当前位置:文档之家› JKWC无功功率自动补偿器使用说明优选稿

JKWC无功功率自动补偿器使用说明优选稿

JKWC无功功率自动补偿器使用说明优选稿
JKWC无功功率自动补偿器使用说明优选稿

J K W C无功功率自动补偿器使用说明

集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

JKW5C无功功率自动补偿控制器是低压电容器的配套产品。本公司根据不同用户的需求,成功地开发了JKL5C、JKL8C、JKG2B、JKGF、 JKW5C等五种型号的智能化系列控制器,控制路数有4,6,8,10,12不等。产品采用微型计算机控制,技术先进、功能完美、抗干扰力强,运行稳定可靠,补偿精度高,外形美观,是电容器厂家首选的产品。

JKW5C无功功率自动补偿控制器使用条件

1、海拔高度:不超过2500米

2、环境温度:-5℃~+40℃

3、相对湿度:40℃时,≤50%;20℃时≤90%

4、周围环境无腐蚀气体,无导电性尘埃,无易燃易爆介质。

5、安装处无剧烈振动。

JKW5C无功功率自动补偿控制器项目 Items

JK5C/JKL8C

JKG2B

JKGF

JKW5C

额定工作电压

Rated working voltage

380V±20%,50Hz

220V±10%,50Hz

220V±10%,50Hz

380V±20%,50Hz

电流取样输入 Sampled input current 交流Iin≤5A,(AC,Iin≤5A)

交流Iin≤5A,(AC,Iin≤5A)

交流Iin≤5A,(AC,Iin≤5A)

交流Iin≤5A,(AC,Iin≤5A)

输出触点容量Output contact capacity 220V×5A,380V×3A

220V×5A,380V×3A

220V×5A,380V×3A

220V×5A,380V×3A

介电强度 Dielectric strength

交流3000V(AC3000V)

交流3000V(AC3000V)

交流4000V(AC4000V)

交流3000V(AC3000V)

工作方式 Working method

连续 Continuous

连续 Continuous

连续 Continuous

连续 Continuous

JKW5C无功功率自动补偿控制器投入门限Switch on threshold

无功电流>1.1Ic,cosΦ

<cosΦ 预置 Reactive current

>1.1Ic,cosΦ<cosΦ preset

CosΦ<0.93

CosΦ<0.93

无功电流>1.1Ic,cosΦ<cosΦ

预置 Reactive current >1.1Ic,

cosΦ<cosΦ preset

切除门限

Switch off threshold

功率因数>CosΦ预置

power factor>CosΦ preset CosΦ<0.98

CosΦ<0.98

功率因数>CosΦ预置

Power factor>CosΦ preset

投切延时

Switching time delay

5-100秒可调

(5-100s adjustable)

5-100秒可调

(5-100s adjustable)

40秒(40s)

5-100V可调

(5-100s adjustable)

过电压保护

Over-voltage protection 400-450V可调

(400-450v adjustable)230-250V可调

(230-250v adjustable)230-250V可调

(230-250v adjustable)400-450V可调

(400-450v adjustable)

JKW5C无功功率自动补偿控制器取样信号相序

Phase sequence of sampling signal

自动鉴别

Automatic identifying

自动鉴别

无功功率补偿器设计.

目录 摘要............................................................... 错误!未定义书签。 1 绪论............................................................. 错误!未定义书签。 1.1 课题背景与意义............................................. 错误!未定义书签。 1.1.1 无功功率的产生....................................... 错误!未定义书签。 1.1.2 无功功率的影响....................................... 错误!未定义书签。 1.1.3 无功补偿的作用....................................... 错误!未定义书签。 1.2 国内外研究现状............................................. 错误!未定义书签。 1.3 论文的主要研究内容......................................... 错误!未定义书签。 2 SVG的基础理论 (4) 2.1 无功功率和功率因数的定义 (4) 2.1.1正弦电路无功功率和功率因数 (4) 2.1.2 非正弦电路无功功率和功率因数 (4) 2.2 无功功率动态补偿原理 (5) 2.3阻抗补偿方案 (6) 2.3.1 晶闸管投切电容器TSC (6) 2.3.2 晶闸管控制电抗器TCR (7) 2.3.3晶闸管控制串联电容器TSC (8) 2.4 电压源变流器型补偿方案 (8) 2.4.1 无功功率发生器 (9) 2.4.2 开关型串联基波电压补偿器 (10) 3静止无功发生器(SVG)的设计 (11) 3.1 静止无功发生器(SVG)主电路 (11) 3.2 无功电流检测电路 (14) 3.3 无功控制电路 (15) 4系统仿真及分析 (17) 4.1 系统仿真模型 (17) 4.2 仿真结果与分析 (19) 小结与体会 (23) 参考文献 (24)

