污水处理厂高程设计计算
- 格式:doc
- 大小:31.50 KB
- 文档页数:4
污水厂设计计算书第一章 污水处理构筑物设计计算一、粗格栅1.设计流量Q=20000m 3/d ,选取流量系数K z =则: 最大流量Q max =×20000m 3/d=30000m 3/d =0.347m 3/s2.栅条的间隙数(n )设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数85.449.04.002.060sin 347.0sin 21=⨯⨯︒==bhv Q n α(取n=45)3.栅槽宽度(B)设:栅条宽度s=0.01m则:B=s (n-1)+bn=×(45-1)+×45=1.34m 4.进水渠道渐宽部分长度设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=︒-=-=α5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m L L 30.0260.0212===6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 102.060sin 81.929.0)02.001.0(4.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h 2=0.3m 则:栅前槽总高度H 1=h+h 2=+=0.7m 栅后槽总高度H=h+h 1+h 2=++=0.802m 8.格栅总长度(L)L=L 1+L 2+++ H 1/tan α=++++tan60°= 9. 每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W=Q W 1=05.0105.130000100031max ⨯⨯=⨯⨯-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:α1αα图1-1 粗格栅计算草图二、集水池设计集水池的有效水深为6m,根据设计规范,集水池的容积应大于污水泵5 min的出水量,即:V>0.347m3/s×5×60=104.1m3,可将其设计为矩形,其尺寸为3 m×5m,池高为7m,则池容为105m3。
污水处理设计常用计算公式
1.污水流量计算公式:
污水流量=污水产生量×日用水率
污水产生量=人均产污量×人口数+工业废水排放量
2.污染负荷计算公式:
COD负荷=污水流量×COD浓度
BOD负荷=污水流量×BOD浓度
TP负荷=污水流量×TP浓度
TN负荷=污水流量×TN浓度
3.池体尺寸计算公式:
曝气池尺寸=曝气池容积/曝气通量
沉淀池尺寸=沉淀池容积/停留时间
活性污泥池尺寸=活性污泥池容积/深度
4.沉淀速度计算公式:
沉淀速度=比表面积×重力加速度×其中一种颗粒物的密度/动力粘度×浓缩度
5.曝气负荷计算公式:
曝气负荷=曝气量/曝气池有效体积
曝气量=溶氧量/溶解氧传质系数
以上仅为污水处理设计中的一些常用计算公式,实际设计过程中还需要根据具体情况选择合适的公式并考虑其他影响因素。
污水高程计算公式例题解析在城市建设和生活中,污水处理是一个非常重要的环节。
而在污水处理过程中,污水的高程计算是一个关键的步骤。
正确的高程计算可以保证污水在处理过程中顺利流动,避免堵塞和泄漏等问题的发生。
因此,掌握污水高程计算公式是非常重要的。
本文将通过例题解析的方式,来详细介绍污水高程计算公式及其应用。
首先,我们需要了解一些基本概念。
在污水处理系统中,污水管道的高程是指管道底部的垂直距离。
通常情况下,我们需要计算污水管道的高程,以便确定管道的坡度和流动方向。
而污水管道的高程计算通常涉及到地面高程、管道长度、管道直径、流速等多个参数。
接下来,我们将通过一个具体的例题来详细介绍污水高程计算的公式和应用。
假设有一条直径为0.5米的污水管道,长度为100米,流速为0.5米/秒。
我们需要计算管道出口的高程,以便确定污水的流动方向。
在这种情况下,我们可以使用以下的公式来计算管道出口的高程:管道出口高程 = 地面高程 + 管道长度 sin(α) 管道长度 (1 cos(α))。
其中,地面高程是指管道出口所在位置的地面高程,α是管道的坡度角度。
根据这个公式,我们可以先计算出管道的坡度角度,然后带入公式中进行计算。
假设地面高程为50米,我们先来计算管道的坡度角度。
根据流速和管道直径,我们可以使用以下公式来计算坡度角度:sin(α) = 流速 / (0.85 (管道直径)^0.63)。
