计算耗费大, 可能得到的是损失函数的局部极小值。