JKW5B 智能无功功率自动补偿控制器说明

JKW5系列智能无功功率补偿控制器使用说明书简介 新型JKW5系列无功功率自动补偿控制器(包括JKW5C、JKW5B等型号) 运用无功功率计算和目标功率因数设置,双重计算检测方法,为线路所需无功的准确补偿,以及限制线路过补状况的发生而设计的理想产品。采用先进的单片机技术,全自动贴片机焊接工艺,以及先进的检测设备,确保产品具有高精度和高灵敏度,且有抗干拢能力强运行稳定等特点。该系列产品符合DL/T597-996标准,适用于低压配电系统电容器补偿装置的自动调节,使功率因数达到用户预定状态,提高电力变压器的利用效率减少线损,改善供电的电压质量,从而担高了经济效益与社会效益,可广泛适用不同的电网环境。型号命名JK W 5 □- □后一个□:输出回路数前一个□:是C,开孔尺寸113 X 113m,如是B,开孔尺寸162X102m 5---设计序号,特征代号W---控制物理量为无功功率JK---低压无功自动补偿控制器 使用条件 环境温度:-25℃~+55℃ 相对湿度:最大相对湿度为90%(20℃时) 海拔高度:不能超过2500米 环境条件:无腐蚀性气体、无导电尘埃、无易燃易爆的介质存在,安装地点无剧烈震动。 技术数据 额定电压:AC 220/380V,波动不能超过±15% 额定电流:AC 0~5A 频率:50Hz/60Hz 触点容量:AC 220 5A 功率:最大8W 灵敏度:150mA 防护等级:外壳IP40 控制方式:循环投切 按键功能名称符号内容 菜单键递增键+ 递减键 菜单主菜单- 子菜单选择。 注:按住菜单键4秒“设置”灯亮方可进入参数预置菜单;少于0.5秒 则进入“手动”功能 “设置”参数时递加参数值,“ 手动”运行时投入电容器组 “设置”参数时递减参数值,“ 手动”运行时切除电容器组 菜单操作 被设置参数 参数代码含义参数范围出厂设置 代码按住“菜单”键4秒使“设置”指示灯亮 再按“菜单”键PA-1 互感器变比设置5-6000 再按“菜单”键PA-2 回路设置1-12 再按“菜单”键PA-3 电压上限400V-500V ( 230-260V) 再按“菜单”键PA-4 电压下限300V-360V (176-210) 再按“菜单”键PA-5 投入门限1-98Kvar 再按“菜单”键PA-6 `1 切出门限1-50Kvar 再按“菜单”键PA-7 投切延时10-120s 再按“菜单”键PA-8 目标功率左因素0.6-1

无功功率补偿装置的几种方式

无功功率补偿装置的几种方式 国家认监委于2007年4月18日发布的2007年第9号公告《强制性认证产品目录描述与界定表》,明确将低压无功功率补偿装置列入强制性产品认证。 于2007年8月6日发布的国家认监委2007年第21号公告《关于部分电子电器产品发布新版实施规则的公告》,其中包括了《CNCA-01C-010;2007低压成套开关设备强制性认证实施规则》。该实施规则对低压无功功率补偿装置的各项要求进行了明确的规定。 中国质量认证中心于2007年7月20日发布了《低压无功功率补偿装置实施CCC认证的原则和程序》明确了低压无功功率补偿装置的认证原则及申请、受理、资料等要求。 因此,本文针对已列入强制性产品认证的无功功率补偿装置的关键环节-保护问题,进行进一步较深入的讨论,以期使无功功率补偿装置的功能和性能得到进一步的提高,确保认证产品的性能安全可靠。 2.无功功率补偿装置的主回路构成 一般无功功率补偿装置主回路的典型构成,如下图所式 体积小.其缺点是对电网存在污染,易损坏, 过载能力低,成本高,对工作环境要求较高.此种投切方式适用于负载变化大,功率因数变化快,控制精度高的场所. 这种投切方式是近几年才开发出来的产品,其构成就是把机电开关和电力电子开关复合在一起,以求把这两种投切方式的优点进行组合,抑制缺点. 其结构就是将机电开关和电力电子开关并联在一起,进行工作.其工作原理是先将晶闸管投入运行,待电流稳定后,在投入机电开关,然后晶闸管撤除工作,完成投入.断开时,先将晶闸管投入工作,机电开关停止工作,晶闸管在停止工作,完成切除.这种将机电开关和电力电子开关的复合投切方式,可以说,尽可能的利用各自的优点,降低缺点. 目前,此种投切方式在目前的市场上,使用量还是比较大的.但一些固有的缺 点仍然存在,例如对电网的污染问题. 此外, 电力电子开关方式和复合式开关方式的制造商,还在其制造的产品上,增加了一些辅助和保护功能.还须视各产品分别看待.

无功补偿及低压补偿装置原理简介

无功补偿及低压补偿装置原理简介 一、一次电路 一次电路的构成如下图所示,包括隔离开关QS、10组熔断器FUI~FUIO、接触器KM1~KMIO、热继电器FRl~F'R10、补偿电容器CI~CIO.另外还有电流互感器TAa、TAh和TAc.避雷器BLI、BL2和BL3。其中熔断器和热继电器用于对电容器进行短路及过电流保护;接触器是对电容器进行手动或自动投入、切除的开关器件;电流互感器获取的电流信号用于测量无功补偿柜补偿电流的大小:避雷器用子吸收电容器投入、切除操作时可能产生的过电压,是一种额定电压为AC220V的低压避雷器。 二、二次控制电路 包括一个物理结构分为7层的转换开关2SA、无功补偿自动控制器(以下简称补偿控制器)等元器件。转换开关2SA用来手动控制投入或切除1~10路补偿电容器,并完成自动控制器电压信号、电流信号的接人或退出。补偿控制器可以根据功率因数的高低或无功功率r与用蠛的大小自动投入或切除电容器,并在系统电压较高时自动切除电容嚣。具体电路见下图。 转换开关2SA有一个操作手柄,出下图可见,该手柄有自动、零位和手动l~lo共12个挡位,每旋转30°即可转换一个挡位。 在每个挡位,会有桐应的转换开关触点接通.2SA共可转换13对触点,分别是(7)、(8)、(9)、(10)等等,一直到下部的(1)、(2)触点。为了标示出转换开关2SA在不同的挡位与各组触点之问的对应关系,与12个挡位相对应的有12条纵向虚线,虚线与每一组触点(略偏下、无形相交的位置,可能标注有圆点或不标注圆点。标注有圆点的,表示转换开关旋转至该档位时,圆点(略偏上)位