带入参数后,可以得到坡度角度为sin(α) = 0.5 / (0.85 (0.5)^0.63) ≈ 0.75,那么α≈ arcsin(0.75) ≈ 48.59°。
接下来,我们带入地面高程、管道长度和坡度角度,就可以计算出管道出口的高程:管道出口高程 = 50 + 100 sin(48.59°) 100 (1 cos(48.59°)) ≈ 50 + 77.16 51.82 ≈ 75.34米。
通过以上计算,我们得出了管道出口的高程为75.34米。
高程计算污水处理厂的高程布置污水处理厂高程布置的任务是:确定各处理构筑物和泵房等的标高,选定各连接管渠的尺寸并决定其标高。
计算决定各部分的水面标高,以使污水能按处理流程在处理构筑物之间通畅地流动,保证污水处理厂的正常运行。
污水处理厂的水流常依靠重力流动,以减少运行费用。
为此,必须精确计算其水头损失(初步设计或扩初设计时,精度要求可较低)。
水头损失包括:(1)水流流过各处理构筑物的水头损失,包括从进池到出池的所有水头损失在内;在作初步设计时可按表1估算。
表1 处理构筑物的水头水损失构筑物名称水头损失(cm) 构筑物名称水头损失(cm)格栅 10~25 生物滤池(工作高度为2m时):沉砂池 10~25沉淀池:平流竖流辐流 20~40 1)装有旋转式布水器 270~28040~50 2)装有固定喷洒布水器 450~47550~60 混合池或接触池 10~30双层沉淀池 10~20 污泥干化场 200~350曝气池:污水潜流入池 25~50污水跌水入池 50~150(2)水流流过连接前后两构筑物的管道(包括配水设备)的水头损失,包括沿程与局部水头损失。
(3)水流流过量水设备的水头损失。
水力计算时,应选择一条距离最长、水头损失最大的流程进行计算,并应适当留有余地;以使实际运行时能有一定的灵活性。
计算水头损失时,一般应以近期最大流量(或泵的最大出水量)作为构筑物和管渠的设计流量,计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头。
设置终点泵站的污水处理厂,水力计算常以接受处理后污水水体的最高水位作为起点,逆污水处理流程向上倒推计算,以使处理后污水在洪水季节也能自流排出,而水泵需要的扬程则较小,运行费用也较低。
但同时应考虑到构筑物的挖土深度不宜过大,以免土建投资过大和增加施工上的困难。
还应考虑到因维修等原因需将池水放空而在高程上提出的要求。
在作高程布置时还应注意污水流程与污泥流程的配合,尽量减少需抽升的污泥量。
污水处理厂高程计算一、高程测量基本概念和方法1.高程概念:高程指的是一点相对于一些水平面的高低位置,通常使用基准面作为参照标准。
2.高程测量方法:常用的高程测量方法有水准测量法、网络大地测量法等。
在污水处理厂高程计算中,通常使用直接读表法、分水实测法等方法。
二、污水处理厂高程计算步骤1.制定高程控制点:根据具体情况,在污水处理厂的关键位置设置高程控制点,如进、出水口、隔油池底、曝气池底等。
2.进行高程测量:根据设定的高程控制点,使用合适的高程测量方法,进行实际的高程测量工作。
对于大面积的污水处理厂,需要建立高程网进行全面测量。
3.绘制高程图:根据测量结果,编制污水处理厂的高程图。
高程图可以直观地反映污水处理厂内各个位置的高低关系,并为后续的高程计算提供依据。
4.计算污水流向:在污水处理厂的高程计算中,首先需要确定污水的流向,即整个处理过程中各个设备的排布顺序和排水方向。
在此基础上,进行管道布置和高程计算。
5.确定设备高程:根据设备的功能和操作要求,确定各个设备的高程。
例如,在进、出水口处,需要保证水流的顺畅;在曝气池和沉淀池等位置,需要根据水流速度等参数,确定合适的设备高程。
6.管道高程计算:在设备高程确定后,按照污水流向和排列位置,逐一计算各个管道的高程。
通常包括进水管、排水管、曝气池进水管、固体液分离管等。
7.调整高程设计:在计算完成后,需要根据实际情况进行合理的调整。
如果发现存在高程不合理或超出范围的情况,需要对布置进行调整,确保整个污水处理系统的正常运行。
三、污水处理厂高程计算中的注意事项1.结构物高程计算:在计算过程中,需要考虑到结构物的高程,如墙体、屋面等。
这些结构物可能会影响到污水处理厂的高程设计。
2.高程范围限制:根据污水处理厂的具体要求和周围地形环境,需要确定高程的测量范围和限制条件。
同时,还需要考虑到未来的扩建和改造需求。
3.设备故障处理:在高程计算中,需要考虑到设备的故障情况。
污水处理厂平面及高程设计平面布置及高程布置一、污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。
