大数据融合及应用(PPT 49张)
- 格式:ppt
- 大小:4.70 MB
- 文档页数:50
大数据公司挖掘数据价值的49个典型案例(值得收藏)导读:本文是近年来大数据公司在不同行业和领域的一些经典案例的总结。
虽然其中一些是几年前的案例,但其背后的逻辑对未来仍有启发意义。
本文力图从企业运营和管理的角度,梳理出发掘大数据价值的一般规律:一是以数据驱动的决策,主要通过提高预测概率,来提高决策成功率;二是以数据驱动的流程,主要是形成营销闭环战略,提高销售漏斗的转化率;三是以数据驱动的产品,在产品设计阶段,强调个性化;在产品运营阶段,则强调迭代式创新。
01 上篇:天然大数据公司的各种套餐从谷歌、亚马逊、Facebook、LinkedIn,到阿里、百度、腾讯,都因其拥有大量的用户注册和运营信息,成为天然的大数据公司。
而像IBM、Oracle、EMC、惠普这类大型技术公司纷纷投身大数据,通过整合大数据的信息和应用,给其他公司提供“硬件软件数据”的整体解决方案。
我们关注的重点是大数据的价值,第一类公司首当其冲。
以下是这些天然大数据公司挖掘价值的典型案例。
1. 亚马逊的“信息公司”如果说世界上有哪家公司从大数据中发现了最大的价值,截至目前,答案可能是亚马逊。
亚马逊还要处理海量数据,这些交易数据的直接价值更大。
作为一家“信息公司”,亚马逊不仅从每个用户的购买行为中获得信息,还将每个用户在其网站上的所有行为都记录下来:页面停留时间、用户是否查看评论、每个搜索的关键词、浏览的商品等等。
这种对数据价值的高度敏感和重视,以及强大的挖掘能力,使得亚马逊早已远远超出了它的传统运营方式。
亚马逊CTO Werner Vogels在CeBIT上关于大数据的演讲,向与会者描述了亚马逊在大数据时代的商业蓝图。
长期以来,亚马逊一直通过大数据分析,尝试定位客户和和获取客户反馈。
“在此过程中,你会发现数据越大,结果越好。
为什么有的企业在商业上不断犯错?那是因为他们没有足够的数据对运营和决策提供支持,”Vogels说,“一旦进入大数据的世界,企业的手中将握有无限可能。
大数据融合及应用什么是大数据融合?大数据融合是指将各个领域、各个来源的大数据进行集成、整合、处理、分析、利用的一种数据处理方法,它使得小数据可以被转化为大数据并支持传统和新兴数据类型,包括结构化数据、非结构化数据、半结构化数据等。
它可以将不同的数据类型与特征进行结合和融合,从而为数据分析和处理提供更广泛的视野和更丰富的维度。
大数据融合需要以高效的方式进行数据存储和管理,通常使用数据仓库和数据湖进行数据存储和管理。
大数据融合的应用大数据融合可以应用于各个领域,如医疗、金融、能源、环境等。
以下是一些具体的应用案例:医疗健康方面1. 个性化医疗大数据融合可以收集、整合、存储患者的个人信息和病史、医疗记录和基因信息等数据,从而为医生提供更准确的诊断和治疗方案,并提供更加个性化的医疗服务。
2. 疾病预警和控制大数据融合可以对全球流行病进行实时监测并提供预警,提高疾病控制和预防的效率。
例如,新冠疫情的爆发时,大数据分析技术可以预测疫情的传播和发展趋势。
金融领域1. 风险管理大数据融合可以收集、整合、分析多个数据来源的金融数据,从而提供更加准确的风险评估和预测,为金融机构的借贷决策提供支持。
2. 交易和客户分析大数据融合可以对客户的历史交易记录和行为进行分析,从而帮助金融机构制定更好的交易策略和预测客户的行为。
能源领域1. 智能能源大数据融合可以对能源数据进行收集和分析,从而提供更准确的能源消费预测和控制,包括电力、天然气、水资源等。
通过数据分析可以找到节约能源的方法。
2. 资源利用大数据融合可以对环境数据进行分析,支持对资源和环境的评估和利用,从而帮助实现可持续的资源利用策略和环保措施。
如何应用大数据融合?大数据融合需要通过以下的步骤来实现:1.数据收集和存储:从多个数据源收集不同类型和格式的数据,并存储在数据仓库或数据湖中。
2.数据集成和清洗:将不同源和格式的数据进行集成,并对数据进行清洗和筛选,以保证数据的准确性和完整性。
•大数据概述与基础•大数据存储与管理•大数据处理与分析目录•大数据可视化与报表•大数据安全与隐私保护•大数据应用案例与实践01大数据概述与基础大数据定义及特点定义特点分布式文件系统分布式计算框架分布式数据库数据流处理大数据技术架构大数据应用领域互联网行业金融行业制造业政府及公共服务大数据发展趋势数据驱动决策人工智能与大数据融合数据安全与隐私保护数据共享与开放02大数据存储与管理介绍HDFS 的基本概念、架构和特点,以及与传统文件系统的比较。
HDFS 概述HDFS 的读写操作HDFS 的命令行操作HDFS API 编程详细讲解HDFS 的读写流程、数据块的概念、副本策略等。
介绍HDFS 的常用命令行工具及其使用方法,如hadoop fs 命令等。
介绍如何使用Java API 进行HDFS 文件的读写操作,包括创建文件、写入数据、读取数据等。
分布式文件系统HDFSNoSQL 数据库概述介绍NoSQL 数据库的基本概念、分类和特点,以及与传统关系型数据库的比较。
常见NoSQL 数据库介绍简要介绍几种常见的NoSQL 数据库,如MongoDB 、Cassandra 、Redis 等。
NoSQL 数据库的选择与使用讲解如何根据实际需求选择合适的NoSQL 数据库,并给出使用建议。
NoSQL 数据库简介030201数据仓库HiveHive概述介绍Hive的基本概念、架构和特点,以及与传统数据库的比较。
Hive的数据模型详细讲解Hive的数据模型,包括表、分区、桶等概念及其使用方法。
Hive的查询语言HiveQL介绍Hive的查询语言HiveQL的语法、特点和常用操作,如数据查询、数据插入、数据更新等。
Hive的优化与调优讲解如何对Hive进行优化和调优,提高查询效率和性能。
数据迁移与同步数据迁移概述01数据同步概述02数据迁移与同步的实践0303大数据处理与分析MapReduce编程模型MapReduce基本概念MapReduce优化技巧MapReduce编程实例Spark内存计算框架Spark基本概念Spark优化技巧Spark编程实例1 2 3数据清洗基本概念数据预处理技术数据清洗与预处理实例数据清洗与预处理数据挖掘算法及应用数据挖掘基本概念介绍数据挖掘的定义、目的、常用算法等。