置的一组触点是接通的,否则该组触点星开路状态。例如,在触点(7)、(8)略偏下位置,手动1.手动IO挡位时均标注有圆点,表示这10个挡位时触点(7)、(8)均接通。而在手动l挡位,只在触点(7)、(8)和(1)、(2)位置标注有圆点,说明在该挡位这两组触点是接通的。 无功补偿屏如欲进入自动控制投切状态,需给补偿控制器接人进线柜或待补偿电路总进线处A相电流互感器二次的电流信号I^,B桐、C相电压信号,以及接触器线圈吸合所需的工作电源。具体接线见下图中补偿控制器接线端子图。 图中US1、US2端干连接的103、104号线即是B相、C相电压信号(转换开关2SA在自动挡位时,103号线经2SA的(3)、(4)触点、熔断器FU13、X12端子、隔离开关Qs,连接至B桐电源;104号线沿类似线路连接至C相电源);ISI、IS2端子连接的即是进线柜的电流信号(经由转换开关2SA转接).COM端连接的l 号线即是接触器线圈吸合所需的丁作电源(1号线经熔断器FU11、XI1端子、隔离开关Qs,连接至A桐电源)。B相、C桐电压信号及A相电流信号在补偿控制器内部经过微处理器运算判断后,计算出功率因数的高低、无功功率的大小,一方面经过LED显示器显示功率因数值,同时发送电容器投切指令,例如补偿控制器发出投入电容器CI的指令时,其接线端子中的1号端子经内部继电器触点与COM端(1号线.A相电源)连通,该端子经3号线连接至接触器KMI线圈的左端,线圈的右端经热继电器FR1的保护触点接至2号线.即电源零线N。接触器KM1线圈得电后,主触点闭合.将电容器CI投入,实现无功补偿。此同时.KMI的辅助触点闭合,接通指示灯HL1,指示第一路电容器已经投入.如果无功功率数值较大,补偿控制器则控制各路电容器依次投入,直到功率因数补偿到接近于1。每一路电容器投入时的时间间隔是可调的,通常将其调整为几秒至儿十秒之间。补偿控制器遵

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

最新JKW5C无功功率自动补偿器使用说明

JKW5C无功功率自动补偿控制器是低压电容器的配套产品。本公司根据不同用户的需求,成功地开发了JKL5C、JKL8C、JKG2B、JKGF、 JKW5C等五种型号的智能化系列控制器,控制路数有4,6,8,10,12不等。产品采用微型计算机控制,技术先进、功能完美、抗干扰力强,运行稳定可靠,补偿精度高,外形美观,是电容器厂家首选的产品。 JKW5C无功功率自动补偿控制器使用条件 1、海拔高度:不超过2500米 2、环境温度:-5℃~+40℃ 3、相对湿度:40℃时,≤50%;20℃时≤90% 4、周围环境无腐蚀气体,无导电性尘埃,无易燃易爆介质。 5、安装处无剧烈振动。 JKW5C无功功率自动补偿控制器项目 Items JK5C/JKL8C JKG2B JKGF JKW5C 额定工作电压 Rated working voltage 380V±20%,50Hz 220V±10%,50Hz 220V±10%,50Hz 380V±20%,50Hz

电流取样输入 Sampled input current 交流Iin≤5A,(AC,Iin≤5A) 交流Iin≤5A,(AC,Iin≤5A) 交流Iin≤5A,(AC,Iin≤5A) 交流Iin≤5A,(AC,Iin≤5A) 输出触点容量Output contact capacity 220V×5A,380V×3A 220V×5A,380V×3A 220V×5A,380V×3A 220V×5A,380V×3A 介电强度 Dielectric strength 交流3000V(AC3000V) 交流3000V(AC3000V) 交流4000V(AC4000V) 交流3000V(AC3000V) 工作方式 Working method 连续 Continuous 连续 Continuous 连续 Continuous 连续 Continuous

浅谈电动机无功功率就地补偿

浅谈电动机无功功率就地补偿论文导读:现代工矿企业中,三相异步电动机是最常用的电气设备之一,在企业的生产设备中占有相当大的比例。由于它们都是电感性负荷,所以在企业内部的生产运行中,功率因数一般都比较低,需要从电源中吸收大量的无功功率,才能正常工作,给企业造成较大的电压损失和电能损耗。4.4应避免电容器和电动机产生自激电压。关键词:电动机,电容器,就地无功补偿,无功功率 0.概述 现代工矿企业中,三相异步电动机是最常用的电气设备之一,在企业的生产设备中占有相当大的比例。由于它们都是电感性负荷,所以在企业内部的生产运行中,功率因数一般都比较低,需要从电源中吸收大量的无功功率,才能正常工作,给企业造成较大的电压损失和电能损耗。无功补偿是指采用另加无功补偿装置的办法,让无功负荷与无功补偿装置之间进行无功功率交换,以提高系统的功率因数,降低能耗,从而大大减少供电线路,改善电网电压质量。 许多企业一般都是在企业内部配电室里低压母线上集中安装一些电容器柜,对变配电系统的无功功率进行补偿,这对于提高企业内部的供电能力,节约变配电损耗都有积极作用。可是,由于企业内部的电动机大都通过低压导线连接,分散在各个生产车间,形成企业内部的输配电网络,由此,大量的无功电流仍然在企业内部的输配电线路中流动,这些无功电流在企业内部所造成的损耗,依然不能解决。 电动机无功功率就地补偿,就是把电动机所需要的无功电流局限在电