作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。
在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。
布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。
构筑物之间如需布置管道时,其间距一般可取5-8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。
管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。
厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。
所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。
这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。
它们是污水处理厂设计不可缺少的组成部分。
其建筑面积大小应按具体情况与条件而定。
有可能时,可设立试验车间,以不断研究与改进污水处理方法。
辅助建筑物的位置应根据方便、安全等原则确定。
如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。
〔1〕接纳水体广澳湾近岸海域−−→巴式计量槽 0WL 水位设计为3.50m出水管:DN1000,钢筋混凝土管道管底坡度:0.03i =管长:约50m流量:33max 2736m /h=0.76m /s Q =1L =排出管出口管底标高:3.00m2L =排出管进口管底标高:3.15m正常水深=0.65m,而临界水深=0.58,管中水为非满流,自由出流至广澳湾近岸海域。
管道进口水力损失为0.031WL =巴式计量出口槽标高2L +正常水深+管道进口水力损失3.150.650.03 3.83m =++=1WL ——巴式计量槽下游水面标高〔2〕巴式计量槽−−→接触消毒池 巴式喉管是由不锈钢制成,浇铸于巴式计量槽中;巴式计量槽水力高程2 3.15m L =,3 3.56m L =,4 3.41m L =,5 3.61m L =,6 3.20m L =计量设备的水头损失计算巴式计量槽在自由流的条件下,计量槽的流量按下式计算:10.0261.5690.372(3.28)b Q b H =式中 Q ——过堰流量,0.763m /s ;b ——喉宽,m ;1H ——上游水深,m 。
设计中取 1.00m b =,那么11.5702.402Q H =,得10.73m H =对于巴式计量槽只考虑跌落水头。
淹没度151()/(3.83 3.61)/0.730.3WL L H =-=-=可以满足自由出流。
521 3.610.73 4.34m WL L H =+=+=2WL 为巴式计量槽上游水面标高[]3=(4.34 3.20) 1.680.39m/s v -⨯=0.75/3v 为巴式槽上游渠中流速320.05WL WL H =++∆(渠道等约为0.1m)4.340.050.1 4.49m =++=式中 3WL ——接触池出水堰下游水面标高73L WL =+自由跌落到3=4.49+0.05=4.54m WL堰长为3m堰上水头约为h =0.3m74 4.540.3 4.84m h WL L +=+==4WL 为接触池水面标高〔3〕接触池−−→配水池 DN800,L=10m管底坡度:0.003i =堰上水头约为h =0.3m254/290g WL WL ⨯+⨯+=出水(10)(0.98-0.50)弯头(0.40.98/2g )2⨯⨯⨯+40.0007+500.00095+配水井配进水管道和弯头(0.50.98/2g )+h4.840.0140.00280.0060.00350.0470.0250.3=+++++++5.24m =配水井溢流堰顶标高58L WL =+自由出流至5WL 标高5.240.1 5.34m =+=68 5.340.3 5.64m h WL L +=+==h ——堰上水头约为0.3m〔4〕配水井−−→SBR 反响池 760.010.01 5.66m WL WL +=+=7WL ——接触池进口处最大水位标高DN800,L=10m管底坡度:0.003i =,滗水器水力损失为0.05mSBR 反响池水位0.030.05 5.78m 87WL WL =++= (4)SBR 反响池−−→配水井 