动机设备的最终端,实现无功功率就地平衡,使得整个变配电网络的功率因数都比较高,有效地减少输配电线路的无功损耗。 1.三相异步电动机运行功率因数及损耗 三相异步电动机运行时,所消耗的功率包括有功功率和无功功率两个分量。有功功率是用于电动机产生机械转矩并且驱动负载所需的功率,它的电流随负载的增加而增加,而无功功率,则是用于电动机内部的电场与磁场随着电源频率的反复变化,在负载与电源之间不断地进行能量交换时所消耗的功率。无功电流在负载变化的情况下,其变化很微小,在相位上,电流的变化总是滞后于电压90°,所以是纯电感性质的。在实际运行中,电源供给电动机的总电流是有功电流和无功电流的矢量和,当电动机处于满负荷运行时,有功电流大于无功电流,总电流的功率因数较高,而当负载下降时,有功电流减小,无功电流基本不变,所以功率因数降低。 可以这样认为:当电动机的输出功率一定时,功率因数越低,就意味着其所需的无功功率越大,因而造成的损耗也较大。实践证明,无功功率所产生的电能损耗,主要是发生在输配电线路上的,对于那些距离电源较远,线路电阻比较大,电动机运行功率因数低的终端设备,所造成的无功损耗就更加突出了。 2.无功功率就地补偿原理及电容量的选择 2.1因为在电容负载中产生的超前无功电流与在电感负载中产生的滞后无功电流能够相互补偿,所以在电动机电源终端并联一个适当容量的电容器,就可以使电动机所需的无功电流大部分由并联的电容器供

低压无功补偿柜操作规程

低压无功补偿柜操作规程 1.在成套装置接线正确无误、供电电源正常的情况下,将电容补偿柜的智能无功功率控制器的电源开关(微型断路器)暂时置断开位置(OFF位置),成套装置各柜体里面的其他电源开关(微型断路器)均置接通位置(ON位置)。 2.将成套装置1#进线柜里面的主电路开关(塑壳断路器)均置接通位置(ON位置)。进线开关柜(1#柜)内的主断路器(QF1)为电动预储能合闸方式,其合闸过程请按下面的3操作。 3.首先按下“储能”按钮,主断路器储能电动机动作并带动弹簧开始储能,储能结束后(此时储能指示灯亮),按下“合闸”按钮,弹簧储能释放,使主断路器(QF1)完成合闸动作。主断路器合闸后,合闸指示灯亮,分闸指示灯灭,储能指示灯也灭。 4.在1至3操作完成之后,且各种指示均正常的情况下,转换开关切换到手动状态(非自动状态)后,旋转转换开关,投切相应电容,对应的回路指示灯亮,接触器线圈吸合,主回路中接触器接通后其下接电容投入到电网中。此时可检测整个系统中各个电容的回路是否正确。 5.在各种指示均正常的情况下,接通电容柜智能无功功率控制器的电源开关(置ON位置),控制器接通电之后显示“CAL”,5秒后进入自动工作状态,如输入电流符合最小要求(大于150mA),将显示所测电网功率因数cos?。此时可设置控制器的参数,可将控制器的“功率因数值”cos?设置为0.95或者0.96(要比所测电网功率因数cos?大),同时设定模式设置为人工设定模式。将转换开关切换至自动状态,将“投切允许”打至右位即(ON位置),无功补偿成套装置将投入正常工作。此时可以手动按下无功补偿控制器上的”增加”按钮来投切相应电容,对应的回路指示灯亮,接触器线圈吸合,主回路中接触器接通后其下接电容投入到电网中,直到补偿后的功率因数达到预定的设置为止,而相反按“减少”可切除相应电容。当设定参数时,将控制器的“功率因数值”cos?设置为0.95或者0.96(要比所测电网功率因数cos?大),可将设定模式设置为全自动设定模式。此时将“投切允许”打至右位即(ON位置),将转换开关切

JKWG-12Z无功补偿器说明书V1.1

概述 JKWG-12Z 无功补偿器是一款以无功功率为控制物理量的智能型无功补偿器,其控制功能完备使补偿效果能够达到最佳状态。 型号说明 产品代码:无功补偿器 控制物理量:无功功率 控制方式: 共补型 输出路数: 12路 输出方式: 12V/10mA 功能特点 ? 标准开口安装方式,安装方便。 ? 控制芯片采用PIC 单片机,抗干扰能力强。 ? 以无功功率为控制物理量同时兼顾功率因数,补偿效果好,不会产生投切振荡。 ? 实时显示网络状况:包括总无功功率、总有功功率、功率因数、电压、电流等。 ? 具有掉电参数记忆功能,掉电数据不丢失。 ? 具有过压、欠压保护功能,有效延长电容寿命。 ? 投入和切除延时分别可设,更具电网适应能力。 ? 输出路数可任意设定。 ? 可手动控制输出,便于系统调试。 常规说明 安装结构:盘面安装,背后接线。 外形尺寸:120×120×81mm 开孔尺寸:111×111mm 外壳材料:阻燃塑料。 技术指标 产品引用标准 GB/T15576-1995 低压无功功率静态补偿装置总技术条件 DL/T597-1996 低压无功补偿控制器订货技术条件 JB/T9663-1999 低压无功功率自动补偿控制器 工作环境 环境温度:-25℃~55℃ 相对湿度:≤98%,无腐蚀气体场所 辅助电源:AC 220V ±20%;频率50Hz ±5%;正弦波形总畸变率≤5% 控制方式:三相均衡补偿、循环投切。 信号采集方式:共补型采集一线电压(Ubc )与一相电流(Ia ) 技术指标 额定电压:AC380V (三相均衡补偿) 额定电流:AC0~5A 电流输入阻抗:≤0.2? 控制器灵敏度:100 mA 输出触点容量:DC12V /10mA 整机功耗:≤5W 测量精度 电压模拟量:(80%~120%额定值): 0.5级 电流模拟量:(20%~100%额定值): 0.5级 相位角:ф在-30°~+60°时,功率:2级;功率因数:1.5级 接线图 按键功能说明 1.用来选择手动/自动控制模式(所有参数的设置必 须进入手动方式)。

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

无功功率补偿常见问题

无功功率补偿常见问题 1.考虑电网电压时,是按400V考虑还是按380V考虑? 采用就地补偿时,电容器是比较靠近负载,这时候按照380V电压选取电容器 当电容器安装在配电间时,在母线上进行集中补偿时,按照400V选取电容器。 2.电容器存放条件 不要在腐蚀性的空气中,特别是氯化物气体、硫化物气体、酸性、碱性、盐质或含有类似的同类物质的空气中使用或存放电容器。 在有尘埃的环境中,为了防止发生相间或相对地/外壳发生短路事故,特别需要定期对接线端子进行常规的维护和清洁。 3.电容器在现场初次投入运行时,为什么有时候会发出"嗞嗞"声? 这是正常情况,不是质量问题,一般电容器在出厂前均按工艺要求进行通电测试,而在通电测试当中也同时进行杂质电气清除。在这个电气清除的过程中,大多数杂质会被清除干净。但是也有可能在某些情况下,当电容器在现场刚开始通电时,会发生某种杂质再生的过程,这时候,就会听到一种“嗞嗞”声,这是电容器在刚开始运行中的一种自愈合过程,持续几个小时后,这种声音就会自行消失。 4.影响电容器使用寿命的主要因素是什么 实际工作电压、环境温度、谐波电流、投切次数都会影响到电容器的使用寿命。假定电容器的标称使用寿命为Len,电容器的实际使用寿命为Le那么, 电容器的使用寿命同系统电压的关系如下: Le=Xv×Len U=1.10Un,Xv=0.5; U=1.05Un,Xv=0.7; U=1.00Un,Xv=1; U=0.95Un,Xv=1.25; U=0.90Un,Xv=1.5; 电容器的使用寿命同环境温度的关系如下: Le=Xt×Len Tav=42℃,Xt=0.5; Tav=35℃,Xt=1; Tav=28℃,Xt=2; 而℃的温度差,会导致一个很严重的后果! 电容器的使用寿命同投切次数关系如下: Le=Xs×Len 5000次每年,并采用限流电阻,Xs=1.00; 10000次每年,并采用限流电阻,Xs=0.7; 5000次每年,无限流电阻,Xs=0.40; 10000次每年,无限流电阻,Xs=0.20; 采用晶闸管投切,Xs=1.00; 如果投切次数每年超过5000次,必须要考虑动态投切方案! 所以电容器的实际使用寿命Le=Len×Xv×Xt×Xs Xv:电压系数; Xt:温度系数; Xs:投切系数。 5.为什么有时候控制器在调试好后,不能正常投入运行,而系统的功率因数又很低?

配电变压器空载无功损耗的就地补偿容量的计算(上传稿)

配电变压器空载无功损耗的就地补偿问题 补偿原因:运行中的电力变压器的损耗,人们往往只注意铜损、铁损的有功损耗,而容易忽略变压器无功功率引起的损耗。其实变压器的无功损耗在电力系统中有着不可忽视的影响。在系统中输送无功功率时不仅要消耗有功电能,还会导致功率因数不能达标而被罚款。高压计量的用户,变压器的空载无功功率,常常是导致用户无功补偿不达标的重要原因之一。 一般情况下,高压计量得到的功率因数,比低压端低0.05—0.07,即:低压补偿达到0.90时,高压计量得到的数据一般是0.85—0.83,显然,低压是0.90达标了,高压计量时用户还是要被罚款。 对于用电稳定的高计用户,我们通常都建议把切除点调高一些,如设为L0.99,甚至C0.99,等等,以便补偿变压器的高压端无功。但是变压器空载时,从低压端补偿高压,往往会显示过补偿,给电工造成错觉,所以要谨慎处理。 用户变压器的空载无功损耗是用来产生激磁电流的,或者说是空载电流Io ,与负荷无关。而且当一次电压不变时,其值基本上是个恒量。最好在变压器高压侧就地并入适当容量的电容器,来补偿变压器的空载无功。 补偿量的确定:变压器空载无功损耗计算公式为: Sn I Qn 100 %0= 其中:Qn :变压器的空载无功损耗,Kvar I 0:变压器的空载电流百分值(标么值)。 Sn :变压器额定容量,KVA 其实空载无功损耗,就是需要补偿的空载无功功率。 例:某SL7-315/10变压器,查说明书知道其I 0(%)为2.4,则: var 56.7315100 4.2100%0K Sn I Qn =?== 变压器空载电流百分值I 0可以从产品铭牌或说明书中查到。但它是一个保证值,实际的变压器的I 0通常小于此值,一般仅为标注值的40%~65%左右。所以计算出来的Qn 是偏大的。实施补偿工程时,建议做实际测量,并以实测数据为准。