DN800,L=10m管底坡度:0.003i =堰上水头约为h =0.3m298/290g WL WL ⨯+⨯+=出水(10)(0.98-0.50)弯头(0.40.98/2g )2⨯⨯⨯+40.0007+500.00095+配水井配进水管道和弯头(0.50.98/2g )+h5.780.0140.00280.0060.00350.0470.0250.3=+++++++6.18m =配水井溢流堰顶标高99L WL =+自由出流至9WL 标高6.180.1 6.28m =+=109=6.280.3 6.58m h WL L ++==h ——堰上水头约为0.3m〔5〕配水井−−→初沉池 11100.1 6.580.1 6.68m WL WL =+=+=1011L WL =+自由出流至10WL 标高=6.68+0.1=6.78m式中 10L ——平流沉淀池出水槽渠底标高1210 6.780.2 6.98m WL L h =+=+=式中 12WL ——平流沉淀池出水槽水面标高h ——平流沉淀池出水自由跌落〔6〕平流沉淀池−−→钟式沉砂池 1312WL WL =+自由跌落到10 6.980.097.07m WL =+=堰宽为3m式中 13WL ——平流沉淀池出水处水面标高14130.17.070.17.17m WL WL =+=+=14WL ——平流沉淀池进水处水面标高1114L WL =+自由出流至12WL 标高=7.17+0.09=7.26m式中 11L ——平流沉淀池第二格集水槽末端标高15117.260.17.36m WL L h =+=+=式中 15WL ——平流沉淀池第二格集水槽水面标高1615WL WL +=平流沉淀池底部隔墙孔损失1h7.360.027.38m =+=取1h 为0.02m式中 16WL ——平流沉淀池第一格集水槽水面标高平流沉淀池与钟式沉砂池之间的管道连接DN800砼管,L=50m20.5m A =0.2m R =0.76/0.20.38m/s v ==20.6670.38/()0.00078400.2I ⎡⎤==⎣⎦⨯ 1716WL WL +=出水至平流沉淀池20.38500.00078⨯+⨯(1.1/2g)+转弯和从渠道进入管道2(0.50.38/2)g ⨯7.44=17WL ——钟式沉砂池出水渠堰末端水面标高1217L WL =+自由落水至13WL 标高7.440.1=+7.54m =式中 12L ——钟式沉砂池出溢流堰堰顶标高堰长2 2.55m =⨯=1.50.76 1.825Q h ==⨯⨯那么0.1910.2m h =≈12187.540.27.74m WL L h =+=+=式中 18WL ——钟式沉砂池最高水位〔7〕钟式沉砂池−−→细格栅 1918WL WL =+2个钟式沉砂池闸板孔损失2个闸板孔面积22 1.0 1.0 2.0m =⨯⨯= 0.76/2.00.38m/s v ==过闸板孔损失22.230.38/2g =⨯+水流减速转弯和格栅后涡流等大约0.02m 0.036m =那么19180.0367.740.0367.78m WL WL +=+==细格栅处渠道底标高12L =6.34m(1) 格栅水头损失计算0f h kh =20sin 2v h g ξα=,43=S b ξβ⎛⎫ ⎪⎝⎭ 式中 f h ——过栅水头损失,m ;0h ——计算水头损失,m ;k ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般3k =;ξ——阻力系数,与栅条断面形状有关,,k 为系数,格栅受污物堵塞时水头损失增大倍数,与栅条断面形状有关,可按"给排水设计书册〔第5册〕"提供的计算公式和相关系数计算。
污水处理厂平面及高程设计平面布置及高程布置一、污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。
作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。
在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。
布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。
构筑物之间如需布置管道时,其间距一般可取5-8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。
管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。
厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。
所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。
这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。
它们是污水处理厂设计不可缺少的组成部分。
其建筑面积大小应按具体情况与条件而定。
有可能时,可设立试验车间,以不断研究与改进污水处理方法。
辅助建筑物的位置应根据方便、安全等原则确定。
如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。
化验室应远离机器间和污泥干化场,以保证良好的工作条件。
办公室、化验室等均应与处理构筑物保持适当距离,并应位于处理构筑物的夏季主风向的上风向处。
操作工人的值班室应尽量布置在使工人能够便于观察各处理构筑物运行情况的位置。
此外,处理厂内的道路应合理布置以方便运输;并应大力植树绿化以改善卫生条件。
应当指出:在工艺设计计算时,就应考虑它和平面布置的关系,而在进行平面布置时,也可根据情况调整构筑物的数目,修改工艺设计。
总平面布置图可根据污水厂的规模采用1∶200~1∶1000比例尺的地形图绘制,常用的比例尺为l:500。
图1为某甲市污水处理厂总平面布置图、主要处理构筑物有:机械除污物格栅井、曝气沉砂池、初次沉淀池与二次沉淀池(均设斜板)、鼓风式深水中层曝气池、消化池等及若干辅助建筑物。
该厂平面布置特点为:流线清楚,布置紧凑。
鼓风机房和回流污泥泵房位于暖气池和二次沉淀池一侧,节约了管道与动力费用,便于操作管理。
污泥消化系统构筑物靠近四氯化碳制造厂(即在处理厂西侧),使消化气、蒸气输送管较短。
节约了基建投资。
办公室。
生活住房与处理构筑物、鼓风机房、泵房、消化池等保持一定距离,卫生条件与工作条件均较好。
在管线布置上,尽量一管多用,如超越管、处理水出厂管都借道雨水管泄入附近水体,而剩余污泥、污泥水、各构筑物放空管等,又都与厂内污水管合并流人泵房集水井。
但因受用地限制(厂东西两恻均为河浜),远期发展余地尚感不足。
图2为乙市污水厂的平面布置图,泵站设于厂外。
主要构筑物有:格栅、曝气沉砂池、初次沉淀池、曝气池、二次沉淀池及回流污泥泵房等一些辅助建筑物。
湿污泥池设于厂外便于农民运输之处。
该厂平面布置的特点是:布置整齐、紧凑。
两期工程各自成系统,对设计与运行相互干扰较少。
办公室等建筑物均位于常年主风向的上风向,且与处理构筑物有一定距离,卫生、工作条件较好。
在污水流人初次沉淀池、曝气池与二次沉淀池时,先后经三次计量,为分析构筑物的运行情况创造了条件。
利用构筑物本身的管渠设立超越管线,既节省了管道,运行又较灵活。
第二期工程预留地设在一期工程与厂前区之间,若二期工程改用别的工艺流程或另选池型时,在平面布置上将受一定限制。
泵站与湿污泥池均设于厂外,管理不甚方便。
此外,三次计量增加了水头损失。
二、污水处理厂的高程布置污水处理厂高程布置的任务是:确定各处理构筑物和泵房等的标高,选定各连接管渠的尺寸并决定其标高。
计算决定各部分的水面标高,以使污水能按处理流程在处理构筑物之间通畅地流动,保证污水处理厂的正常运行。
污水处理厂的水流常依靠重力流动,以减少运行费用。
为此,必须精确计算其水头损失(初步设计或扩初设计时,精度要求可较低)。
水头损失包括:(1)水流流过各处理构筑物的水头损失,包括从进池到出池的所有水头损失在内;在作初步设计时可按表1估算。
表1 处理构筑物的水头水损失构筑物名称水头损失(cm) 构筑物名称水头损失(cm)格栅10~25 生物滤池(工作高度为2m时):沉砂池10~25沉淀池:平流竖流辐流20~40 1)装有旋转式布水器270~28040~50 2)装有固定喷洒布水器450~47550~60 混合池或接触池10~30双层沉淀池10~20 污泥干化场200~350曝气池:污水潜流入池25~50污水跌水入池50~150(2)水流流过连接前后两构筑物的管道(包括配水设备)的水头损失,包括沿程与局部水头损失。
(3)水流流过量水设备的水头损失。
水力计算时,应选择一条距离最长、水头损失最大的流程进行计算,并应适当留有余地;以使实际运行时能有一定的灵活性。
计算水头损失时,一般应以近期最大流量(或泵的最大出水量)作为构筑物和管渠的设计流量,计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头。
设置终点泵站的污水处理厂,水力计算常以接受处理后污水水体的最高水位作为起点,逆污水处理流程向上倒推计算,以使处理后污水在洪水季节也能自流排出,而水泵需要的扬程则较小,运行费用也较低。