成套低压电容补偿柜详解

成套电容补偿柜详解 1、课题内容简介 1.1、实训目的 (2) 1.2、主要内容 (2) 1.3、工作原理 (2) 2、电容器补偿柜的及其作用 2.1、电容器柜功能及其结构 (3) 2.2、电容器补偿柜的作用 (3) 3、一次电路原理分析及安装 3.1、电容器柜一次电路原理介绍 (4) 3.2、一次电路的工作原理过程 (4) 3.3、元器件的作用分析 (5) 3.4、一次电路的的安装图 (9) 3.5、一次电路连接母线安装及其安装实物图 (10) 4、二次回路原理图分析及安装 4.1、二次原理图 (16) 4.2、二次电路工作原理的过程 (17) 4.3、二次电路元器件布置图 (17) 4.4、二次电路安装接线图 (18) 4.5、二次电路的安装工艺 (18) 4.6、安装步骤 (19) 5、绝缘电阻测试、介电强度试验 5.1、以500伏绝缘摇表测试法测试绝缘电阻 (20) 5.2、工频及冲击耐压 (20) 附1图表 (21) 保护电路有效性 绝缘电阻及交流耐压

1、课题内容简介 1.1、实训目的 1、学会电容器补偿柜操作使用,并知道它们的作用。 2、进一步认知电容补偿柜的类型及其结构。 3、进一步认知各种电器元器件外形、结构、参数。 4、学会阅读和绘制电容器补偿柜的主电路图、二次电路图、安装接线图。 5、学会选用开关元器件,并学会母排、母线、电线规格选择。 1.2、主要内容 1、电容器补偿柜柜主电路介绍 2、主电路元器件介绍 3、一次电路元器件安装 4、一次电路元器件安装 5、二次电路元器件安装 1.3、工作原理 合上刀熔开关和断路器,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。

低压无功补偿柜操作规程

1.在成套装置接线正确无误、供电电源正常的情况下,将电容补偿柜的智能无功功率控制器的电源开关(微型断路器)暂时置断开位置(OFF位置),成套装置各柜体里面的其他电源开关(微型断路器)均置接通位置(ON位置)。 2.将成套装置1#进线柜里面的主电路开关(塑壳断路器)均置接通位置(ON位置)。进线开关柜(1#柜)内的主断路器(QF1)为电动预储能合闸方式,其合闸过程请按下面的3操作。 3.首先按下“储能”按钮,主断路器储能电动机动作并带动弹簧开始储能,储能结束后(此时储能指示灯亮),按下“合闸”按钮,弹簧储能释放,使主断路器(QF1)完成合闸动作。主断路器合闸后,合闸指示灯亮,分闸指示灯灭,储能指示灯也灭。 4.在1至3操作完成之后,且各种指示均正常的情况下,转换开关切换到手动状态(非自动状态)后,旋转转换开关,投切相应电容,对应的回路指示灯亮,接触器线圈吸合,主回路中接触器接通后其下接电容投入到电网中。此时可检测整个系统中各个电容的回路是否正确。 5.在各种指示均正常的情况下,接通电容柜智能无功功率控制器的电源开关(置ON位置),控制器接通电之后显示”CAL”,5秒后进入自动工作状态,如输入电流符合最小要求(大于150mA),将显示所测电网功率因数cosφ。此时可设置控制器的参数,可将控制器的“功率因数值”cosφ设置为0.95或者0.96(要比所测电网功率因数cosφ大),同时设定模式设置为人工设定模式。将转换开关切换至自动状态,将“投切允许”打至右位即(ON位置),无功补偿成套装置将投入正常工作。此时可以手动按下无功补偿控制器上的”增加”按钮来投切相应电容,对应的回路指示灯亮,接触器线圈吸合,主回路中接触器接通后其下接电容投入到电网中,直到补偿后的功率因数达到预定的设置为止,而相反按“减少”可切除相应电容。当设定参数时,将控制器的“功率因数值”cosφ设置为0.95或者0.96(要比所测电网功率因数cosφ大),可将设定模式设置为全自动设定模式。此时将“投切允许”打至右位即(ON位置),将转换开关切换至自动状态,无功补偿成套装置将投入正常工作。此时控制器将进行“自学过程”,在数据初始化过程中,控制器按既定“功率因数值”与现配电系统作比较,并系统地启动电容器,改善功率因数,同时记录所接入电容器组的值,寻找到最小电容器组作为无功投入门限。此时对应的回路指示灯亮,接触器线圈吸合,主回路中接触器接通后其下接电容投入到电网中,直到投入电容器组达到投入门限为止。此时按下“增加”键可调出动态参数显示代码:I(电流),U(电压),Q(无功功率),P(有功功率),再按“减少”键可调出动态参数对应显示值,按”菜单设置”键可返回主显示值:功率因数cosφ。

可控硅动态无功功率补偿装置

可控硅动态无功功率补偿装置(TSC型) 技 术 报 告 山东科技大学 2009年4月9日

按照山东科技大学与益和电气集团股份有限公司签订的《可控硅动态无功功率补偿装置(TSC 型)》技术开发(委托)合同,山东科技大学项目组负责该项目装置中控制器部分的设计,并配合益和电气的产品设计、项目最终产品的型式试验工作。项目组在整个开发设计过程中,严格执行了新产品开发程序,在技术问题上及时与益和电气联系,确保达到预期的技术经济性指标。现就该项目整个开发过程的有关情况总结分析如下: 第一章 控制策略与控制算法设计 1.1控制器的控制策略 本设计的无功补偿控制器分为手动模式和自动模式。在手动模式下直接按照手动的设置投切即可,在自动模式下控制器根据控制策略和控制算法自动运行。本无功补偿控制器控制策略采用以电网电压、无功功率作为控制量的复合控制策略,控制算法采用的是传统的比较判断算法,实行三相共补与分补相结合的补偿方式。在以往的控制器设计中,多采用单纯的功率因数做为判据,在并联电容器投切的过程中容易产生投切振荡,会对电网造成不利影响,因此本次设计统筹考虑了无功及无功功率这两个因素,综合分析控制电容器组的投切,本控制器控制电容器组分为两方面内容: 1、什么情况下对电容器组进行投切 控制器首先检测电网中的无功功率,判断是进行三相共补还是各相分补,然后计算当前状态下按照刚才的判断进行控制后对电网电压造成的影响,如果超过了所设定的电压门限,并且投切间隔时间未到,则不发出控制信号,否则,发出控制信号。控制策略分区如图1.1所示,对应控制策略如表1.1所示。能共不分220+_10%+18V 过压回差。投门限1.2Qc ,切0.1Qc 。 Q U U 上限 U 下限 Q 上限 Q 下限

低压无功就地补偿装置

低压无功就地补偿装置 1主题内容与适用范围 本标准规定了低压无功就地补偿装置的适用范围、术语、产品分类、技术要求、试验方法、检验规则及标志等。 本标准适用于在1kV及以下的工频交流配电系统最末端,与电动机并联使用,用以提高功率因数的无功就地补偿装置(以下简称“装置”)。 2引用标准 GB2681电工成套装置中的导线颜色 GB2682电工成套装置中的指示灯和按钮的颜色 GB4208外壳防护等级的分类 GB12747自愈式低电压并联电容器 JB71l3低压并联电容器装置 3术语 3.1无功就地补偿 在工频交流配电系统最末端的电动机上并接容性负载,以提高配电系统功率因数的补偿方式。 3.2无功就地补偿装置 以并联电容器为主体,并装有保护器件等的用于无功就地补偿的装置。 4产品分类 4.1环境空气温度类别 安装运行地区的环境空气温度范围为-50~+55℃。在此温度范围内按装置所能适应的环境空气温度范围分为若干温度类别,每一温度类别均以一斜线隔开的下限温度值和上限温度的字母代号来表示。 下限温度为装置可以投入运行的最低环境空气温度,其值从+5,-5,-25,-40,-50℃中选取。 上限温度为装置可以连续运行的最高环境空气温度,上限温度的字母代号与环境空气温

度的关系如表1所示。 任何下限温度和上限温度的组合均可选为装置的温度类别。优先选用的温度类别为:-5/A,-5/C,-25/C。 表1环境空气温度 上限温度代号 环境空气温度,℃ 最高 24h平均最高 年平均最高 A B C D 40 45 50 55 30 35 40 45

20 25 3O 35 注:由制造厂与购买方协商制订的专门规范,可以高于表1中所列最高温度值。其温度类别以最低和最高温度但表示,如-5/70。 4.2基本参数 4.2.1额定电压 优先选用的额定电压为: 0.38,0.66,1kV。 4.2.2额定容量 额定容量优先从下面所列的及其乘以10的优先数中选取(单位为:kvar)。 3.0,3.6, 4.8,6.0,7.5,9.0,1O,12,l5,18,24。 4.3类别 装置分为户内装置和户外装置。 5技术要求 5.1使用要求 5.1.1海拔 安装运行地区的海拔应不超过2000m。 注:用于海拔高于上述规定值的装置,其要求由制造厂与购买方协商确定。 5.1.2环境空气温度 应符合与装置相应的温度类别。

低压无功补偿技术规格书

低压无功补偿技术规格书. 低压自动无功补偿装置技术要求 1、总则 1.1、本技术规范书适用于变电所内配置的RNT低压动态无功功率补偿装置,它提出了该动态无功功率补偿装置本体及附属设备的功能设计、结构、性能、调试和试验等方面的技术要求。 1.2本技术规格书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,供方须提供一套满足本技术规格书和相关标准规范要求的高质量产品及其相应

服务,以保证的安全可靠运行。 1.3、供方须执行现行国家标准和电力行业标准。有矛盾时,按技术要求较高的标准执行。主要的标准如下: GB/T 15576-2008 《低压成套无功功率补偿装置》 GB50227-95 《并联电容器成套装置设计规范》 JB5346-1998 《串联电抗器》 GB191 《包装贮运标准》 GB11032-2000 《交流无间隙金属氧化锌避雷器》 GB/T 2681-1981 《电工成套装置中的导体颜色》 GB/T 2682-1981 《电工成套装置中的指示灯和按钮的颜色》 GB1028 《电流互感器》 GB10229 《电抗器》 DL/T620-1997 《装置过电压保护和绝缘配合》 GB 4208-93 《外壳防护等级》(IP代码) GB/T14549-93 《电能质量-公用电网谐波》 另外,尚应符合本技术规格书规定的技术要求和买方的要求。 1.4、未尽事宜,供需双方协商确定。 2、设备环境条件 2.1、周围空气温度 ℃38.4最高气温: 低压无功补偿设备 技术协议 29.3℃最低气温: - 6.8~10.6℃年平均气温: 1500米2.2、海拔高度:不大于0.05g 6度区,动峰值加速度:2.3、地震烈度:户内2.4、安装地点:、电容补偿柜技术参数3400V 额定电压:1) AC 660V 额定绝缘电压: 2500V 额定工频耐受电压:1min 8kV 冲击耐压: TMY 主母线:)2TMY 母线:PE 系统容量与无功补偿设备等应达到设计要求;3) 外形尺寸:具体见附图4)电压等级下的动态电容无功380V采用)无功功率补偿全部采用动态补偿方式:5 补偿柜,补偿容量具体见附表。%的电抗器,从根本7 对控制器、电抗器、驱动器进行特殊设计,要求选用6)上解决与系统发生串联、并联谐振,避免使谐波放大,实现无功补偿和谐波抑制并举的功能;控制应具有高可靠性,而且操作简单,与系统联结时,不需要考虑交流系统)7 相序,不会因为相序接错而带来烧坏可控硅或其他器件的现象;实现电流过零投切,电容投切过程中无涌流冲击、无操作过电压、无电弧重8)燃现象,使用寿命长;控制器实现全数字化,液晶显示,具有联网通讯功能;9)根据负载无功和负荷波动情况,在规定的动态响应时间内,多级补偿一次到)10位;