但同时应考虑到构筑物的挖土深度不宜过大,以免土建投资过大和增加施工上的困难。
还应考虑到因维修等原因需将池水放空而在高程上提出的要求。
在作高程布置时还应注意污水流程与污泥流程的配合,尽量减少需抽升的污泥量。
污泥干化场、污泥浓缩池(湿污泥池),消化池等构筑物高程的决定,应注意它们的污泥水能自动排人污水人流干管或其他构筑物的可能性。
在绘制总平面图的同时,应绘制污水与污泥的纵断面图或工艺流程图。
绘制纵断面图时采用的比例尺:横向与总平面图同,纵向为1∶50-1∶100。
现以图2所示的乙市污水处理厂为例说明高程计算过程。
该厂初次沉淀池和二次沉淀池均为方形,周边均匀出水,曝气池为四座方形池,表面机械曝气器充氧,完全混合型,也可按推流式吸附再生法运行。
污水在入初沉池、曝气池和二沉池之前;分别设立了薄壁计量堰(、为矩形堰,堰宽0.7m,为梯形堰,底宽0.5m)。
该厂设计流量如下:近期=174L/s 远期=348L/s=300L/s =600L/s回流污泥量以污水量的100%计算。
各构筑物间连接管渠的水力计算见表2。
处理后的污水排人农田灌溉渠道以供农田灌溉,农田不需水时排人某江。
由于某江水位远低于渠道水位,故构筑物高程受灌溉渠水位控制,计算时,以灌溉渠水位作为起点,逆流程向上推算各水面标高。
考虑到二次沉淀池挖土太深时不利于施工,故排水总管的管底标高与灌溉渠中的设计水位平接(跌水0.8m)。
污水处理厂的设计地面高程为50.00m。
高程计算中,沟管的沿程水头损失按表2所定的坡度计算,局部水头损失按流速水头的倍数计算。
堰上水头按有关堰流公式计算,沉淀池、曝气池集水槽系底,且为均匀集水,自由跌水出流,故按下列公式计算:B=(1)=1.25B (2)式中Q--集水槽设计流量,为确保安全,常对设计流量再乘以1.2~1.5的安全系数();B--集水槽宽(m);h0--集水槽起端水深(m)。
高程计算:高程(m)灌溉渠道(点8)水位49.25排水总管(点7)水位跌水0.8m 50.05窨井6后水位沿程损失=0.001×390 50.44窨井6前水位管顶平接,两端水位差0.05m 50.49二次沉淀池出水井水位沿程损失=0.0035×100=0.35m 50.84二次沉淀池出水总渠起端水位沿程损失=0.35-0.25=0.10m 50.94二次沉淀池中水位集水槽起端水深=0.38m自由跌落=0.10m堰上水头(计算或查表)=0.02m合计0.50m 51.44堰F3后水位沿程损失=0.002810=0.03m局部损失==0.28m合计0.31m 51.75堰F3前水位堰上水头=0.26m自由跌落=0.15m合计0.41m 52.16曝气池出水总渠起端水位沿程损失=0.64-0.42=0.22m 52.38 曝气池中水位集水槽中水位=0.26m 52.64堰F2前水位堰上水头=0.38m自由跌落=0.20m合计0.58m 53.22点3水位沿程损失=0.62-0.54=0.08m局部损失=5.85×=0.14m合计0.22m 53.44初次沉淀池出水井(点2)水位沿程损失=0.0024×27=0.07m局部损失=2.46×=0.15m合计0.22m 53.66初次沉淀池中水位出水总渠沿程损失=0.35-0.25=0.10m 集水槽起端水深=0.44m自由跌落=0.10m堰上水头=0.03m合计0.67m 54.33堰F1后水位沿程损失=0.0028×11=0.04m局部损失==0.28m合计0.32m 54.65堰F1前水位堰上水头=0.30m自由跌落=0.15m合计0.45m 55.10沉砂池起端水位沿程损失=0.48-0.46=0.02m沉砂池出口局部损失=0.05m沉砂池中水头损失=0.20m合计0.27m 55.37格栅前(A点)水位过栅水头损失0.15m 55.52m总水头损失 6.27m上述计算中,沉淀池集水槽中的水头损失由堰上水头、自由跌落和槽起端水深三部分组成,见图3。
计算结果表明:终点泵站应将污水提升至标高55.52m处才能满足流程的水力要求。
根据计算结果绘制了流程图,见图4。
图3 集水槽水头损失计算示意-堰上水头;-自由跌落;-集水槽起端水深;-总渠起端水深图4 污水处理流程污泥流程的高程计算以图1所示的甲市污水处理厂为例。
该厂污泥处理流程为:二次沉淀池--污水泵站--初次沉淀池--污泥投配(预热)池--污泥泵站--消化池--贮泥池--运泥船外运高程计算顺序与污水流程同,即从控制性标高点开始计算。
甲市处理厂设计地面标高为4.2m,初次沉淀池水面标高为6.7m。