补偿控制器使用说明书

接线须知 1.信号取样原则:任取两相电压和余下一相电流,即取样电流信号的互感器所在相不要与电压信号相同。 2.取样电流必须自总负荷电流线,即电流信号互感器必须套于总进线柜母线段,不得取自电容屏。 3.10路补偿器的Uk在机器内部已经与工作电压Ub相接。 4.当交流接触器线圈工作电压为380V时,P点接A相;当交流接触器线圈工作电压为220V 时,P点接N线(零线)。 操作与运行 1.870补偿有两种运行状态:自动状态和手动状态,用户可通过按MODE键来进行自动/手动转换。当接通电源时,870I补偿器默认运行状态为自动运行状态,当有一定的用电负荷,COSΦ显示超前,这是反相,可不用调换电流信号两根线,按870I面板上的反相按钮即可。 1.自动运行状态 自动模式下,870I补偿器内部微处理器实时监测电网参数,并根据功率因数作相应的自动投切动作。 2.手动运行状态 手动模式下,电容器的投切由用户操作控制,在此模式下,用户可以通过按+键做投入动作,按-键做投入动作,按-键做切除动作。 注:(1)不管是自动模式还是手动模式,当电网电压超过用户设置的过压值时,过压指示灯亮,补偿器逐级切除已投入的电容器,同时数码显示窗显示当前的电压值直到“过压”撤消。 (2)如果取样电流输入量小于是乎200mA,本机视为低电流,自动进入休眠状态,切除所有投入的电容器,数码窗不显示。 参数设置 在运行界面状态下连续按住mode键2秒即可进入用户设置状态,通过按mode键可依次各种设置值状态,按+键对所选设置增大调整,按—键对所选设置做减小调整,具体各参数的设置范围见表1。 注:在参数设置界面连续按住mode3秒返回运行界面的自动模式,此时参数存储到掉电保护存储中,如果补偿器处于参数设置界面,30S内用户没有按键盘操作,870I补偿器自动回复到运行界面的自动模式,但此时所作的参数修改被认为无效,不予存储。 常见故障及处理

无功功率就地补偿说明

HETB-S10无功功率就地补偿装置说明: 电动机无功功率就地补偿技术是国家推广的一项节电项目。大力推广这一新技术,对节能具有十分重要的意义。由于低压供电负荷距离变压器较远,采用电动机无功功率就地补偿技术除了节约电能外,还可降低线路压降、使电动机易于起动。 1、电动机就地补偿容量的选择 电动机就地补偿容量的选择,一般应以空载时补偿其功率因数至1为宜,不能以负荷情况计算。因为以空载情况补偿,则满载时仍为滞后。若以负荷情况补偿至cos =1,空载(或轻载)时势必过补偿(即功率因数超前)。过补偿的电动机在切断电源后,由于电容器之放电供给电动机以励磁,能使仍在旋转的电动机成为感应发电机,而使电压超出额定电压好多倍,对电动机的绝缘和电容器的绝缘都不利,因此,感应电动机就地补偿的电容器容量可由下式确定: QC≤1.732UNI0 式中:QC—就地补偿电容器的三相总容量,kW; UN—电动机的额定电压,kV; I0—电动机的空载电流,A。 防止电动机产生自激的电容器容量可按下式选用: QC=0.9×1.732UNI0=1.5588UNI0 就地补偿电容器容量选择的主要参数是电动机的励磁电流,因为不使用电容器可以造成电动机自激是选用电容器容量的必要条件。由于电动机的功率因数与负载率、极数和容量有很大关系,负载率越低,功率因数越低;极数越多,功率因数也越低;同时,容量越小,功率因数也越低。 2、就地补偿的接线方式 2.1直接起动和降压起动的电动机的补偿接线 对直接起动的高低压三相异步电动机,电动机无功功率就地补偿装置的电容器可以直接和它的出线端子相连接,电容器和电动机之间不需要装设任何开关设备。当电动机和电源脱离之后其绕组即为电容器放电电阻,因此不必专设电容器的放电装置。高压电动机的就地补偿装置, 2.2起动困难的低压电动机的补偿接线 高压电动机经常因供电距离太远造成起动困难,这时可以采用电动机无功功率就地补偿技术,为了提升负载端电压,可以适当增加补偿电容器的容量,当电容

相关主题
文本预览
相关文档 最新文档